PART II: INORGANIC CHEMISTRY

XII

SECTION I: SINGLE OPTION CORRECT

571.	 (A) The formation of Ni(CO)₄ (B) The decomposition of Ni(CO)₄ (C) The formation and thermal decomposition of Ni(CO)₄ (D) The formation and catalytic decomposition of Ni(CO)₄
572.	Consider the following statements: According the Werner's theory. 1. Ligands are connected to the metal ions by covalent bonds 2. Secondary valencies have directional properties 3. Secondary valencies are non-ionisable. of these statements: (A) 1, 2 and 3 are correct (B) 2 and 3 are correct (C) 1 and 3 are correct (D) 1 and 2 are correct
573.	Which compound have all the types of bonds are present and count how many H – bond is present (A) White vitriol & 2 H – bond (B) Green vitriol & 6 H – bond (C) Blue vitriol & 4 H – bond (D) Mohr salt & 5 H – bond
574.	Van Arkel method of purification of metals involves converting the metal to a : (A) Volatile stable compound (B) Volatile unstable compound (C) non volatile stable compound (D) none of the above
575.	What is the colour of $(NH_4)_2SnCI_6$? (A) white (B) pink (C) red (D) yellow
576	What is the coordination number of Cr in $K_3[Cr(ox)_3]$? (A) 6 (B) 5 (C) 4 (D) 3
577.	In the following precipitate reactions which one is not possible : (A) $CdCl_2 + NaOH \xrightarrow{\Delta} Cd(OH)_2 + NaCl$ (B) $AgNO_3 + Na_3AsO_4 \xrightarrow{cold} Ag_3AsO_4 + NaNO_3$ (C) $Pb(NO_3)_2 + Kl \xrightarrow{\Delta} Pbl_2 + KNO_3$ (D) $AgNO_2 + Na_3AsSO_4 \xrightarrow{cold} Ag_3AsO_4 + NaNO_2$
578.	When $\mathrm{NH_4OH}$ is added to solution of $\mathrm{NiCl_2}$ the green colour precipitate is formed but when excess of $\mathrm{NH_4OH}$ is added in that precipitate., the complex is formed. What is the formula of that precipitate & complex : (A) $\mathrm{Ni(OH)_2}$, $[\mathrm{Ni(NH_3)_6}]\mathrm{Cl_2}$ (B) $\mathrm{Ni(OH)_3}$, $[\mathrm{Ni(NH_3)_6}]\mathrm{Cl_2}$ (C) $\mathrm{NI(OH)_2}$, $[\mathrm{Ni(NH_3)_4}]\mathrm{Cl_2}$ (D) $\mathrm{NI(OH)_3}$, $[\mathrm{Ni(NH_3)_4}]\mathrm{Cl_2}$
579.	A mixture of two salts is not soluble in water but dissolves completely in dil HCl to form a colourless solution. The mixture could be: (A) AgNO + KBr (B) BaCO + ZpS (C) FeCl + CaCO (D) Mp(NO) + MgSO

580. The correct IUPAC name of the complex: H_3C —C=N \searrow $CoCl_2$ is: (A) Dichlorodimethylglyoximatocobalt (II) (B) Bis(dimethylglyoxime)dichlorocobalt (II) (C) Dimethylglyoximecobalt(II) chloride (D) Dichlorodimethylglyoxime-N, N-cobalt (II) 581. Zinc white is a better white pigment than lead white because it: Has more covering power than lead white (B) Is not blackened by the action of atmosphere (C) Is soluble in water Becomes yellow when heated (D) 582. The effective atomic number of cobalt in the complex $[Co(NH_3)_4]^{3+}$ is – (B) 33 30 KF combines with HF to form KHF₂. The compound contains the species 583. (B) K+, F- and HF (A) K+, F- and H+ (C) K⁺ and [HF₂]⁻ (D) [KHF] and F- $Iron\ , once \ dipped\ in\ concentration\ H_2SO_4,\ does\ not\ displace\ copper\ from\ sulphate\ solution\ because$ 584. It is less reactive than copper (B) A layer of sulphate is deposited on it (C) A layer of oxide is deposited on it (D) None 585. In $[Cr(C_2O_4)_3]^{3-}$, the isomerism shown is (A) ligand (B) optical geometrical (D) ionisation (C) 586. Which statement about corrosive sublimate is incorrect: It is prepared by heating mercury & chlorine It reduces stannic chloride (B) (C) It oxidises stannous chloride (D) It sublimes at readily 587 Consider the following isomerisms: Geometrical 1. Ionization 2. Hydrate 3. Co-ordination 4. Which of the above isomerisms are exhibited [Cr(NH₃)₂(OH)₂Cl₂]⁻¹? (A) 1 and 5 (B) 2 and 3 (C) 3 and 4 (D) 4 and 5 In the metallurgy of iron when lime stone is added to the blast furnace, the calcium ion ends up in 589. (A) Slag (B) Ganque (C) Metallic calcium (D) Calcium carbonate The oxidation of Fe in Na₂ [Fe(CN)₅NO] & Na₄ [Fe(CN)₅NOS] are: 590. (B) +2 & +2 (A) + 2 & + 3(C) + 3 & + 3(D) +3 & +2From gold amalgam, gold may be recovered by: 591. Addition of Zn metal Electrolytic refining (B)

(D)

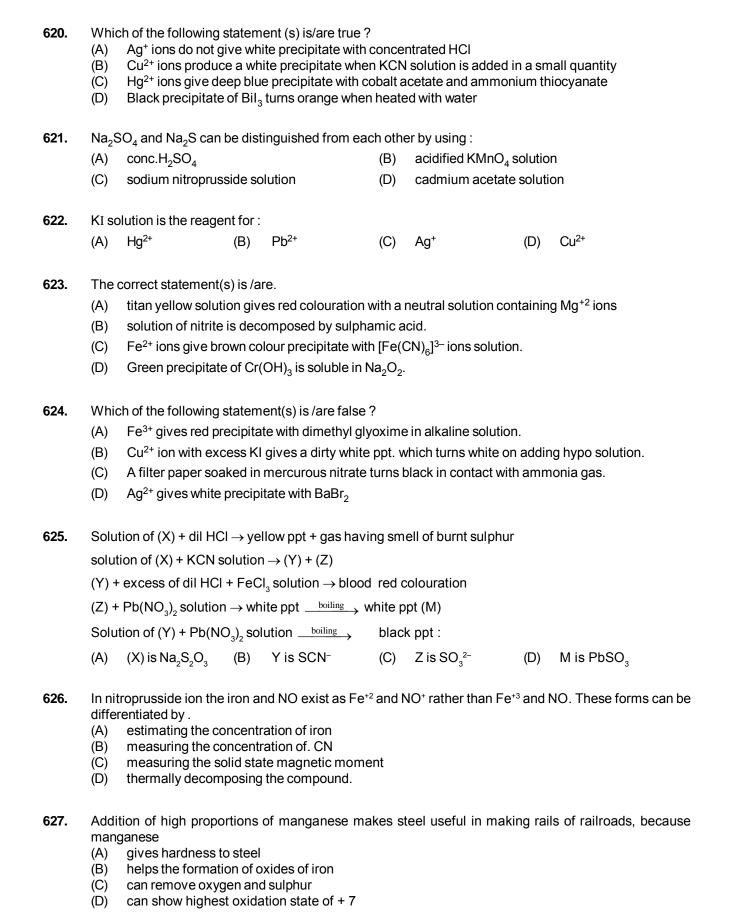
(C) Liquation

Dissolving Hg in HNO₃

(D) Magnetic separation

(C)

592.


Distillation

The purification method used for mineral Al₂O₃.2H₂O is –

(A) Froth floatation (B) Leaching

593.	Which	ch of the following XeF ₂	is linea (B)	ar? XeF ₄	(C)	SO ₂	(D)	CIF ₃
594.	the r	metal ion M ⁿ⁺ will b	→ wh be –	ite precipitate	,		(D)	Cn2+
595.		Hg^{2+} ction of $K_2Cr_2O_7$ wi					(D)	Sn ²⁺
	(A)	CrCl ₃	(B)	CrOCl ₂	(C)	CrO ₂ Cl ₂	(D)	Cr ₂ O ₃
596.	(A) (C)	earation of looking red lead ammonical AgNo			(B) (D)	ammonical silver ammonical AgN0		
597.	Whic (A)	ch of the following on N_2O_3	oxides i (B)	is amphoteric in na P_2O_3	ture ? (C)	Sb ₂ O ₃	(D)	Bi ₂ O ₃
598.	Whic (A)	ch of the following ZnBr ₂	salt lik (B)	perate reddish bro KBr	wn ga (C)	s on treatment wit KNO ₂	th dilu (D)	te H ₂ SO ₄ ? KNO ₃
599.	In wh (A)	nich of the following [XeO ₆] ^{4–}	y Xe ato (B)		sed (C)	XeO ₄	(D)	XeF ₂₆
600.	In a research lab a scientist is doing an experiment. He takes two test tubes one containing Ba(NO ₃) ₂ solution and other contains salts of chloride, fluoride and iodide. Now he mixed test tube Ist with test tube IInd. then what happens (A) chloride is precipitate BaCl ₂ form (B) fluoride is precipitated in BaF ₂ form (C) iodide is precipitated in Bal ₂ form (D) all are precipitate in BaCl ₂ , BaF ₂ and Bal ₂ form							
601.	In co	omparison of ferro More stable	us salt (B)	, ferric salt is : Less stable	(C)	Equally stable	(D)	None of these
602.	Salt (A)	(A) on decomposition $(NH_4)_2SO_4$				as , neutral gas al (NH ₄) ₂ CO ₃		ith H ₂ O . (A) is : (NH ₄) ₂ Cr ₂ O ₇
603.	The (A)	chromyl chloride t Cl [–] ions	est is r (B)	meant for which of SO ₄ ion		ollowing ion ? I ⁻ ions	(D)	CI ⁻ and CrO ₄ ²⁻ ions
604.	and		. (B) o	n reaction with K ₄	[Fe(C		colou	itate dissolves in HNO_3 r (C) . What is (B) ? $CuSO_4$
605.		cals. This happens sulphur is prese the fourth group	becaunt in the radica sed by	use – e mixture as in im Is are precipitated some acidic radic	purity as su	lphides	absen	ce of the second group
606.	Whic (A)	ch is the hybridisa d²sp³	tion fo (B)	r Indian yellow . dsp³	(C)	sp³d²	(D)	sp³d³

607.		ch of the following $H_2S_2O_4$	-	cids of sulphur cor $H_2S_2O_5$		no sulphur—sulphe $H_2S_2O_7$	ur (S - (D)	•
608.						to the formation of [Ag(NH₃)₂]OH		[Ag(NH ₃) ₂]Cl
SEC 609.		N II: MORE ch of the following CdS				I CORRECT	(D)	$\mathrm{Bi}_{2}\mathrm{S}_{3}$
610.	Colo (A)		followi (B)	-		e transfer spectru K ₂ Cr ₂ O ₇	m? (D)	AgI
611.	pπ – (A) (C)	$-d\pi$ bonding occuphosphorus in P nitrogen in N ₂ O ₅	4O ₁₀	veen oxygen and	(B) (D)	chlorine in HCIO carbon in CO ₂	4	
612.	Which of the following statement(s) is are correct when a mixture of NaCl and K ₂ Cr ₂ O ₇ is gently warmed with concentrated H ₂ SO ₄ ? (A) A deep red vapour is evolved (B) The vapour when passed into NaOH solution gives a yellow solution of Na ₂ CrO ₄ (C) Chlorine gas is evolved (D) Chromyl chloride is formed							
613.	Extra (A) (C)	action of silver from distillation metho froth flotation met	d	iferrous lead (Pb +/	Ag) inv (B) (D)	volves cupellation treatment with Na	ıCl	
614.	Which	ch of the following HgS	metal (B)	s sulphides are so Bi ₂ S ₃	oluble (C)	in hot and 50% HN CuS	NO ₃ ? (D)	all these
615.	BiF ₅ (A) (C)	doesn't exist due the inert pair effo high ionisation e	ect		(B) (D)	the stable +3 oxi		
616.	 Which of the following option is/are correct for the given complex: K₂[Cr(NO)(NH₃)(CN)₄], μ = 1.73 BM (A) The hybridization is d²sp³ (B) The hybridization is sp³d² (C) The oxidation state of NO in this complex is +1 (D) The name of this complex is Potassiumamminetetracyanonitrosoniumchromate (I) 							
617.	Potassium manganate (K ₂ MnO ₄) is formed when (A) chloride is passed into aqueous KMnO ₄ solution (B) manganese dioxide is fused with potassium hydroxide in air (C) formaldehyde reacts with potassium permanganate in presence of a strong alkali (D) potassium permanganate reacts with conc. sulphuric acid							
618.	The (A)	aqueous solutions $Zn(NO_3)_2$	of the (B)	following salts will LiNO ₃	be col (C)	oured in the case of $Co(NO_3)_2$	of (D)	CrCl ₃
619.	Whic (A)	ch of the following a Bronze	alloys ((B)	contains(s) Cu and Brass	Zn? (C)	Gun metal	(D)	Type metal

	When a compound X reacts with ozone in aqueous medium, a compound Y is produced. Ozone also														
		is with Y and produ $X = HI, Y = I_2$ and				oxidising agent, the									
		$X = KI, Y = I_2$ and			(D)	$X = KI, Y = I_2$ and $X = HI, Y = I_2$ and	Z = HI	IO_4							
	T .					-									
629.	(A)	species that underg		Isproportionation i	n an a (C)	lkaline medium is/a NO ₂	are (D)	CIO ₄ -							
		2		•		2		7							
630.	Which	th of the following p KNO ₃ and Pb(NC		nitrates gives the s	same ((B)	aseous products o KNO ₃ and NaNO ₃		mal decomposition?							
	(C)	Pb(NO ₃) ₂ and Cu			(D)	NaNO ₃ and Ca(No									
631.	Whic	ch of the following s	stateme	nts is/are correct r	egardi	ng inter-halogen co	ompou	inds of ABx types?							
	(A)	x may be 1,3,5 a	nd 7		_		·								
	(B) A is a more electronegative halogen than B(C) FBr₃ cannot exit														
	(D) The structures of CIF ₃ and IF ₇ show deviation from normal structures and could be explained on the basis of VSEPR theory														
		basis of Voli IV	шеогу												
632.		$(O_4)_3 + NH_4OH$	X, then	l Spound	(D)	V in incoluble in a	v	of NILL OLL							
	(A) (C)	X is a white colou X is soluble in Na		ipouria	(B) (D)	X is insoluble in e X cannot be used									
000	\A/I=:	ala a filla a fiall accidente													
633.	(A)	ch of the following CoS	-	ies dissolves only NiS	/ in aq (C)	uaregia <i>?</i> CuS	(D)	HgS							
00.4	. ,	-		- 41 1 - · ·	` '	idiala a flana	, ,	-	_						
634.		x bead test (when	-	e the same colou	r in ox	idising flame as w	enası	n the reducing flame i	n						
	(A)	Chromium	•	Copper	(C)	Cobalt	(D)	Nickel							
005															
んぱん	\\/hic	sh of the following r	eduction	n reactions are ac	tually	employed in comm	orical (Which of the following reduction reactions are actually employed in commerical extraction of metals?							
635.		_			tually (employed in comm	erical (extraction of metals?							
635.	Which (A) (B)	$Fe_2O_3 + 2AI \rightarrow A$ $Cr_2O_3 + 2AI \rightarrow A$	N ₂ O ₃ + 2 N ₂ O ₃ + 2	?Fe Cr		employed in comm	erical (extraction of metals?							
635.	(A) (B) (C)	$\begin{aligned} &\text{Fe}_2\text{O}_3 + 2\text{Al} \rightarrow \text{A} \\ &\text{Cr}_2\text{O}_3 + 2\text{Al} \rightarrow \text{A} \\ &2\text{Na}[\text{Au}(\text{CN})_2] + 2\text{A} \end{aligned}$	$ \begin{aligned} & \left($	2Fe :Cr a ₂ [Zn(CN) ₄] + 2Au		employed in comm	erical (extraction of metals?							
635.	(A) (B)	$Fe_2O_3 + 2AI \rightarrow A$ $Cr_2O_3 + 2AI \rightarrow A$	$ \begin{aligned} & \left($	2Fe :Cr a ₂ [Zn(CN) ₄] + 2Au		employed in comm	erical o	extraction of metals?							
636.	(A) (B) (C) (D)	$Fe_2O_3 + 2AI \rightarrow A$ $Cr_2O_3 + 2AI \rightarrow A$ $2Na[Au(CN)_2] + 2$ $Cu_2S + Pb \rightarrow Cu$ metal which gives	$\begin{aligned} & _{2}O_{3} + 2 \\ & _{2}O_$	PFe PCr a ₂ [Zn(CN)₄] + 2Au ↓ oteric oxide is :											
	(A) (B) (C) (D)	$Fe_2O_3 + 2AI \rightarrow A$ $Cr_2O_3 + 2AI \rightarrow A$ $2Na[Au(CN)_2] + Z$ $Cu_2S + Pb \rightarrow Cu$	$\begin{aligned} & _{2}O_{3} + 2 \\ & _{2}O_$	PFe PCr a ₂ [Zn(CN)₄] + 2Au ↓		employed in comm	erical e	extraction of metals?							
	(A) (B) (C) (D) The (A)	$Fe_2O_3 + 2AI \rightarrow A$ $Cr_2O_3 + 2AI \rightarrow A$ $2Na[Au(CN)_2] + 2$ $Cu_2S + Pb \rightarrow Cu$ metal which gives Zn	$\begin{array}{l} \text{Al}_2\text{O}_3 + 2 \\ \text{Al}_2\text{O}_3 + 2 \\ \text{An} \rightarrow \text{Na} \\ \text{An} \rightarrow \text{PbS} \\ \text{And} An$	PFE PCr a₂[Zn(CN)₄] + 2Au ⇒ oteric oxide is : Cu volves roasting of	(C)	Sn ulphide followed by	(D)	Ga tion. Metallic zinc distill							
636.	(A) (B) (C) (D) The (A) Meta	Fe ₂ O ₃ + 2AI \rightarrow A Cr ₂ O ₃ + 2AI \rightarrow A 2Na[Au(CN) ₂] + 2 Cu ₂ S + Pb \rightarrow Cu metal which gives Zn Illurgical process of as it is volatile and er, which may be p	$\begin{array}{c} \text{NI}_2\text{O}_3 + 2 \\ \text{II}_2\text{O}_3 + 2 \\$	2Fe cCr a₂[Zn(CN)₄] + 2Au teric oxide is : Cu volves roasting of es like Cu, Pd and	(C)	Sn ulphide followed by	(D)	Ga							
636.	(A) (B) (C) (D) The (A) Meta over spelt (A)	$Fe_2O_3 + 2AI \rightarrow A$ $Cr_2O_3 + 2AI \rightarrow A$ $2Na[Au(CN)_2] + 2$ $Cu_2S + Pb \rightarrow Cu$ metal which gives Zn Illurgical process of as it is volatile and er, which may be pelectrolysis process.	$\begin{array}{c} \text{NI}_2\text{O}_3 + 2 \\ \text{II}_2\text{O}_3 + 2 \\$	2Fe cCr a₂[Zn(CN)₄] + 2Au teric oxide is : Cu volves roasting of es like Cu, Pd and	(C) zinc si d Fe ge (B)	Sn ulphide followed by ets condensed. The fractional distillation	(D) reduc crude on	Ga tion. Metallic zinc distill							
636.	(A) (B) (C) (D) The (A) Meta over spelt	Fe ₂ O ₃ + 2AI \rightarrow A Cr ₂ O ₃ + 2AI \rightarrow A 2Na[Au(CN) ₂] + 2 Cu ₂ S + Pb \rightarrow Cu metal which gives Zn Illurgical process of as it is volatile and er, which may be p	$\begin{array}{c} \text{NI}_2\text{O}_3 + 2 \\ \text{II}_2\text{O}_3 + 2 \\$	2Fe cCr a₂[Zn(CN)₄] + 2Au teric oxide is : Cu volves roasting of es like Cu, Pd and	(C) zinc sı d Fe ge	Sn ulphide followed by ets condensed. The	(D) reduc crude on	Ga tion. Metallic zinc distill							
636.	(A) (B) (C) (D) The (A) Meta over spelt (A) (C) Which	Fe ₂ O ₃ + 2AI \rightarrow A Cr ₂ O ₃ + 2AI \rightarrow A 2Na[Au(CN) ₂] + 2 Cu ₂ S + Pb \rightarrow Cu metal which gives Zn Illurgical process of as it is volatile and er, which may be pelectrolysis proceed polling	$Nl_2O_3 + 2$	PFe Cr a₂[Zn(CN)₄] + 2Au oteric oxide is : Cu volves roasting of es like Cu, Pd and by	(C) zinc sı d Fe ge (B) (D)	Sn ulphide followed by ets condensed. The fractional distillation heating with ioding	(D) reduc crude on e	Ga tion. Metallic zinc distill							
636. 637.	(A) (B) (C) (D) The (A) Metaover spelt (A) (C)	$Fe_2O_3 + 2AI \rightarrow A$ $Cr_2O_3 + 2AI \rightarrow A$ $2Na[Au(CN)_2] + 2$ $Cu_2S + Pb \rightarrow Cu$ metal which gives Zn allurgical process of as it is volatile and er, which may be pelectrolysis process polling the of the statement of the statement of the angle between A	$Nl_2O_3 + 2$	Prect? prect? prect? prect? prect? prect? prect? prect or it has trice in the prect or it has trice in the prect or it is the prector or it is the pre	(C) zinc si d Fe ge (B) (D) gonal	Sn ulphide followed by ets condensed. The fractional distillation heating with iodinating with iodinating same for all the	(D) reduc crude on e ture. P and	Ga tion. Metallic zinc distill metal obtained is calle CI present in PCI ₅							
636. 637.	(A) (B) (C) (D) The (A) Meta over spelt (A) (C) Whice (A)	$Fe_2O_3 + 2AI \rightarrow A$ $Cr_2O_3 + 2AI \rightarrow A$ $2Na[Au(CN)_2] + 2$ $Cu_2S + Pb \rightarrow Cu$ metal which gives Zn allurgical process of as it is volatile and er, which may be pelectrolysis process polling the of the statement of the statement of the angle between A	$Nl_2O_3 + 2$	2Fe core a ₂ [Zn(CN) ₄] + 2Au oteric oxide is: Cu volves roasting of es like Cu, Pd and by rect? sp³d and it has tri P and Cl is 90° w Cl in axial positio	(C) zinc si d Fe ge (B) (D) gonal	Sn ulphide followed by ets condensed. The fractional distillation heating with ioding bipyramidal struc	(D) reduc crude on e ture. P and	Ga tion. Metallic zinc distill metal obtained is calle CI present in PCI ₅							

639.	The p (A) (C)	oairs of compound NaH₂PO₄ and Na₂ NaOH and NaH₂F	HPO _₄	th cannot exists to	gethe (B) (D)	2 3 3			
640.	Epso (A) (B) (C) (D)	om salt is used As a purgative As a mordant is dyeing As a stimulant to increase the secretion of bile For removal of S from petroleum							
641.	Mark (A) (C)	k the wrong statement/s. Pure alumina is A good conductor of electricity Volatile in nature			(B) (D)	A bad conductor of electricity An electrovalent compound			
642.	In wh (A)	ich of the followin Electron	g alloy (B)	s Mg is present Magnalium	(C)	Duraluminium	(D)	Aluminium bronze	
643.	Which (A) (C)	ich of the following pair of compounds is/are not an oxide? Felspar, sylvine (B) Magnesia, magnesite Lime, corundum (D) Sylvine, magnesite							
645.	Whic (A)	th of the following Cu ⁺	does n (B)	ot disproportional Au³+	te? (C)	Cu ²⁺	(D)	Au⁺	
646.	Durir (A) (C)			nd Au using a KC	N solu (B) (D)			with metal ions as:	
647.	Whic	h of the following	comple	exes have tetrahe	dral ge	eometry?			
	(A)	Ni (CO) ₄	(B)	$Na_{2}[Zn(CN)_{4}]$	(C)	$K_2[PtCl_4]$	(D)	$[RhCl(PPh_3)_3]$	
648.	beca (A) (B) (C)	use: the three layers h the three layers h the upper layer is	nave sa nave di s of pu r is o	ame densities but fferent densities re aluminium whi f impure alumini	differe	ent materials		ing electrolysis. This is	
649.		ch of the following	•		ite cas	st iron & carbon im	nurity	is present in form of	
	 (A) On fast cooling of pig iron we will get white cast iron & carbon impurity is present in form of cementite Fe₃C (B) On slowly cooling of pig iron we will get grey cast iron 'C' impurity is present in form of graphite (C) The M. Pt. of grey cast iron is more than pure iron due to presence of impurity (D) Cast iron does not rust easily and neither be tempered. Due to high carbon content it is hard & brittle cannot be welded 								
650.	Whic (A)	ch options are true This process is b silver				ad system has an	eutec	tic mixture with 2.6%	
	(B) (C) (D)		on is d	one by cupellation		as pure Pb has M. ess	Pt. 32	27°C	

651.	Bessemer convertor which is used for the extraction of copper - (A) hot air acts as oxidising agent & Cu ₂ S acts as self reducing agent (B) slag is CaSiO ₃ (C) SiO ₂ lining is used in Bessemer convertor (D) the copper obtained in this process is blister copper.							
652.	 Which of the following option is/are correct? (A) vapour phase of XeF₆ is covalent and hybridisation is sp³d³ (B) Solid phase of XeF₆ is ionic and hybridisation is sp³d² (C) XeF₂ is linear in shape (D) XeO₂F₂ follows bent rule and structure is see-saw. 							
653.	For Dow's process which is/are correct? (A) For extraction of Mg by sea water (B) Ca(OH) ₂ is used to ppt Mg (C) Mg is precipitated in form of Mg(OH) ₂ (D) ppt. of Mg(OH) ₂ is treated with HCI & then electrolysis for extraction of 'Mg'							
654.	Nitrogen (I) oxide is produced by: (A) thermal decomposition of ammonium nitrate (B) disproportionation of N ₂ O ₄ (C) thermal decomposition of ammonium nitrite (D) interaction of hydroxylamine and nitrous acid							
655.	Merci (A) (C)	ury is a liquid at 0° very high ionisatio high heat of hydra	n ener		(B) (D)	weak metallic bon high heat of sublin		
656.	Which of the following statements concern with transition metals? (A) compounds containing ions of transition elements are usually coloured (B) the most common oxidation state is +3 (C) they show variable oxidation states, which differ by two units only (D) they easily form complexes							
657.	(A) (B)	K ₂ Cr ₂ O ₇ is used a in acidic medium	on of K s a sta M = N		estima	om KI tion of Fe ²⁺ ions O ₃ through an endot	thermi	c reaction
658.	Inters (A)	stitial compounds a Co	re form (B)	ned by Ni	(C)	Fe	(D)	Ca
659.	The c (A) (C)	eatalytic activity of variable oxidation complex formatio	states		ated to (B) (D)	their surface area magnetic moment		
660.	In the	equation: M + 8C Ag	N ⁻ + 2l (B)	$H_2O + O_2 \longrightarrow 4[N]$	И(CN) _; (C)	₂] [–] + 4OH [–] , metal M Cu	lis (D)	Hg
661.	To an (A) (C)	acidified dichromablue colour Copious evolution			a ₂ O ₂ is (B) (D)	added and shaker Orange colour cha Bluish - green pred	anging	to green
662.	Amph (A)	noteric oxide(s) of MnO ₂	Mn is/a (B)	re Mn ₃ O ₄	(C)	$\mathrm{Mn_2O_7}$	(D)	MnO

SECTION III: COMPRHENSIONS

The oxidation state of the metal ion in compound 'A' are (B) 10 +

663.

(A) 3+

COMPREHENSION #66

Paragraph for Questions Nos. 663 to 664

When hydrogen peroxide is added to an acidified solution of a dichromate gives a deep blue coloured compound 'A' in presence of organic solvent, which decomposes rapidly in aqueous solution into 'B' and dioxygen. Compound 'A' can be extracted by dimethyl ether forming the adduct 'C'.

(C) 6+

(D) 4+

	(-)	_	(-)		(-)	-	(- /	•		
664.		nagnetic moment o .8 B.M	of comp	oound 'B' is: (B) 4.9 B.M		(C) 0		(D) 3.8 B.M		
		Pa	aragra	COMPREHEN		N # 67 Nos. 665 to 667	•			
	(T) im							Red ppt. $\xrightarrow{NH_3 \text{ soln.}}$ (X)		
	(W) Red ppt. $\xrightarrow{\text{dil. HCl}}$ (Y) white ppt.									
	(U)	$\underset{\text{sublimes on}}{\xrightarrow{\text{NaOH}}} (Z$	') gas	(gives white fume	s with	HCI)				
heating										
665.	The c	compound 'W' is CrO ₃	(B)	Ag ₂ CrO ₄	(C)	Hgl ₂	(D)	AgNO ₂		
666.	(A)	compound 'T' & 'U' a KMnO ₄ , HCI K ₂ Cr ₂ O ₇ , NH ₄ CI	are		(B) (D)	K ₂ Cr ₂ O ₇ , HCl K ₂ CrO ₄ , KCl				
667.	The c	compound 'V' is CrO ₃	(B)	Cl ₂	(C)	Br ₂	(D)	$\mathrm{CrO_2Cl_2}$		
				COMPDELLER	ueio.	N # 60				

COMPREHENSION # 68 Paragraph for Questions Nos. 668 to 670

There are some deposits of nitrates and phosphates in earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under the laboratory conditions but microbes do it easily. Ammonia forms large number of complexes with transition metal ions. Hybridization easily explains the ease of sigma donation capability of NH₃ and PH₃. Phosphine is a flammable gas and is prepared from white phosphorous.

- 668. Among the following, the correct statement is
 - Phosphates have no biological significance in humans
 - (B) Between nitrates and phosphates, phosphates are less abundant in earth's crust
 - (C) Between nitrates and phosphates, nitrates are less abundant in earth's crust
 - Oxidation of nitrates is possible in soil (D)

- 669. Among the following, the correct statement is:
 - Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional
 - Between NH₃ and PH₃, PH₃ is a better electron donor because the lone pair of electrons occupies sp³ orbital and is more directional
 - Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies sp³ orbital and is more directional
 - (D) Between NH₃ and PH₃, PH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional
- 670. White phosphorus on reaction with NaOH gives PH₂ as one of the products. This is a
 - dimerization reaction

(B) disproportionation reaction

(C) condensation reaction (D) precipitation reaction

COMPREHENSION #69

Paragraph for Questions Nos. 671 to 672

The following flow diagram represents the industrial preparation of nitric acid from ammonia:

Answer the questions given below:

671. Which line of entry describes the undefined reagents, products and reaction conditions?

	Α	В	C
(A)	catalyst	R.T. (25°C)	NO ₂
(B)	catalyst	R.T. (25°C)	ŊĴÓ
(C)	catalyst	high pressure	NÔ,
(D)	high pressure	catalyst	N ₂ Ó ₂

672. Formation of HNO, when (C) is dissolved in H₂O takes place through various reactions. Select the reaction not observed in this step.

(A) $NO_2 + H_2O \longrightarrow \dot{H}NO_3 + HNO_2$ (C) $NO_2 + H_2O \longrightarrow HNO_3 + NO$

 $\begin{array}{ll} \text{(B)} & \text{HNO}_2 {\longrightarrow} \text{H}_2 \text{O} + \text{NO} + \text{NO}_2 \\ \text{(D)} & \text{none of these} \end{array}$

COMPREHENSION #70

Paragraph for Questions Nos. 673 to 675

A is a colourless crystalline salt which is soluble in water to form a super saturated solution. Salt (A) reacts with salt (B) (which is sensitive to light & gets photo reduction to give its metal) it gives a white ppt (C) and with excess of salt (A), (C) gives a soluble complex (D), (C) in exposure in air and (D) on heating both produces same black coloured ppt (E). (A) is used in medicine and also in extraction of gold and decoloured I₂ in KI solution.

- 673. When salt (A) reacts with HCl solution it decompose to give
 - brown coloured gas

(B) rotten eggs smelled gas

(C) white turbidity (D) violet coloured gas

674. When salt (A) is heated to 223°C the product obtained are

(A) Na_2SO_4 , Na_2S_5 (B) PbO, SO_2 (C) CuO, SO_2

(D) FeCl₂, Cl₂

675. Identify (E)

 O_{c} pH (A)

(B) Ag_2S (C) PbO_2

(D) CuS

COMPREHENSION # 71 Paragraph for Questions Nos. 676 to 678

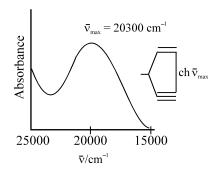
	(I) (II)	$FeCr_2O_4 + NaOH + air$ (A) + (B) $\longrightarrow Na_2Cr_2$	_ 0					
	(III)	$Na_2Cr_2O_7 + X \xrightarrow{\Delta} C$	Cr ₂ O ₃					
	(IV)	$Cr_2O_3 + Y \xrightarrow{\Delta} Cr$						
676.	(A)	npounds (A) and (B) are: Na ₂ CrO ₄ , H ₂ SO ₄ Na ₂ CrO ₅ , H ₂ SO ₄		(B) (D)	Na ₂ Cr ₂ O ₇ , HCl Na ₄ [Fe(OH) ₆], H ₂	SO ₄		
677.	(X) a (A)	and (Y) are: C and Al (B)	Al and C	(C)	C in both	(D)	Al in both	
678.		${ m CrO_4}$ and ${ m Fe_2O_3}$ are separ dissolving in conc. ${ m H_2Se}$ dissolving in ${ m H_2O}$		(B) (D)	dissolving in NH ₃ dissolving in dil. H	HCI		
			COMPREHE	NSIC	N # 72			
	(i) (ii) (iii) (iv)	A certain inorganic con acidified solution of (X The ppt. obtained in (i On adding an aqueous dissolves in excess of the compound X reduce	() a brown ppt is ob) is dissolved in ex s solution of NaOH NaOH.	vs the otained ccess of so	following reactions I. of yellow (NH ₄) ₂ S ₂	s on pa	- 2	
679.	The (A)	soluble complex which Na ₂ SnO ₃ (B)					oduces - Na ₂ AIO ₂	
680.	Whe (A) (C)	en salt X reacts with Au0 purple of cassius gold rush	CI ₃ we get –	(B) (D)	liquid gold candy fluid			
681.		salt (X) gives grey mass Cl gives (Y). Which is th it is known as pink sal it is used as mordant it is used as moderato it is known as scheele i, ii (B)	ne correct stateme It or in nuclear reacto	nt abo		sublim (D)	ate. (Z) on reac	tion with
			COMPREHE	NSIO	N # 73			
	give (D)	Paragi white solid (A) on heati s ring test while (C) give & H ₂ O. (D) is a neutral ting at 920°C which give	raph for Quest ng with NaOH give s golden yellow fla oxide which does	ions es an me. (A not b	Nos. 682 to 684 alkaline gas (B) and strong heating urn but helps more	nd soli g it de re thai	composed to given air in burning	ve a gas . (D) on

682. What is compound (A) -

(A) N_3H (B) NH_4NO_2 (C) $(NH_4)_2Cr_2O_7$ (D) NH_4NO_3

temperature and pressure give gas (B). Gas (F) is essential for living system. (D) combines with 'C', 'S', 'P' to form their acidic oxides. (D) on heating with sodamide gives sodium azide & water.

- 683. The compound D is -
 - (A) N₂O
- (B) N₂
- (C) CO
- (D) None of these
- 684. Hybridisation of central atom in cation and anion present in compound (A) respectively -
 - (A) sp^3 , sp^2
- (B) sp^3 , sp^3
- (C) sp^2 , sp^3
- (D) sp³, sp


COMPREHENSION # 74

Paragraph for Questions Nos. 685 to 686

Read the following passage based on applications of crystal field theory to explain magnetic and spectral properties of complexes carefully and answer the questions.

With the help of CFT number of unpaired electrons in a compound can be calculated and we can

calculate its paramagnetic moment (due to spin only(by the formula , u = $\sqrt{n\,(n+2)}\,$ Bohr magneton (BM) , where 'n' is the number of unpaired electron in the complex . For spectral analysis the separation between t_{2g} and e_g orbitals called ligand field splitting . Parameter Δ_0 (for octahedral complexes) should be known to us , which can be easily calculated by observing the absorption spectrum of one electron complex . Figure shows the optical absorption spectrum of the hexaaquatitanium (III) ion $[{\rm Ti}\,(H_2{\rm O})_6]^{3+}$. The CFT assigns the first absorption maximum at 20,300 cm $^{-1}$ to the transition $e_g \leftarrow t_{2g}$. For multielectronic $\left({\rm d}^2$ to ${\rm d}^{10}\right)$ system , the calculation of Δ_0 by absorption spectrum is not that easy as the absorption spectrum will also be affected by electron-electron repulsions .

(h = 6.6×10^{-34} Joule-sec, C = 3×10^{8} m/sec, N_n = 6.023×10^{23} , 1 KCal= 4.2 KJ)

685. The magnetic moment of following arranged in increasing order will be :

[atomic number of Co = 27]

- (i) Co³⁺ (octahedral complex with a strong field ligand)
- (ii) Co³⁺ (octahedral complex with a weak field ligand)
- (iii) Co²⁺ (tetrahedral complex)
- (iv) Co²⁺ (square planar complex)
- (A) i > ii > iii > iv
- (B) iii > ii > iv > i
- (C) ii > iii > iv > i
- (D) ii > iv > iii > i
- **686.** The energy of transition for complex given in the passage, $[Ti(H_2O)_6]^{3+}$ will be:
 - (A) 243 KCal/mole
- (B) 58 KCal/mole
- (C) 97 KCal/mole
- (D) 143 KCal/mole

COMPREHENSION # 75 Paragraph for Questions Nos. 687 to 689

Because of the presence of vacant d-orbitals ,transition metals can accept ligands. Dependidng on the strengths of the ligands the complexes have different hybridization of the central atoms and consequently

exhibit different magnetic properties. Thus strong ligands like CN^- , CO, NH_3 , NO_2^- etc. cause maximum

pairing of electrons and hence are diamagnetic ir have low spins. Weak ligands like F^-, Cl^-, Br^-, l^- etc. produce weak ligand field resulting in a large number of unpaired electrons in the complex. They are

referred to as high spin complexes.

- They hybridization in the complexes $\left\lceil Ni\left(CN\right)_4 \right\rceil^{2^-}$ and $\left\lceil Cu\left(NH_3\right)_4 \right\rceil^{2^+}$ are respectively 687.
 - (A) sp^3, sp^3

- (B) sp^{3}, dsp^{2} (C) dsp^{2}, sp^{3} (D) dsp^{2}, dsp^{2}
- 688. The species that is paramagnetic is
 - (A) $\left\lceil Fe(CN)_6 \right\rceil^{4-}$ (B) $\left\lceil Cr(CN)_6 \right\rceil^{-3}$ (C) $\left\lceil Ni(CO)_4 \right\rceil$ (D) $\left\lceil Co(CN)_6 \right\rceil^{-3}$

- 689. Three moles of AgNO₃ solution is added to 1 mole of CrCl3.6H2O and mixed thoroughly. It was found that 1 mole AgNO, remained in solution. The formula of the complex can be represented as
 - (A) $\left[Cr(H_2O)_6 \right] Cl_3$

- (B) $\left[CrCl \left(H_2O \right)_5 \right] Cl_2.H_2O$
- (C) $\left\lceil CrCl_3(H_2O)_3\right\rceil 3H_2O$
- (D) $\left[CrCl_2 \left(H_2O \right)_6 \right] Cl.2H_2O$

COMPREHENSION #76

Paragraph for Questions Nos. 690 to 691

Questions given below are based on electronic configurations of the elements. The three elements X, Y and Z with the electronic configurations shown below all form hydrides:

Element	Electronic configuration
Χ	1s ² , 2s ² , 2p ²
Υ	1s ² , 2s ² , 2p ⁶ , 3s ¹
Z	1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 3d ¹⁰ , 4s ² , 4p ⁵

690. Which line of properties (A, B, C, or D) correctly lists properties of the hydrides of these elements?

	Hydride of X	Hydride of Y	Hydride of Z
(A)	Colourless gas	Silver/grey solid, reacts	Colourless gas form a
	insoluble in H ₂ O	with H ₂ O to form an	strong acid in H ₂ O
		alkaline solution	
(B)	Colourless liquid, no	Silver/grey solid, forms	Ionic solid with formula
	reaction with H ₂ O	H ₂ O	ZH
(C)	Colourless gas found	Does not conduct	Colourless gas, reacts
	naturally	electricity in the molten	with Cl ₂
		state	
(D)	Non-polar compound	Silver/grey ionic solid	Forms when water is
	reacts with Cl ₂ in light	with formula YH ₂	added to phosphorus
			and element Z

- Which of the following exists as gas? 691.
 - (A) X,
- (C) Z_{2}
- (D) all of the above

COMPREHENSION # 77 Paragraph for Questions Nos. 692 to 694

Pyrolusite on heating with KOH in the presence of air gives a dark green compound (A). The solution of (A) on treatment with H_2SO_4 gives a purple coloured compound (B), which gives following is reactions:

- (i) KI on reaction with alkaline solution of (B) changes into a compound (C)
- (ii) The colour of compound (B) disappears on treatment with the acidic solution of FeSO₄.
- (iii) With conc. H₂SO₄ compound (B) gives (D) which can decompose to yield (E) and oxygen.
- **692.** The compound (C) is
 - (A) I₂
- (B) I_2O_5
- (C) KIO₃
- (D) KIO,

- **693.** The comopund (E) is:
 - (A) MnO
- (B) MnO₂
- (C) Mn₂O₃
- (D) Mn_3O_4
- **694.** Oxidation state of manganese of the compound (A) is
 - (A) +2
- (B) +4
- $(\dot{C})^{'} + 7$
- (D) +6

COMPREHENSION # 78 Paragraph for Questions Nos. 695 to 697

A salt (A) on reaction with NaOH gives a gas (B) , which gives black coloured water insoluble compound with Hg_2Cl_2 . After completely expelling the gas (B) from the solution, zinc dust is added and boiled. Appearance of gas (B) again observed. The salt (A) on heating gives a gaseous product (C) which supports combustion.

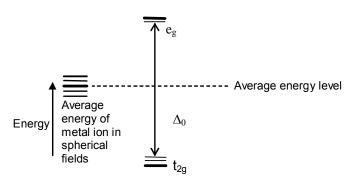
- **695.** The gas (C) reacts with NaNH₂ to obtain
 - (A) Na_2CO_3
- (B) $\overline{NH}_2 \overline{NH}_2$
- (C) NaN₃
- (D) Na₂CN₂
- **696.** The gas (B) reacts with excess of Cl₂. The product obtained is
 - (A) N_2
- (B) NCI₃
- (C) COCI₂
- (D) NOCI
- 697. The gas (B) reacts with corrosive sublimate to obtain
 - (A) HgNH₂Cl
- (B) HgNH₂Cl–Hg
- (C) Hg₂Cl₂
- (D) K₂Hgl₄

COMPREHENSION # 79 Paragraph for Questions Nos. 698 to 700

A green coloured compound (A) gave the following reactions:

- (i) (A) dissolves in water to give a green solution. The solution on reaction with $AgNO_3$ gives a white ppt.(B) which dissolves in NH_4OH solution and reappears on addition of dil HNO_3 . It on heating with $K_2Cr_2O_7$ and conc. H_2SO_4 produced a red gas which dissolves in NaOH to give a yellow solution (C). Addition of lead acetate solution to (C) gives a yellow ppt. which is used as a paint
- (ii) The hydroxide of cation of (A) in borax bead test gives brown colour in oxidising flame and grey colour in reducing flame.
- (iii) Aqueous solution of (A) gives a block ppt. on passing H_2S gas. The block ppt. dissolves in aquaregia and gives back (A).
- (iv) (A) on boiling with $NaHCO_3$ and Br_2 water gives a block ppt. (D).
- (v) (A) on treatment with KCN gives a light green ppt. (E) with dissolves in excess of KCN to give (F).(F) on heating with alkaline bromine water gives the same black ppt. as (D).

698.	Thye hybridization & magnetic behaviour of compound F^{\prime} is									
	(A)	dsp^2 , dia	(B)	sp^3 , para	(C)	dsp^3 , para	(D)	sp^3 , dia		
699	The	cpd A, D & E respe	ectively	are						
	(A)	$COCl_2, C_2O_3$, <i>CO</i> ($(CN)_2$	(B)	$NiCl_2$, $CO_2O_3CO(CN)_2$				
	(C)	$NiCl_2, Ni_2O_3$, Ni(C	$(2N)_2$	(D)	$Ni(NO_3)_2Ni$	$Cl_2 N$	$i(CN)_2$		
700.	The	cpd B & C respect	tively a	re & the Maximum	ı OX s	state shown by the	fromat	tion metal in cpd 'C' is		
	(A) $AgCl, pbCrO_4 \& +6$				(B)	AgBr, NaCro	AgBr, NaCro & +4			
	(C)	$MnCl_2, Nario$	04 & -	+ 7	(D)	$NiCl_2, K_2(Ni)$	(CN)	$(a_4) + 2$		
	COMPREHENSION # 80									
	Paragraph for Questions Nos. 701 to 703									
1	Some observations related to an unknown inorganic substance A are presented below. A is a yellowish – white deliquescent solid and it sublimes on heating. It has a molecular weight of 267.									
2 3		acts violently with went a solution of NH			o solut	tion Ba white gela	ntinous	precipitate is obtained		
4	A sa	mple of B also giv	es a c	urdy white precipi	tate C	on addition of dilu	ıte nitr	ic acid and silver nitrate		
				C readily dissolve lace with excess N			aaea, t	hough a gelatinous white		
5 6	Prec	ipitate D is filtered	off and	d is dissolved in ex	cess N	laOH to give a clea	ar solut	ion E.		
7				solution E, comporty ether, when this			xcess	LiH, it transforms to G.		
701.	Com	pound A is likely to	o be							
	(A)	Dimer of FeCl ₃	(B)	Dimer of AICI ₃	(C)	Dimer of SnCl ₂	(D)	Dimer of CrCl ₃		
702.	The	curdy white ppt (C) is							
	(A)	$Al(OH)_3$	(B)	$Sn(OH)_2$	(C)	$Cr(OH)_3$	(D)	AgCl		
703.	The	compound (G) read	cts with	boran trichloride t	o form					
	(A)	acidic oxide of bo	oron		(B)	compound conta	_	c-2e bond		
	(C)	boran nitride			(D)	lithium borohydri	de			
				COMPREHE	NSIO	N # 81				
	مادد ۸		_	aph for Quest				(D) Commound (A) when		
		, ,	` '	, ,	•		•	(B). Compound (A) when The fume condenses to a		
		•		• , ,		_		wo compounds (pseudo		
	halid	es) (E) and (F). Co	ompou	nd (F) gives white p	orecipi	tate (G) with $Ag \Lambda$	IO_3 so	olution but the precipitate		
				en (F) is heated to vrite the reaction in			own fei	rtilizer (H) is ob-		
704.	The	hybridzaition show	n by cp	od 'B' (pseudo halio	les)					
	(A)	Sp^3d	(B)	Sp^3d^2	(C)	Sp^2	(D)	Sp		


705.	The ppt dissolves in excess of (E) due to formati (A) Parra, colourless (C) Dia, coloured	ons of complex. The nature complex is (B) Dia, colourless (D) Parra, coloured								
706.	The hybridization shown by the cation & anions of compound 'A' are									
	(A) Sp^{2}, Sp^{3} (B) Sp^{2}, Sp^{2}	(C) Sp^3, Sp^3 (D) Sp^3, Sp^2								
707.	How many σ and π bonds present in between (A) 1 σ , 0 π ; sp, sp (C) 1 σ , 0 π ; sp ³ , sp ³	2 C atoms of cyanogen gas and their hybridization (B) 1σ , 2π ; sp, sp (D) 1σ , 1π ; sp, sp								
	COMPREHE	NSION # 82								
708.	Paragraph for Questions Nos. 708 to 707 A white solid (A) on heating with NaOH gives an alkaline gas (B) & a solid (C). Both (A) and (C) gives ring test while (C) gives golden yellow flame.(A) on strong heating is decomposed to give a gas (E & H ₂ O. (D) is a neutral oxide it does not burn but helps more than air in burning.(D) on heating at 92 °C which gives two gases (E) and (F). The gas (E) when mixed with hydrogen at high temperature and pressure give gas (B). Gas (F) is essential for living system.(D) combines with 'C', 'S', 'P' form their acidic oxides. (D) on heating with sodamide gives sodium azide & water. Gas (B) is used in clock in Washington due to:									
	· , ,	(C) liquid (D) rotation								
709.		on and anion of compound (A) are respectively : (C) sp ² & sp ² (D) sp & sp ²								
710.	Bond order of compound (D) is : (A) 2.73 & 1.6 (B) 1.73 & 1.25	(C) 3 & 2 (D) 3.5 & 2.5								
	COMPREHENSION # 83									
	Paragraph for Questions Nos. 711 to 713 A, B, and C are three complexes of chromium (III) with the empirical formula $H_{12}O_6Cl_3Cr$. All three complexes have water and chloride ions as ligands. Complex A does not react with concentrate H_2SO_4 , whereas complexes B and C loss 6.75% and 13.5% of their original weight respectively, treatment with concentrated H_2SO_4 .									
711.	Complex A is : (A) $[Cr(H_2O)_5Cl]Cl_2.H_2O$ (C) $[Cr(H_2O)_4Cl_2]Cl.2H_2O$	(B) [Cr(H ₂ O) ₆]Cl ₃ (D) none of these								
712.	Which of the following statement is correct? (i) The effective atomic number of the com (ii) H ₂ SO ₄ is act in above question is used a (iii) The number of ions provided by complex (A) TIT (B) FTF	plex B is 33 is a dehydrating agent								
713.	In the above complexes, which of the following (A) Complex C (C) Complex A	g complex is maximum hydrated ? (B) Complex B (D) All are equally hydrated								

COMPREHENSION #84 Paragraph for Questions Nos. 714 to 716

In octahedral complexes the filling of t_{2g} orbitals decreases the energy of a complex , that is makes

it more stable by $-0.4\,\Delta_0$ per electron . Filling the $\it e_{\it g}$ orbitals increases the energy by $+0.6\Delta_0$ per electron. The total crystal field stabilisation energy is given by

CFSE (octahedral) =
$$-0.4\Delta_0(t_{2g}) + 0.6\Delta_0(e_g)$$

The CFSE increases the thermodynamic stability of the complexes i.e it affects the actual lattice energy over the theoretically calculated energy that does not take CFSE it into account. In studying tetrahedral complexes a regular tetrahedron is related to a cube. One atom is at the centre and four of eight corners are occupied by the ligands. The directions of x, y, z point to the centres of the faces of the cube. The directions of the approach of the ligands does not coincide exactly with the atomic orbitals.

In these complexes the e_g orbitals are more stable compared to the t_{2g} orbitals.

- 714. In an octahedral complex X the central metal ion has 24 electrons. If its pairing energy is $+0.8\Delta_0$ (where Δ_0 is the difference in energy between the t_{2g} and the e_g orbitals). Will it obey Hund's rule and what is its spin magnetic moment
 - (A) Yes, 2.83
- (B) No , 2.83
- (C) Yes, 4.89 (D) No, 4.89
- During the formation of a tetrahedral complex the angle between the $\boldsymbol{e_{g}}$ orbital and the central metal 715. is X° and that of t_{20} orbital and the central metal is Y° then X^{0} - Y^{0} is.
 - (A) 24.3°
- 35.36°
- (D) 21.24°
- Considering Mn²⁺ if the measured lattice energy is X kJ / mol and the calculated lattice energy is 716. Y kJ/mol then their relation between X and Y in a strong and a weak ligand field respectively is
 - X > Y, X = Y (B)
- - X > Y, X < Y (C) X < Y, X > Y (D) X < Y, X = Y

COMPREHENSION # 85 Paragraph for Questions Nos. 717 to 718

Four elements P, Q, R & S have ground state electronic configuration as:

$$P \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^3$$

$$Q \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^1$$

$$R \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$$

$$R \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^3$$
 $S \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10} \ 4s^2 \ 4p^1$

- 717. Comment which of the following option represent the correct order of true (T) & false (F) statement.
 - size of P < size of Q
 - size of R < size of S
 - size of P < size of R (appreciable difference) Ш
 - size of Q < size of S (appreciable difference) IV
 - (A)
- (B) TTTF
- FFTT
- TTFF

718.	Orde (A) F	r of IE ₁ values amo ' > R > S > Q	ong the (B) P	following is < R < S < Q	(C) R	> S > P > Q	(D) P	> S > R > Q	
719.	COMPREHENSION # 86 Paragraph for Questions Nos. 719 to 721 Compounds containing M-C bonds are called organometallic compounds of whice important part. Synergic effect in bonding in the metal carbonyls makes the carbonyls abide by the effective atomic number (EAN) rule. Which of the following is not an organ metallic compound?								
	(A)	$Al(C_2H_5O)_3$				$Fr(C_5H_5)_2$			
	(C)	$\left[PtCl_3\left(C_2H_2\right)\right]$]-		(D)	$Cr(Co)_6$			
720.	The	value of x in Mn	$(Co)_5$	^{x-} is					
	(A)	3	(B)	2	(C)	1	(D)	0	
721.	Which (A) (C)	th of the following i The C-O bond ler The C-O bond ler	ngth incr	reases	ding ir (B) (D)	metal carbonyls? The bond order of None of these		creases	
		n.		COMPREHEN		_			
	Paragraph for Questions Nos. 722 to 724								
	The following "cycle of copper" experiment is performed in some general chemistry laboratories. The series of reactions starts with copper and ends with metallic copper. The steps are as follows: (1) A piece of copper wire of known mass is allowed to react with concentrated nitric acid [The products are copper (II) nitrate, nitrogen dioxide, and water]. (2) The copper (II) nitrate is treated with a sodium hydroxide solution to form copper (II) hydroxide precipitate. (3) On heating copper (II) hydroxide decomposes to yield copper (II) oxide. (4) The copper (II) oxide is reacted with concentrated sulphuric acid to yield copper (II) sulphate. (5) Copper (II) sulphate is treated with an excess of zinc metal to form metallic copper. (6) the remaining zinc metal is removed by treatment with hydrochloric acid and metallic copper is filtered, dried, and weighted.								
722.	Assu (A)	ming that a studen 165 g	t started (B)			alculate the theore 90 g	etical y (D)	ield of copper sulphate. 100.2 g	
723.	Copp (A) (C)	per obtained at the less than nearly equal	end of t	he cycle is	. amou (B) (D)	unt originally taken greater than only copper salts		tained.	
724.						s. To deposit all the	е сорр	er formed at the end, a	
	(A)	nt of 50 A will have 10 hours		1 hour	(C)	5 hours	(D)	0.5 hours	
		_		COMPREHEN					
	At hiç H ₂ .		_	•		los. 725 to 726 a mixture of carbor		xide, CO and hydrogen,	
		s separated from F l tetracarbonyl, Ni(nen used to separa	C + H ate nic	$l_2O \xrightarrow{\text{red heat}} O$ kel from cobalt by	CO + H formir	ng a volatile compound,	
	$Ni + 4 CO \rightarrow Ni(CO)_4$								

725. How many moles of Ni(CO)₄ could be obtained from the CO produced by the reaction of 75.0 g of carbon? Assume 100% reaction and 100% recovery in both steps. (B) 1.563 3.125 (D) 25.0 726. Formation of volatile NI(CO), and its subsequent heating gives pure Ni. process is called: (C) Serpeck **COMPREHENSION #89** Paragraph for Questions Nos. 727 to 729 Valence bond theory explains the magnetic bahaviour of coordination species Depending upon the magnetic behaviour one can understand whether the inner d- orbitals or outer d- orbitals are being used in a particular hybrid station However, the colours of coordination species can be explained by the crystal filed theory. 727. Which of the following compounds is diamagnetic as well as coloured (A) $\left\lceil Fe(CN)_6 \right\rceil^{4-}$ (B) $\left\lceil Ni(CN)_4 \right\rceil^{2-}$ (C) $\left\lceil Co(NH_3)_6 \right\rceil^{3+}$ (D) All of these 728. Though NH₂ is a strong filed ligand, in which of the following compounds, the d-electrons are not paired (A) $\left[Cr(NH_3)_6\right]^{3+}$ (B) $\left[Ni(NH_3)_6\right]^{2+}$ (C) $\left[CrCl_3(NH_3)_3\right]$ (D) All of these 729. The correct order of paramagnetic moment is given by (A) $\left[Cu(NH_3)_4 \right]^{2+} < \left[FeF_6 \right]^{3-} < \left[Cr(NH_3)_6 \right]^{3+}$ (B) $\left[FeF_6\right]^{3-} < \left[Cu(NH_3)_4\right]^{2+} < \left[Cr(NH_3)_6\right]^{3+}$ (C) $\left[Cu\left(NH_3\right)_4\right]^{2+} < \left[Cr\left(NH_3\right)_6\right]^{3+} < \left[FeF_6\right]^{3-}$ (D) $\left\lceil Cr(NH_3)_6 \right\rceil^{3+} < \left\lceil Cu(NH_3)_4 \right\rceil^{2+} < \left\lceil FeF_6 \right\rceil^{3-}$

COMPREHENSION #90 Paragraph for Questions Nos. 730 to 734

Magnesium is a valuable, light weight metal used as a structural material as well as in alloys, in batteries, and in chemical synthesis. Although magnesium is plentiful in Earth's crust, it is cheaper to "mine" the metal from seawater. Magnesium forms the second most abundant cation in the sea (after sodium); there are about 1.3 g of magnesium in a kilogram of sea-water. The process from obtaining magnesium from sea - water employs all three types of reactions precipitation, acid-base, and redox reactions.

- 730. Precipitation reaction involves formation of: insoluble MgCO₃ by adding Na₂CO₃
- (B) insoluble Mg(OH)₂ by adding Ca(OH)₂
- (C) insoluble MgSO₄ by adding Na₂SO₄
- (D) insoluble MgCl₂ by adding NaCl
- 731. Acid-base reaction involves reaction between:
 - (A) MgCO₃ and HCl (C) Mg(OH)₂ and HCl

- $\begin{array}{ll} \text{(B)} & \text{Mg(OH)}_2 \text{ and H}_2 \text{SO}_4 \\ \text{(D)} & \text{MgCO}_3 \text{ and H}_2 \text{SO}_4 \end{array}$

- 732. Redox reaction involves reaction between:
 - in the electrolytic cell when fused MgCl₂ is subjected to electrolysis.
 - (B) when fused MgCl₂ is heated.
 - (C) when fused MgCO3 is strongly heated
 - in none of the above.

- **733.** Instead of calcium hydroxide, why don't we simply add sodium hydroxide to seawater to precipitate magnesium hydroxide?
 - (A) Solubility of Ca(OH)₂ is smaller than that of NaOH so that Mg(OH)₂ is precipitated.
 - (B) NaOH may dissolve Mg(OH)₂ formed.
 - (C) NaOH may also precipitate other species, being a strong electrolyte
 - (D) NaOH, being a weak electrolyte will not coagulate Mg(OH),
- **734.** Which is the best source of the given process in the metallurgical process?
 - (A) Magnesite
- (B) Kieserite
- (C) Epsomite
- (D) Dolomite

COMPREHENSION # 91 Paragraph for Questions Nos. 735 to 738

An inorganic salt (A) is decomposed at about 523 K to give products (B) and (C). Compound (C) is a liquid at room temperature and is neutral to litmus paper while oxide (B) on burning with white phosphorous, given a dehydrating agent (D).

- **735.** Compound (A) is
 - (A) NH_4NO_3
- (B) N_2O
- (C) H₂O
- (D) P₂O₅

- **736.** Compound (B) is
 - (A) NH₄NO₃
- (B) N_2O
- (C) H_2O
- (D) P_2O

- 737. Compound (C) is
 - (A) NH_4NO_3
- (B) N₂O
- (C) H₂O
- (D) P_2O_2

- **738.** Compound (D) is
 - (A) NH_4NO_3
- (B) N_2O
- (C) H₂O
- (D) P_2C

COMPREHENSION # 92 Paragraph for Questions Nos. 739 to 741

There are some deposits of nitrates and phosphates in earth's crust. Nitrates are more soluble in water. Nitrates are difficult to reduce under the laboratory conditions but microbes do it easily. Ammonia forms large number of complexes with transition metal ions. Hybridization eaily explains the ease of sigma donation capability of NH_3 and PH_3 . Phosphine is a flammable gas and is prepared from white phosphorus.

- **739.** Among the following, the correct statement is
 - (A) Phosphates have no biological significance in humans
 - (B) Between nitrates and phosphates, phosphates are less abundant in earth's crust
 - (C) Between nitrates and phosphates, nitrates are less abundant in earth's crust
 - (D) Oxidation of nitrates is possible in soil
- **740.** Among the following, the correct statement is
 - (A) Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional.
 - (B) Between NH₃ and PH₃, PH₃ is a better electron donor because the lone pair of electrons occupies sp³ orbital and is more directional.
 - (C) Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies sp³ orbital and is more directional.
 - (D) Between NH₃ and PH₃, PH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional.
- **741.** White phosphorus on reaction with NaOH gives PH₃ as one of the products. This is a
 - (A) dimerization raection

(B) disproportionation reaction

(C) condensation reaction

(D) precipitation reaction

COMPREHENSION # 92 Paragraph for Questions Nos. 742 to 744

A white crystalling solid (A) on dehydration gave a poisonous pseudohalogen gas (B). Compound (A) when boiled with alkali gave a clourless gas (C). Which froms white fume with HCl. The fume condenses to a white solid (D) on cooling. (B) dissolves in caustic potash—solution to gave two compounds (pseudo halides) (E) and (F). Compound (F) gives white precipitate (G) with AgNO₃ solution but the precipitate dissolves in excess of (E) When (F) is heated together with (D) a well known fertilizer—(H)—is—obtained. identify (A) to (H) and write the reaction involved.

742.	The (A)	hybridzaition show sp ³ d	n by cp (B)	od 'B' (pseudo halide sp ³ d ²	es) (C)	sp ²	(D)	sp		
743.	The (A)				ons of (C)	complex. The natu	re com (D)	nplex is Parra, coloured		
744.		hybridization show sp ² , sp ³	n by th	e cation & anions o (B) sp ² , sp ²	of com	pound 'A' are (C) sp ³ , sp ³		(D) sp ³ , sp ²		
	COMPREHENSION # 93 Paragraph for Questions Nos. 745 to 749									
	pape Lewi	lphate of a metal (A er green while gas (s base (E) which e	on hea C) form	ating evolves two gas as a trimer in which	ases (E	B) and (C) and an ox	kide (D)). Gas (B) turns $\rm K_2Cr_2O_7$ and (D) with HCI, forms a		
745.	Com (A)	pound (A) is FeSO ₄	(B)	SO ₂	(C)	SO ₃	(D)	Fe ₂ O ₃		
746.	Com (A)	pound (B) is FeSO ₄	(B)	SO ₂	(C)	SO ₃	(D)	Fe ₂ O ₃		
747.	Com (A)	pound (C) is FeSO ₄	(B)	SO ₂	(C)	SO ₃	(D)	Fe ₂ O ₃		
748.	Com (A)	pound (D) is FeSO ₄	(B)	SO ₂	(C)	SO ₃	(D)	Fe ₂ O ₃		
749.	Com (A)	pound (E) is FeCl ₃	(B)	SO ₂	(C)	SO ₃	(D)	Fe ₂ O ₃		
	COMPREHENSION # 94 Paragraph for Questions Nos. 750 to 753									
	A $+O_2 \longrightarrow X+Y+Z$ (organic compound) Compound (A) in pure form does not give ppt. with AgNO $_3$ solution. A mixture containing 70% of (A) and 30% of ether is used as an anaesthetic. Compound (X) and (Y) are oxides while (Z) is a pungent smelling gas. (X) is a neutral oxide which turns cobalt chloride paper pink. Compound (Y) turns lime water milky and produces an acidic solution with water.									
750.	Com (A)	pound (A) is – CHCl ₃	(B)	H ₂ O	(C)	CO ₂	(D)	Cl_2		

 CO_2

751.

Compound (X) is – (A) CHCl₃

 Cl_2

(B)

752.	Compound (A) CHC		(B)	H ₂ O	(C)	CO ₂	(D)	Cl ₂	
753.	Compound (A) CHO	. ,	(B)	H ₂ O	(C)	CO ₂	(D)	Cl_2	
	COMPREHENSION # 95 Paragraph for Questions Nos. 754 to 756								
	A crystalline solid (A) reacts with hydrogen gas to form a monoatomic gas (B) and a highly associated liquid (C). (A) is soluble in water and undergoes hydrolysis slowly to form (B), (C) and a diatomic gas (D). When pure and dry (D) is subjected to a silent electric discharge an another pale blue gas (E) is produced which like (A) also acts as a strong oxidising agent. (E) dissolves in potassium hydroxide forming an orange coloured solid which is paramagnetic in nature. (A) reacts with IF ₅ , SbF ₅ , PF ₅ etc to form the addition compounds. (C) forms an addition compound (F) with KF which when electrolysed in molten state forms a most reactive gas (G). (B) and (G) (taken in 2 : 1 ratio) when heated in nickel tube at 400°C and 6 atm. pressure forms (A). The IE ₁ of (B) is fairly close to (D).								
754.	Gas (G) is (A) SbF		reactii (B)	ng K ₂ MnF ₆ with : MnF ₃	(C)	KSbF ₆	(D)	MnF ₅	
755. 756.	(A) The (B) (A) (A) (C) (A) (D) All (C) (A) (E) (B) A fill (C) (D)	central atom reacts with S ₈ ridised. reacts with Stoff these correct choice reacts with dry	of (A) molectors oF ₅ as for (D) rioding	cules in presence of a lewis base. and (E) to form I ₂ O ₅ alcoholic benziding	with th	ree lone pairs of ele o form a compound mes brown when br	d in wh	nich the S atom is sp ³ d ²	
				COMPREHEI	NSIO	N # 96			
	Paragraph for Questions Nos. 757 to 760 Look at the location of elements A,B,C and D in the following periodic table and answer the questions give below:								
757.	Which of t	he elements i	ndicat (B)	ed by A,B, C and D B	is exp (C)	pected to be found C	in nati (D)	ve state D	
758.	Which is f (A) A	ound as its su	lphide (B)	? B	(C)	С	(D)	D	
759.	Which is f	ound as its ca	rbonat (B)	re? B	(C)	С	(D)	D	
760.	composition (A) MO		eral you					. What is the chemical (M) on such a planet?	

COMPREHENSION #97

Paragraph for Questions Nos. 761 to 765

The chief ore of zinc is the sulphide, ZnS. The ore is concentrated by flotation process and then heated in air, which converts the ZnS to ZnO.

$$2ZnS + 3O_2 \xrightarrow{90.6\%} 2ZnO + 2SO_2 \qquad(1)$$

The ZnO is then treated with dilute H₂SO₄

$$\mathsf{ZnO} + \mathsf{H_2SO_4} \xrightarrow{100\%} \mathsf{2ZnSO_4} + \mathsf{H_2O} \qquad \qquad \dots \dots (2)$$

to produce ZnSO₄(aq.) which produces Zn metal on electrolysis.

$$2 ZnSO_4 + 2H_2O \xrightarrow{98.2\%} 2Zn + 2H_2SO_4 + O_2 \dots (3)$$

- **761.** What mass of Zn will be obtained from an ore containing 225 kg of ZnS? Efficiencies of the process have been indicated above the arrow mark. (Zn = 65, S = 32, O=16, H=1)
 - (A) 134 kg
- (B) 112 kg
- (C) 102 kg
- (D) 130 kg
- 762. What amount of current is required (with 100% efficiency) in step (3) if it takes one month?
 - (A) 10.2 A
- (B) 15.4 A
- (C) 17.0 A
- (D) 154.0 A

- **763.** ZnO is step (i) can also be dissolved in NaOH forming:
 - (A) $Zn(OH)_2$
- (B) Na_2ZnO_2
- (C) Na_2O_3
- (D) NaZn(OH)₄
- 764. How many kilomoles of NaOH are required to dissolve all the ZnO of step (1) assuming 100% yield?
 - (A) 2.32
- (B) 1.16
- (C) 4.64
- (D) 9.28
- **765.** What valume of 98% H₂SO₄ (by weight, density 1.8 g/mL) is required in step (2)?
 - (A) 130 L
- (B) 140 L
- (C) 120 L
- (D) 150 L

COMPREHENSION # 98

Paragraph for Questions Nos. 766 to 768

The Carbon–metal bond in carbonyls may be represented as $M \leftarrow C \equiv O$. A stronger second bond is

formed by back bonding. This arises form sideways overlap of \prod^* 2Py orbital of carbon with full dxy orbital of the metal.

- **766.** Because of back bonding 'CO' is called as:
 - (A) Π acceptor ligand

(B) Π – donar ligand

(C) σ – acceptor base

- (D) σ donor ligand
- **767.** In metal carbonyls the C–O bond length
 - (A) Decreases from double bond length to triple length.
 - (B) Increases from triple bond length to double bond length.
 - (C) Remain as triple bond length.
 - (D) Cannot be predicted.
- **768.** Which pair of carbonyl is correctly matched with shape.
 - (A) Nickel carbonyl Square planar
- (B) Iron carbonyl Pentagonal bipyramidal
- (C) Vanadium carbonyl Tetrahedral
- (D) Chromium carbonyl Octahedral

COMPREHENSION # 99 Paragraph for Questions Nos. 769 to 771

Coordination compounds can also exhibit ionization and limeage isomerism types along with other isomerism types. In ionization isomerism type, the exchange of ions between coordination sphere and ionic sphere is observed. On the other hand, is linkage isomerism, the change in the donar atom of a ligand is observed.

- **769.** Which one of the following is correct with respect to SCN^- ion?
 - (A) metal S bonds are stable in solvent with low dielectrtic constant
 - (B) metal N bonds are stable in solvent with high dielectric constant
 - (C) metal S bonds are stable in solvent with high dielectric constant
 - (D) in any solvent metal S and metal N bonds are stable
- **770.** Which one of the following is not an example for ionization isomerism:

(A)
$$\left[\left(NH_3\right)_5 Co^{18}OH\right] + NO_2 \rightarrow \left[\left(NH_3\right)_5 Co\left(NO_2\right)\right] + {}^{18}OH$$

(B)
$$\left[\left(NH_{3}\right)_{4}Co\left(H_{2}O\right)Cl\right] + 2Br \rightarrow \left[\left(NH_{3}\right)_{4}Co\left(Br_{2}\right)\right] + Cl \cdot H_{2}O$$

(C)
$$\left[\left(NH_3\right)_5 Co\left(SO_4\right)\right] + NO_3 \rightarrow \left[\left(NH_3\right)_5 Co\left(NO_3\right)\right] + SO_4$$

(D)
$$\left[\left(NH_3\right)_4 Co\left(NO_2\right)Cl\right] + Cl \rightarrow \left[\left(NH_3\right)_4 CoCl_2\right] + NO_2$$

- 771. How many ways are possible to represent a coordination complex with a molecular formula $\left[M^{m\pm}a_4b_2\right]^{n\pm}$ (when m may or may not be equal to n) in terms of geometrical isomerism
 - (A) 12 Cis forms and 3 trans forms
- (B) 6 Cis forms and 6 trans forms
- (C) 4 Cis forms and 4 trans forms
- (D) 8 Cis and 4 trans formss

COMPREHENSION # 100 Paragraph for Questions Nos. 772 to 774

A metal complex having composition $Cr(NH_3)_4Br_2I$ was isolated in two forms (x) and (y). Form (x) reacts with $AgNO_3$ to give a pale yellow precipitate which is partially soluble in excess of NH_4OH . Whereas (y) gives a greenish yellow precipitate which is insoluble in NH_4OH .

- 772. (A) The formula of (x) and (y) are $[Cr(NH_3)_4IBr]Br$ and $[Cr(NH_3)_3Br_2I]NH_3$
 - (B) The formula of (x) and (y) are $[Cr(NH_3)_4IBr]Br$ and $[Cr(NH_3)_4Br_2]I$ respectively
 - (C) The formula of (x) and (y) are both $[Cr(NH_3)_4Br]BrI$
 - (D) The formula of (x) and (y) are $[Cr(NH_3)_2IBr_2](NH_3)_2$
- **773.** Both the (x) form and (y) form show
 - (A) linkage isomerism

(B) Co-ordination isomerism

(C) ionization isomerism

- (D) none of these
- 774. The oxidation state and co-ordination number of the central atom in the complex is
 - (A) +6, 6
- (B) +6, 5
- (C) +3, 5
- (D) +3, 6

SECTION III: MATCH TYPE

775. Match the following columns

Column I

- (a) $V(CO)_6$
- (b) $\left[\text{NiCl}_2(\text{PPh}_3)_2 \right]$
- (c) $[Ni(NH_3)_4]^{2+}$
- (d) Ni (CO)₄

776. Column-I

- (A) Zn(OH)₂ precipitate dissolves in
- (B) Cr(OH) precipitate dissolves in
- (C) AgCl precipitate dissolves in
- (D) CuS precipitate dissolves in

777. Column-I

- (A) Highest density
- (B) Colourless salts
- (C) Maximum magnetic moment
- (D) Variable oxidation state

778. Column-I

- (A) Bi3+ gives black ppt with
- (B) Cu2+ gives black ppt with
- (C) Zn²⁺ gives white ppt with
- (D) Ag⁺ gives white ppt with

779. Column-I

- (A) Coloured ion
- (B) $\mu = 1.73 \text{ B.M.}$
- (C) d¹⁰ configuration
- (D) More than 3 unpaired electrons

Column II

- (P) Paramagnetic with 1 unpaired electron
- (Q) Paramagnetic with 2 unpaired electrons
- (R) sp³ hybridization
- (S) Diamagnetic

Column-II

- (P) Potassium cyanide
- (Q) Ammonia
- (R) Sodium hydroxide
- (S) Sodium peroxidse

Column-II

- (P) Os
- (Q) Cr
- (R) Zn
- (S) Mn

Column-II

- (P) H₂S (saturated solution in water)
- (Q) Potassium thiocyanate solution
- (R) Potassium iodide solution
- (S) Potassium ferrocyanide solution

Column-II

- (P) Cu⁺
- (Q) Cu²⁺
- (R) Fe²⁺
- (S) Mn²⁺

780. Match the following Reactants

(a) anhydrous form of blue vitirol + P_4 + $H_2O \xrightarrow{Cold}$

- (b) anhydrous form of blue vitirol + P_4 + $H_2O \xrightarrow{Hot}$
- (c) anhydrous form of blue vitirol + $PH_3 + H_2O \longrightarrow$
- (d) anhydrous form of blue vitirol + $H_3PO_2 + H_2O \longrightarrow$

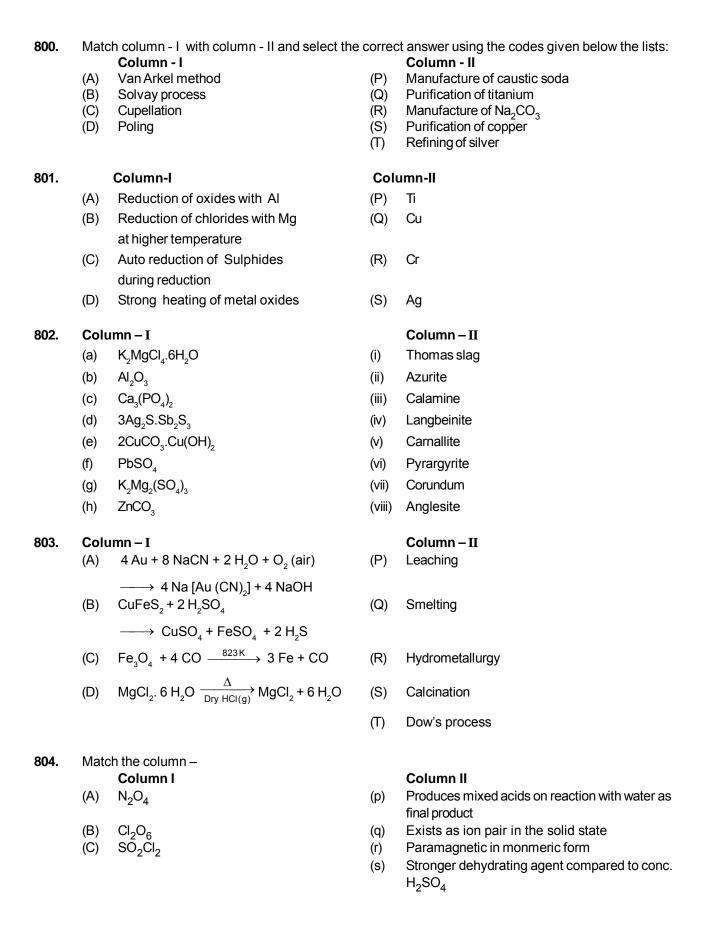
Products

- (P) H_3PO_4
- (Q) Cu₂P (black)
- (R) Cu
- (S) Cu_2H_2 (Red)

781. Match the following:

Column A

- (i) NaI + Cl₂ (water) + CCl₄ shake
- (ii) $CH_3COO^- + FeCI_3 + H_2O boil$
- (iii) CoCl₂ + KNO₂ + CH₃COOH warm
- (iv) MnCl₂ + KOH + KClO₃ fusion
- (v) MnCl₂ + NaOH + Br₂ (water)
- (vi) FeCl₂ + KSCN


Column B

- (a) yellow ppt
- (b) green mass
- (c) black ppt
- (d) purple colour
- (e) red brown ppt
- (f) blood red colour

782.		Name		% of C
	[1]	Wrought iron/Meleable	(a)	0.25 to 2.0
	[2]	Steel	(b)	2.6 to 4.3
	[3]	Pig Iron	(c)	0.1 to 0.25
	[4]	Cast Iron	(d)	2.3 to 4.6
			` ,	
783.		Column-I		Column-II
	(A)	Zn	(P)	d-block metal
	(B)	Cu	(Q)	Coinage metal
	(C)	Ag	(R)	Native metal
	(D)	Fe	(S)	Transitional metal
784.	Mate	ch the following columns		
		List I		List II
	(a)	NH ₃	(P)	sp³ hybridisation
	(b)	XeF ₆	(Q)	1 lone pair are present
	(c) (d)	B_2H_6 NH_4^+	(R) (S)	multi centre bond are present pyramidal shape
	(u)	14114	(0)	pyramidal shape
785.	Mate	ch the geometry (given in column A) with t	he cor	
	:\	Column (A)	(0)	Column (B)
	i) ii)	Tetrahedral Octahedral	(a) (b)	[Cu(NH ₃) ₄] ²⁺ [Ag(NH ₃) ₂] ⁺
	iii)	Square planar	(c)	Fe(CO) ₅
	iv)	Trigonal bipyramidal	(d)	[Cr(H ₂ O) _e] ³⁺
	v)	Linear	(e)	[NiCl ₄] ²⁻⁷⁶⁴
	(A)	(i)-(e), (ii)-(d), (iii)-(a), (iv)-(c) ,(v)-(b)		
	(B)	(i)-(d), (ii)-(e), (iii)-(a), (iv)-(c) ,(v)-(b)		
	(C)	(i)-(d), (ii)-(e), (iii)-(b), (iv)-(a), (v)-(c)		
	(D)	(i)-(c), (ii)-(e), (iii)-(b), (iv)-(a) ,(v)-(d)		
786.	Mate	ch column - I with column - II		
	(\ \)	Column - I (Property)		umn - II (Element/compound)
	(A) (B)	Explosive Self-reduction	(P) (Q)	Cu Fe ₃ O ₄
	(C)	Magnetic material	(Q) (R)	Cu(CH ₃ COO) ₂ .Cu(OH) ₂
	(D)	Verdigris	(S)	Pb(NO ₃) ₂
787.	Mate	ch column - I and column - II and select the	correc	t answer using the codes given below the lists:
707.	iviati	Column - I	CONCO	Column - II
	(A)	Cyanide process	(P)	Ultrapure Ge
	(B)	Floatation process	(Q)	Dressing of HgS
	(C)	Electrolytic reduction	(R)	Extraction of Al
	(D)	Zone refining	(S)	Extraction of Au
788.		Column I		Column II
	1.	White crystalline precipitate	(a)	$K_3[Co(NO_2)_6]$
	2.	Reddish brown precipitate	(b)	Cr(OH) ₃
	3.	Yellow precipitate	(c)	Fe(OH) ₃
	4.	Green precipitate	(d)	PbCl ₂
	→.	Orden predipitate	(u)	

789. Column I Column II 1. 2NiS + 2HNO₃ + 6HCl – Evaporate (a) Black ppt & imparts greenish blue flame to dryness 2. CoCl₂ + 4NH₄ CNS + amyl (b) Blue colour in organic layer alcohol - Shake & allow to stand 3. CuCl₂ + NaOH – Heat strongly White ppt insoluble in conc HNO₃ & HCl (c) 4. $Sr(CH_3COO)_2 + (NH_4)_2 C_2O_4 - Mix$ Yellow residue turns green in water (d) 5. $H_2SO_4 + BaCl_2 - Mix$ Yellow ppt soluble in NaOH (e) $Na_2CrO_4 + (CH_3OO)_2 Pb - Mix$ 6. (f) Scarlet red ppt HgCl₂ + KI – Mix 7. (g) White ppt & imparts crimson red flame 790. Column (A) Column (B) Fe³⁺, Zn²⁺ & Cu²⁺ can be differentiated by (i) (a) KI solution (b) PbS, CuS and CdS dissolve in (ii) Alkaline Na₂SnO₂ solution Pb²⁺ gives yellow precipitate with 50% HNO₃ (c) (iii) Bi³⁺ gives a black precipitate with K₂CrO₄ solution (iv) $[Ag(NH_3)_2]$ CI gives back precipitate with (v) Aqueous NH₃. 791. Column - I Column - II FeO + SiO₂ ------> FeSiO₃ Calcination $MgCl_2.6H_2O \xrightarrow{DryHCl} MgCl_2$ (b) Leaching (ii) $Cu_{2}S + 2Cu_{2}O \xrightarrow{\Delta} 6Cu + SO_{2}$ (iii) **Smelting** Fe₂O₂ + 3C _____ 2Fe + 3CO (d) (iv) Roasting $2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2Ag$ Bessemerisation (v) 792. Match the various sequences with the appropriate orders: Sequences Orders Na⁺ Mg⁺² Al⁺³ (l) increasing size of ion in gaseous state (a) $I^ S^{2-}$ N^{3-} (II) decreasing size of ion in gaseous state (b) (III) O O- O-2 increasing size of ions aqueous state. (c) decreasing size of ions aqueous state. (IV) N F O (IE_2) (d) increasing order of IE, (e) decreasing order of electron affinity (f) 793. Column-I Column-II Containing carbonate radicals (A) (P) Anglesite (B) Soluble in dilute H₂SO₄ (Q) Cerussite (C) Insoluble in dilute H₂SO₄ (R) Azurite (D) Substance containing lead (S) Calamine

794.	Match Column-I with Column-II and select the correct answer using the codes given below.						
	(A)	Column-I (Meta Iron & copper	is)		(P)	Column-II (Method used for refining) Poling	
	(B)	Zirconium & Tita	nium		(Q)	Bessemerisation	
	(C)	Lead & Tin			(R)	Van-Arkel	
	(D)	Copper & Tin			(S)	Liquation	
795.	Mato	th the following:					
	1.	Double salt			(a)	[Co(NH ₃) ₃ Cl ₃]	
	2. 3.	Zeise's salt Neutral molecul	Δ		(b)	Hexadentate bidentate	
	4.	EDTA	G		(d)	Paramagnetic	
	5.	Ni(CO)₄			(e)	FeSO ₄ .(NH ₄)SO ₄ .6H ₂ O	
	6.	[Cr(NH ₃) ₆] ³⁺			(f)	K ₄ Fe(CN) ₆	
	7. 8.	Low spin compl	ex		(g)	Diamagnetic An arganemetallia compound	
	o. (A)	Glycine (1-e); (2-h); (3-	_a)· (4_h)· (5	-a): (6-d): (7	(h) 7_f): (8	An organometallic compound	
	(A) (B)	. , , , , ,					
	(C)	(1-h); (2-e); (3-	-a); (4–b); (5	–d); (6–g); (7	7–c); (8–f).	
	(D)	(1-h); (2-a); (3-	-e); (4–b); (5	–d); (6–g); (7	7—f); (8	3-c)	
796.	Mato			the correct a	nswe	r using the codes given below the lists.	
	^	List I (Complex	x)			List II(Geometry)	
	A. B.	$[Ni(CN)_4]^{2-}$ $[ZnCl_4]^{2-}$			1. 2.	Tetrahedral Tetragonal	
	C.	[Co(en) ₃] ³⁺			3.	Square planar	
	D.	[Cu(NO ₂) ₆] ⁴⁻			4.	Square pyramidal	
	Code	e A	В	С	5. D	Octahedral	
	(A)	1	2	3	4		
	(B)	3	1	5	2		
	(C)	2	3	4	5		
	(D)	3	1	5	4		
797.	Mato	ch the following co List I	olumns			List II	
	(a)	Arsenic			(P)	highest electron affinity (among list I)	
	(b)	Chlorine			(Q)	strongest reducing agent (among list I)	
	(c) (d)	Fluorine Lithium			(R) (S)	p-block element (among list I) highest ionisation energy (among list I)	
	(u)	Litiliaiii			(0)	riighest fornsation energy (among list i)	
798.		ch the following		wit a a	(D)	C. CO C. (OLI)	
	(a) (b)	chalcopyrites (c Chalcocite (or)	,		(P) (Q)	CuCO ₃ .Cu(OH) ₂ Cu ₃ FeS ₃	
	(c)	Bornite	copper grane	,,,	(Q) (R)	Cu ₂ S	
	(d)	Cuprite (red)			(S)	Cu ₂ O	
	(e)	Malacite (green)		(T)	CuFeS ₂	
	(f)	Azurite (blue)			(U)	2CuCO ₃ .Cu(OH) ₂	
799.	Matc	ch column (I) (proc	•	ımn (II) (elec	trolyte	•	
	(A)	Column (I) (prod Downs cell	cess)		(P)	Column (II) (electrolyte) fused MgCl ₂	
	(A) (B)	Downs cell Dow sea water p	rocess		(Q)	fused $(Al_2O_3 + Na_3AlF_6 + CaF_2)$	
	(C)	Hall-Heroult			(R)	fused (40% NaCl + 60% CaCl ₂)	
					(S)	$(A\ell N + C + N_2)$	

805. Match the column –

Column I

- (A) Cl₂O
- (B) CIO₂
- (C) Cl_2O_6
- (D) Cl_2O_7

Column II

- (p) Exists in equilibrium with monomer
- (q) Paramagnetic
- (r) Strongest acidic oxide
- (s) Maximum steric on crowding

806. Match the column correctly –

Column I

- (A) Best reductant
- (B) Arracks glass
- (C) Highest. hydrated halide ion
- (D) Tri-iodide ion
- (E) Does not show +1 oxidation state

- Column II
- (p) Fluorine
- (q) F
- (r) HF
- (s) H
- (t) Linear species
- 807. Match List–I with List–II and select the correct answer using codes given below in the list –

List – I List – II

- (a) Cyanide process(b) Floation process
- (c) Electrolytic reduction
- (d) Zone refining

- (P) Ultrapure Ge
- (Q) Pine oil
- (R) Extraction of Al
- (S) Extraction of Au

SECTION V: INTEGER TYPE

- **808.** The oxidation state of Fe in brown ring complex $[Fe(H_2O)_5NO]SO_4$ is
- **809.** The most common oxidation state of Lanthanoids is
- **810.** Total number of inner transition elements in the periodic table is
- **811.** How many statements are incoorect from the following:
 - (i) In the testing of v group radical NH₄OH is added to convert NH₄HCO₃ to (NH₄)₂CO₃ so that Ba²⁺, Sr²⁺ and Ca²⁺ precipitate completely.
 - (ii) In the fusion test for Mn²⁺ ions, purple mass obtained turns green on adding NaOH solution (fusion with KClO₃ + KOH).
 - (iii) The addition of zinc dust during the testing of S²⁻ by dil H₂SO₄ enhances the evolution of H₂S gas.
 - (iv) Nonluminous flame is called oxidising flame and luminous flame is called reducing flame.
 - (v) $\operatorname{Cr}_2(\operatorname{SO}_4)_3 + 3\operatorname{B}_2\operatorname{O}_3 \xrightarrow{\Delta} 2\operatorname{Cr}(\operatorname{BO}_2)_3$ (blue bead) + $3\operatorname{SO}_3$
- **812.** Consider the following complex :

[Co(NH₃)₅CO₃]ClO₄

The coordinations number, oxidation number, number of d-electrons and number of unpaired d-electrons on the metal are respectively –

- **813.** Benitoite is represented as BaTi [Si₃O₃], the value of n iS?
- **814.** A metal complex of co-ordination number six having three different types of ligands *a*, *b* and *c* of composition Ma₂b₂c₂ can exist in several geometrical isomeric forms; the total number of such isomers is
- **815.** Effective atomic number of Fe in the complex $K_{\lambda}[Fe(CN)_{\epsilon}]$ is
- 816. % of silver in 'german silver' is

817. From the following information

$$A^{-}(g) \longrightarrow A^{+2}(g) + 3e^{-} \qquad \Delta H_1 = 1400 \text{ kJ}$$

$$A(g) \longrightarrow A^{+2}(aq) + 2e^{-} \qquad \Delta H_2 = 700 \text{ kJ}$$

$$\Delta H_{EG}[A^{+}(g)] = -350 \text{ kJ/mol}$$

$$(IE_1 + IE_2) \text{ for } A(g) = 950 \text{ kJ/mol}$$
Find IE₂ (kJ/mol) of A

- 818. f-Sub shell of which principle quantum no. is filled up progressively in actinoids?
- 819. How many of the following statements are correct
 - (i) All the lone pairs are not necessarily used in coordinate bonding.
 - (ii) Tetrahedral complex of coordination no. of '4' show geometrical isomerism
 - (iii) A polydentate ligands have flexidentate character.
 - (iv) Geometrical isomerism is not noticed in complex coordination no. 2 and 3.
 - (v) EDTA has six lone pairs but it will be less than 6 lone pair s can be used in some coordinate complexes.
 - (vi) Perfect complexes are those in which complex ion is fairly stable.
 - (vii) It can be considered as undissociated and doesn't give the individual tests for cations and anions.
 - (viii) For the complex $K_4[Fe(CN)_6]$ it will give $4K^+$ and $[Fe(CN)_6]^{4-}$ but will not give individual test for Fe^{2+} & $6CN^-$.
 - (ix) Square planar complexes of coordination no. of '4' shows geometrical isomerism
 - (x) Octahedral complexes of coordination no. of '6' showing geometrical isomerism
 - (xi) It is either not dissociated or feebly dissociated in solution state.
 - (xii) Ambidentate ligands are those in which only one donor atom is attached to metal atom
- **820.** What is the oxidation state of lead in litharge?
- 821. When Fe(s) is dissolved in aqueous hydrochloric acid in a closed vessel, the work done is?
- 822. Theoritically the No. of geometrical isomers expected for octahedral complex [Mabcdef] is:
- **823.** The magnetic moment of a transition metal ion is found to be 3.87 BM. The number of unpaired electrons present in the ion is
- **824.** Inorganic graphite is $B_x N_y$, the value of X+Y is?
- 825. An ornament of gold has 75% of gold, then it is of how many carat?
- **826.** In an alkaline medium, the equivalent mass of KMnO₄ is $\left(\frac{M}{x}\right)$. Then x is?
- **827.** The number of unpaired electron in the complex ion [CoF_e]³⁻ is
- **828.** The possible number of optical isomers in $[Co(en)_2Cl_2]^+$ are
- 829. The number of milli-moles of acidified KMnO₄ required to convert one mole of sulphite ion into sulphate ion is
- **830.** Colemanite has the formula : $Ca_2B_6O_{11} \cdot xH_2O$. What is x?
- 831. The atomic number of an element is 22. The highest oxidation state exhibited by it in its compounds is

- 832. Out of the following the number of process(es) which uses a catalyst is/are?
 - (I) Contact process
 - (II) Thermite process
 - (III) Ostwald's process
 - (IV) Haber's process
- **833.** The mononuclear complex salt having the molecular composition [Co(en)₂ (SCN) (NO₂)]Br can exist in a number of isomeric forms. The total number of possible isomer of all type is
- **834.** Number of equivalent Cr —O bonds in the dichromate dianion are?