5
CHAPTER

COORDINATION COMPOUND

EXERCISE-1

	[S		ЕСТ СНОІСЕ Т	YPE]		
		Int	roduction			
Q.1	Which of the following complex will give white precipitate with barium chloride solution –					
	(A) [Cr(NH ₃) ₅ Cl]SO ₄		(B) $[Cr(NH_3)_5SO_4]$]Cl		
	$(C) [Co(NH_3)_6]Br_3$		(D) $[Co(NH_3)_4Br_2]$	Cl		
Q.2	Aqueous solution of	FeSO ₄ gives tests for	both Fe^{2+} and SO_4^{2-} but	after addition of excess of KCN,		
	solution ceases to give test for Fe^{2+} . This is due to the formation of					
	(A) the double salt $FeSO_4.2KCN.6H_2O$		(B) $\operatorname{Fe}(\operatorname{CN})_3$			
	(C) the complex ion $[Fe(CN)_6]^{4-}$		(D) the complex ion	(D) the complex ion $[Fe(CN)_6]^{3-}$		
Q.3	Potassium ferrocyanide is a					
	(A) Normal salt	(B) Mixed salt	(C) Double salt	(D) Complex salt		
Q.4	Aq. solution of carnallite, shows the properties of					
	(A) K^+ , Mg^{2+} , Cl^-	(B) K^+ , Mg^{++} , SO_4	$^{2-}$ (C) K ⁺ , Mg ²⁺ , CO ₂	$_{3}^{2-}$ (D) K ⁺ , Mg ²⁺ , Cl ⁻ , Br ⁻		
Q.5	An aqueous solution	of potash alum gives				
	(A) Two types of ion	IS	(B) Only one type o	fion		
	(C) Four types of ions		(D) Three types of ions			
		<u>Classifica</u>	ation of ligands			
Q.6	Which of the following	Which of the following represents the monodentate monoanion ligand?				
	(A) Carbonato	(B)Ammonia	(C) Nitrito	(D) Oxalato		
Q.7	The donor atoms in	EDTA are –				
	(A) Two N and Two	0 0	(B) Two N and fou	r O		
	(C) Four N and Two O		(D) Three N and th	(D) Three N and three O		

SUPER	PROBLEMS IN INORGANIC	COORDINATION COMPOUND		
Q.8	Which of the following	gligands is not a chelating a	agent –	
	(A) EDTA	(B) ethylenediamine	(C) Oxalate	(D) Pyridine
Q.9	All ligands are –			
	(A) Lewis acid	(B) Lewis base	(C) Neutral	(D) Reducing agent
Q.10	In SCN ligand if N is	attached to central metal	l atom or ion, the name	of ligand is –
	(A) Thiocyanato-N	(B) Cyanato-N	(C) Thiocyanato-S	(D) Cyanato-S
Q.11	Which of the followi	ng species cannot be a lig	gand –	
	(i) NH_4^+	(ii) NO ⁺	(iii) C ₅ H ₅ N	
	(A) i only	(B) i & ii only	(C) i & iii only	(D) i, ii & iii only
Q.12	Glycinato ligand is –			
	(A) a Chelating ligand	l	(B) Bidentate ligand	
	(C) Having two dono	or sites N and O^-	(D) All of these	
Q.13	Triphenyl phosphine i	s –		
	(A) Neutral and mono	odentate ligand	(B) Neutral and triden	tate ligand
	(C) Uninegative and u	inidentate ligand	(D) Trinegative and tri	dentate ligand
Q.14	The total number of L	igands attached to the ce	entral metal ion through	h coordinate bond is called –
	(A) Valency of the me	tal ion	(B) Oxidation state of	the metal ion
	(C) Coordination num	nber of metal ion	(D) Ionisable valency	of metal
Q.15	Diethylene triamine is			
	(A) Chelating agent	(B) Symmetrical ligand	(C) Tridentate ligand	(D) All of these
Q.16	Which of the following	g is not chelating agent?		
	(A) Hydrazine	(B) Oxalato	(C) Glycinato	(D) Ethylene diamine
Q.17	Which of the followin	g species is not expected	to be a ligand	
	(A) NO ⁺	$(\mathbf{B})\mathbf{NH}_{4}^{+}$	(C) $NH_2 - NH_3^+$	(D) NO_2^+
Q.18	The number of donor si	tes in dimethyl glyoximate.	, glycinato, diethylene tria	amine and EDTA are respectively
	(A) 2, 2, 3 and 4	(B) 2, 2, 3 and 6	(C) 2, 2, 2 and 6	(D) 2, 3, 3 and 6

SUPER	PROBLEMS IN INORGANIC	CHEMISTRY		COORDINATION COMPOUND
Q.19	[EDTA] ^{4–} is a			
	(A) Monodentate ligar	nd	(B) Bidentate ligand	
	(C) Tetra dentate ligan	nd	(D) Hexadentate ligan	d
Q.20	Bidentate ligand is			
	(A) pyridine	(B) acetylacetonate	(C) SCN ⁻	(D) Triethylenetetraamine
Q.21	According to Lewis th	eory the ligands are		
	(A) Acidic in nature		(B) Basic in nature	
	(C) Neither acidic nor	basic	(D) Some are acidic a	nd others are basic
Q.22	Denticity of [HEDTA]	3–		
	(A) 3	(B) 4	(C) 5	(D) 6
Q.23	The ion or molecule w	hich forms a complex co	mpound with transition	metal ion is called
	(A) Acid	(B) Ligand	(C) Complex ion	(D) No special name
Q.24	Among the following	which are ambidentate lig	gands	
	(i) NO_2^-	$(ii) NO_3^-$	(iii) EDTA ⁴⁻	
	(iv) SCN ⁻	(v) H ₂ NCH ₂ CH ₂ NH ₂	2	
	(A)(i) and (ii)	(B) (iii) and (iv)	(C) (i) and (iv)	(D) (iii) and (vi)
Q.25	The ligand N(CH ₂ CH	$(_2NH_2)_3$ is		
	(A) Tridentate	(B) Pentadentate	(C) Tetradentate	(D) Bidentate
Q.26	Statement-1 : Charge	on the complex of ferrio	c ion with EDTA ⁴⁻ is mi	nus one.
	Statement-2: EDTA	is a hexadentate ligand.		
	(A) Statement-1 is true	e, Statement-2 is true an	d Statement-2 is correct	explanation for Statement-1
	(B) Statement-1 is tru Statement-1	ue, Statement-2 is true	and Statement-2 is NC	OT the correct explanation for
	(C) Statement-1 is true	e, Statement-2 is false		
	(D) Statement-1 is fals	se, Statement-2 is true		
Q.27	Statement-1 : NH ₂ -N	NH_2 is not a chelating lig	and.	
	Statement-2 : A chela	ting ligand must posses	two or more lone pair at	such a distance that it may form
	(A) Statement-1 is true	e Statement-7 is true an	d Statement-? is correct	explanation for Statement-1
	(R) Statement-1 is true	ue Statement-2 is true	and Statement-2 is NO	T the correct explanation for
	Statement-1	ue, Statement 2 is the		
	(C) Statement-1 is true	e, Statement-2 is false		
	(D) Statement-1 is fals	se, Statement-2 is true		

SUPER	PROBLE	MS IN INORGANIC	CHEMISTRY			COORDINATION COMPOUND
			Oxidation Sta	te and	Co-ordination Num	ber
Q.28	The co-ordination number and oxidation number of 'x' in the following comp will be:				ving compound $[x (SO_4)(NH_3)_5]$ Cl	
	(A) 1	0 & 3	(B) 2 & 6		(C) 6 & 3	(D) 6 & 4
Q.29	The of	xidation state o	f Fe in brown rii	ng comp	blex [Fe(H_2O) ₅ NO] S	SO_4 is :
	(A) +	1	(B) + 2		(C) + 3	(D) +4
Q.30	Consi	der :				
		Complex	Coor	dinatio	n number	
	(A)	$[CuCl_2]^-$		(i)	6	
	(B)	$Ni(CO)_4$		(ii)	5	
	(C)	$[PtCl_6]^{4-}$		(iii)	4	
	(D)	$[Ni(NH_3)_6]^{2+}$		(iv)	2	
	Prope	r matching is :				
	(A) A(i), B(ii), C(iii), D(iv)				(B) A(iii), B(iv), C((ii), D(iv)
(C) A(iv), B(iii), C(i), D		, D(i)		(D) A(i), B(iii), C(i	i), D(iv)	
Q.31	Hown	nany EDTA ^{4–} 1	igands are requi	red to m	ake an octahedral cor	nplex with a Ca^{2+} ion ?
	(A) Si	x	(B) Three		(C) One	(D) Two
Q.32	The c [Cr(C	oxidation num ${}_{2}O_{4})_{2}(NH_{3})_{2}]^{-}$	ber and coordi	nation	number of chromiu	m in the following complex is
	(A) O	N. = +4, C.N	. = 4		(B) $O.N. = +3, C.1$	N. = 4
	(C) O	.N. = – 1, C.N	N. = 4 (1		(D) $O.N. = +3, C.$.N. = 6
Q.33	In whi	ch of the follow	ing complexes th	ne nicke	l metal is in highest oxi	idation state:
	(A) N	i(CO) ₄			(B) $[Cr(NH_3)_6]_2[NiF_6]_3$	
	(C) $[Ni(NH_3)_6(BF_4)_2]$				(D) $K_4[Ni(CN)_6]$	
Q.34	The co	o-ordination nu	mber of cobalt ir	the cor	nplex [Co(en) ₂ Br ₂]Cl	₂ is
	(A) 2		(B) 6		(C) 5	(D) 4
Q.35	Which	n of the followin	g complexes sho	w six co	oordination number	
	(A) [Z	$2n(CN)_4]^{2-1}$	$(B) [Cr(en)_3]^2$	3+	(C) [Cu(trien)] ⁺⁺	(D) $[Ni(dmg)_2]$

SUPER	UPER PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPO					
Q.44	In the complex Fe(CC	$D)_{x}$, the value of x is, if it f	follows sidwick EAN r	ıle:		
	(A) 3	(B) 4	(C) 5	(D) 6		
Q.45	Effective atomic num	wher of Fe in $[Fe(CO)_4]^-$ is	5:			
	(A) 34	(B) 35	(C) 36	(D) 37		
Q.46	The effective atomic	number of Cr (atomic nu	mber 24) in $[Cr(NH_3)_6]$	Cl ₃ is		
	(A) 35	(B) 27	(C) 33	(D) 36		
Q.47	The complex compou	and in which central meta	l ion obeys EAN rule			
	(A) $K_4[Fe(CN)_6]$	(B) $K_3[Fe(CN)_6]$	$(C) [Cr(H_2O)_6]Cl_3$	(D) $[Cu(NH_3)_4]SO_4$		
Q.48	E.A.N of metal ion in	following complex is fou	and to be equal to atomic	c number of krypton:		
	$(A) \left[Pd(NH_3) \right]_6 Cl_4$	(B) $[Cr(NH_3)_5Cl]SO_4$	$(C) [Co(en)_3]Cl_3$	(D) $[Mn(CO)_2(NO)_2]$		
Q.49	Which complex comp	pound does not obey 18-e	electron rule or Sidgwic	k Rule		
	$(A) [V(CO)_6]$	(B) $[Fe(\pi - C_5H_5)_2]$	(C) $[Mn(CO)_5]^-$	(D) $[Cr(\pi - C_6 H_6)_2]$		
Q.50	[Co(CO) ₄] attains sta	bility by its				
	(A) Oxidizing charact	er (B) Reduction	(C) Dimerization	(D) All of these		
Q.51	The value of x in [Fe	$(CO)_2(NO)_x$], is:				
	(A) 3	(B) 4	(C) 2	(D) 1		
Q.52	EAN of the central me	etal in the complexes K ₂ [N	Vi(CN) ₄], [Cu(NH ₃) ₄]SO	D_4 and K_2 [PtCl ₆] are respectively.		
	(A) 36, 35, 86	(B) 34, 35, 84	(C) 34, 35, 86	(D) 34, 36, 86		
Q.53	Which of the following	ng pair of complexes have	e the same EAN of the c	entral metal atoms/ions?		
	(A) $[Cu(NH_3)_4]SO_4$ and $K_3[Fe(CN)_6]$					
	(B) $K_4[Fe(CN)_6]$ and $[Co(NH_3)_6]Cl_3$					
	(C) $K_3[Cr(C_2O_4)_3]$ a (D) All	and $[Cr(NH_3)_6]Cl(NO_2)_2$	2			
Q.54	The values of 'x' in c	complexes H _x [Co(CO) ₄],	$[\text{Fe}(\text{CO})_{\text{x}} \cdot (\pi - \text{C}_5 \text{H}_5)]^{-1}$	are respectively		
	(A) 1, 1	(B) 2, 3	(C) 3, 1	(D) 1, 3		

SUPER	PROBLEMS IN INORGAI	NIC CHEMISTRY		COORDINATION COMPOUND			
Q.55	The EAN of metal atoms in $Fe(CO)_2$ (NO) ₂ and $Co_2(CO)_8$ respectively are						
	(A) 34, 35	(B) 34, 36	(C) 36, 36	(D) 36, 35			
Q.56	Following Sidgwid	ck's rule of EAN, correct	formula of $\operatorname{Co}_2(\operatorname{CO})_x$ w	ill be			
	(A) $\operatorname{Co}_2(\operatorname{CO})_4$	(B) $\operatorname{Co}_2(\operatorname{CO})_3$	(C) CO ₂ (CO) ₈	(D) CO ₂ (CO) ₁₀			
Q.57	Statement-1: [V($(CO)_6$ can not act as oxi	dising agent.				
	Statement-2: It ca	an be reduced by reducin	ng agent.				
	(A) Statement-1 is	true, Statement-2 is true	e and Statement-2 is corr	ect explanation for Statement-1			
	(B) Statement-1 is Statement-1	s true, Statement-2 is t	rue and Statement-2 is	NOT the correct explanation for			
	(C) Statement-1 is	true, Statement-2 is fals	e				
	(D) Statement-1 is	false, Statement-2 is tru	e				
Q.58	Statement-1: In N	$(n_2(CO)_{10})$ molecule, the	ere are total 70 electrons	in both Mn atoms.			
	Statement-2: $Mn_2(CO)_{10}$ molecule acts as oxidising agent.						
	(A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1						
	(B) Statement-1 is true. Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1						
	(C) Statement-1 is true, Statement-2 is false						
	(D) Statement-1 is	false, Statement-2 is tru	e				
		IUPAC	Nomenclature				
Q.59	The number of ions formed, when bis (ethane-1,2-diamine) copper (II) sulphate is dissolved in water will be						
	(A) 1	(B) 2	(C) 3	(D) 4			
Q.60	A complex cation coordination numb (A) Diammineethyl (B) Diammineethyl	is formed by Pt (in som per of Pt becomes six). W lenediaminedithiocyanate enediaminedithiocyanate	e oxidation state) with /hich of the following ca o-S-platinum (II) ion o-S-platinate (IV) ion	ligands (in proper number so that in be its correct IUPAC name :			
	(C) Diammineethylenediaminedithiocyanato-S-platinum (IV) ion						
	(D) Diamminebis (ethylenediamine) dithioc	yanate-S-platinum (IV) i	on			
Q.61	Trioxalatoaluminat	te(III) and tetrafluoro-bo	rate(III) ions are:				
	(A) $[Al(C_2O_4)_3],$	$[BF_4]^{3-}$	(B) $[Al(C_2O_4)_3]^{3+}$, [BF ₄] ³⁺			
	(C) $[Al(C_2O_4)_3]^{3-1}$, [BF ₄] ⁻	(D) $[Al(C_2O_4)_3]^{2-}$, [BF ₄] ^{2–}			
1							

SUPER	PROBLEMS IN INORGANIC CHEMISTRY	COORDINATION COMPOUND				
Q.62	The correct IUPAC name of the complex Fe($(C_5H_5)_2$ is –				
	(A) Cyclopentadienyl iron (II)	(B) Bis (cyclopentadienyl) iron (II)				
	(C) Dicyclopentadien ferrate (II)	(D) Ferrocene				
Q.63	The IUPAC name of Fe(CO) ₅ is –					
	(A) Pentacarbonyl ferrate (0)	(B) Pentacarbonyl Ferrate (III)				
	(C) Pentacarbonyl Iron (0)	(D) Pentacarbonyl Iron (II)				
Q.64	$K_3[Fe(CN)_6]$ is –					
	(i) Potassium hexacynoferrous (III)	(ii) Potassium hexacynoferrate (III)				
	(iii) Potassium ferricyanide (iv) Hexa cyno ferrate (III) potassium Correct answer is –					
	(A) Only (i) and (ii)	(B) Only (ii) and (iii)				
	(C) Only (i) and (iii)	(D) Only (ii) and (iv)				
Q.65	IUPAC name of [Pt(NH ₃) ₃ (Br)(NO ₂)Cl]Cl is (A) Triamminechloridobromidonitroplatinum ((B) Triamminebromidonitrochloroplatinum (IV (C) Triamminebromidochloridonitroplatinum (IV (D) Triamminenitrochloridobromoplatinum (IV	S – IV) chloride /) chloride IV) chloride /) chloride				
Q.66	The correct name of $[Pt(NH_3)_4Cl_2] [PtCl_4]$ is – (A) Tetraammine dichloro platinum (IV) tetrachloroplatinate (II)					
	(B) Dichloro tetra ammine platinium (IV) tetrachloro platinate (II)					
	(C) Tetrachloro platinum (II) tetraammine platinate (IV)					
	(D) Tetrachloro platinum (II) dichloro tetraam	ine platinate (IV)				
Q.67	The chloro-bis (ethylenediamine) nitro cobalt	(III) ion is –				
	(A) $[Co (NO_2)_2 (en)_2 Cl_2]^+$	(B) $[CoCl (NO_2)_2 (en)_2]^+$				
	(C) $[Co(NO_2)Cl(en)_2]^+$	(D) $[Co(en)Cl_2(NO_2)_2]^-$				
Q.68	The formula of the complex hydridotrimethoxo (A) $[BH(OCH_3)_3]^{2-}$ (B) $[BH_2(OCH_3)_3]^{2-}$	borate (III) ion is : (C) $[BH(OCH_3)_3]^-$ (D) $[BH(OCH_3)]^+$				
Q.69	The IUPAC name of $[Co(NH_3)_6] [Cr(C_2O_4)_3]$ (A) Hexaamminecobalt(III) tris(oxalato)chromiu (B) Hexaamminecobalt(II) tris(oxalato)chromiu (C) Hexaamminecobalt(II) tris(oxalato)chromiu (D) Hexaamminecobalt(II) trioxalatechromium] is ate(III) um(II) um(III) u(III)				

SUPER	PROBLEMS IN INORG	ANIC CHEMISTRY		COORDINATION COMPOUND		
Q.70	IUPAC name of	$[Pt(NH_3)_3(Br)(NO_2)C$	l]Cl is			
	(A) Triamminech	lorobromonitroplatinur	n(IV) chloride.			
	(B) Triamminebro	omonitrochloroplatinun	n(IV) chloride.			
	(C) Triamminebro	omochloronitroplatinur	n(IV) chloride.			
	(D) Triamminenit	rochlorobromoplatinur	n(IV) chloride.			
Q.71	The IUPAC nam	e of [Ni(NH ₃) ₄] [NiCl	4] is			
	(A) Tetrachloroni	ckel(II) tetraammineni	ckel(II)			
	(B) Tetraammine	nickel(II) tetrachloroni	ckel(II)			
	(C) Tetraammine	nickel(II) tetrachloroni	ckelate(II)			
	(D) Tetraamineni	ckel(II) tetrachloridoni	ckelate(IV)			
Q.72	The formula of so	odium nitroprusside is				
	(A) Na ₄ [Fe(CN]) ₅ (NOS)]	(B) $Na_2[Fe(CN)_5($	NO)]		
	(C) [Fe(H ₂ O) ₅ (I	NO)]SO ₄	(D) $\operatorname{Fe}_4[\operatorname{Fe}(\operatorname{CN})_6]_2$	3		
Q.73	The oxidation nu	mber of chromium in Ti	iamminechloridooxalatochr	romate ion is		
	(A) II	(B) IV	(C) V	(D) III		
Q.74	IUPAC nomencla	ature of sodium nitropr	usside is			
	(A) Sodium penta	acyanonitrosylferrate (]	III)			
	(B) Sodium pentacyanidonitrosylliumferrate (II)					
	(C) Sodium petacyanidonitrosyllium ferrate (III)					
	(D) Sodium penta	acyanonitrosylferrate (1	II)			
Q.75	The formula of po	otassium dicyanobis(ox	alato)nickelate(II) is			
	(A) $K_4[Ni(CN)_2$	$(Ox)_2$]	(B) $K[Ni(CN)_2(Ox)]$	$(x)_{2}$]		
	(C) $K_3[Ni(CN)_2]$	$(Ox)_2$]	(D) $K_2[Ni(CN)_2(C)]$	$(\mathbf{D}\mathbf{x})_2$]		
Q.76	The IUPAC nam	the of $K_2[Cr(NH_3)(CN)]$	$O_2(O)_2(O_2)$] is			
	(A) Potassium an	nminedicyanodioxidop	eroxochromate(VI)			
	(B) Potassium an	minedicyanoperoxoox	idochromium(VI)			
	(C) Potassium an	minedicyanoperoxoox	ochromium(VI)			
	(D) Potassium an	nminedicyanodiperoxo	dioxochromate(IV)			

SOFER	PROBLEMS IN INORGANI	GCHEMISTRY		COORDINATION COMPOUND
Q.77	The IUPAC name of	the red coloured comp	blex [Fe($C_4H_7O_2N_2$) ₂] of	btained from the reaction of Fe ²⁺
	and dimethyl glyoxim	ne		
	(A) bis(dimethylglyo	xime) ferrate (II)	(B) bis(dimethylglyo	ximato) iron (II)
	(C) bis(2, 3-butanedi	oldioximato) iron (II)	(D) bis(2, 3-butaned	ionedioximato) iron (I)
Q.78	The IUPAC name fo	r the coordination com	pound Ba[BrF ₄] ₂ is	
	(A) Barium tetrafluo	robromate (V)	(B) Barium tetrafluo	robromate (III)
	(C) Barium bis(tetraf	luorobromate(III))	(D) none of these	
Q.79	IUPAC name of			
		$(C_6H_5)_3P$ Cl Pd	Cl Pd $P(C_6H_5)_3$	
	(A) Chlorotriphenylp(B) Chlorotriphenylp(C) Triphenylphosphi(D) Triphenylphosphi	hosphinepalladium(II) c hosphinepalladium(III) inechloropalladium(II) c inechloropalladium(III)	li-μ-chloridochlorotriphe di-μ-chloridochlorotriphe li-μ-chloridotriphenylpho di-μ-chloridotriphenylpo	nylphosphinepalladium(II) enylphosphinepalladium(II) osphinechloropalladium(III) sphinechloropalladium(III)
Q.80	The hypothetical cor	nplex chloro diaquatria	mmine cobalt (III) chlori	ide can be represented as :
	$(A) [CoCl(NH_{a}),(H_{a}O),]Cl, \qquad (B) [Co(NH_{a}),(H_{a}O),(H_{a$)Cl ₂]
	(C) $[Co(NH_2)_3(H_2O)]$) ₂ Cl]	(D) $[Co(NH_3)_3(H_2O)]$)) ₃]Cl ₃
		Wern	er's Theory	
Q.81	In a complex, the co	orrect statement is :		
	(A) primary valency	is ionisable	(B) primary valency	is non-ionisable
	(C) secondary valen	cy is ionisable	(D) All of these	
Q.82	.82The molecular formula of various hexacoordinate complexes are given as below. $(1) \operatorname{CrCl}_3.6\operatorname{NH}_3$ $(2) \operatorname{CrCl}_3.5\operatorname{NH}_3$ $(3) \operatorname{CrCl}_3.4\operatorname{NH}_3$ If the number of NH ₃ ligands attached to central metal ion respectively are 6, 5 and 4, then the			
	valencies in (1), (2) a	and (3) respectively are	:	
	(A) 3, 3, 3	(B) 0, 1, 2	(C) 3, 2, 1	(D) 6, 5, 4
	Which of the followi	ng has minimum molar e	electrical conductivity?	
Q.83	which of the following	•	-	

SUPER	PROBLEMS IN INORGANIC	CHEMISTRY		COORDINATION COMPOUND		
Q.84	When AgNO ₃ is adde	d to a solution of Co(N	$H_3)_5Cl_3$, the precipitate	e of AgCl shows two ionisable		
	chloride ions. This means –					
	(A) Two chlorine atom	n satisfy primary valency	and one chlorine atom s	atisfies primary valency as well		
	as secondary vale	ncy.				
	(B) One chlorine atom	n satisfies primary valer	ncy.			
	(C) Two chlorine atom	ns satisfy secondary val	ency.			
	(D) Three chlorine ato	oms satisfy secondary va	alency.			
Q.85	Which isomer of CrC AgNO ₃ solution –	²¹ ₃ .6H ₂ O is dark green	in colour and forms one	e mole of AgCl with excess of		
	$(A) [Cr(H_2O)_6]Cl_3$		(B) $[Cr(H_2O)_5Cl]Cl_2$.	H ₂ O		
	$(C) [Cr(H_2O)_4Cl_2]Cl_4$	2H ₂ O	(D) $[Cr(H_2O)_3Cl_3].3H$	H ₂ O		
Q.86	Give the correct increa entities –	sing order of electrical o	conductivity of aqueous s	solutions of following complex		
	I. $[Pt(NH_3)_6]Cl_4$	II. $[Cr(NH_3)_6]Cl_3$	III. [Co(NH ₃) ₄ Cl ₂]Cl	IV. $K_2[PtCl_6]$		
	(A) $III < IV < II < I$	(B) $IV < II < III < I$	(C) $II < I < IV < III$	(D) $I < II < IV < III$		
Q.87	Which of the followin	g is most likely formula	of platinum complex, if	$\frac{1}{4}$ of total chlorine of the com-		
	pound is precipitated	by adding AgNO ₃ to its	aqueous solution –			
	(A) $PtCl_4.6H_2O$	(B) $PtCl_4.5H_2O$	(C) $PtCl_4.2H_2O$	(D) $PtCl_4.3H_2O$		
Q.88	The fraction of chlorin	ne precipitated by AgN	O3 solution from [Co(N]	$H_3)_5Cl]Cl_2$ is –		
	(A) 1/2	(B) 2/3	(C) 1/3	(D) 1/4		
Q.89	The number of ions for	rmed when Tetraammine	ecopper(II) sulphate is di	ssolved in water is		
	(A) 1	(B) 2	(C) 4	(D) Zero		
Q.90	For complexes: (I) Correspectively:	C1 ₃ .6NH ₃ (II) CoCl ₃ .5	NH ₃ (III) CoCl ₃ .4NH ₃ p	rimary valency in I, II & III are		
	(A) 6, 5,4	(B) 3, 2, 1	(C) 0, 1, 2	(D) 3, 3, 3		
Q.91	Which one of the follow	wing has highest molar c	onductivity			
	(A) Diamminedichlorog	platinum(II)	(B) Tetraamminedichlo	procobalt(III) chloride		
	(C) Potassium hexacya	anoferrate(II)	(D) Hexaaquachromium	m(III) bromide		

SUPER	UPER PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOU				
Q.92	Which of the following	g will not give precipitat	e with AgNO ₃ ?		
	(A) CoCl ₃ .3NH ₃	(B) $\operatorname{CoCl}_3.4\mathrm{NH}_3$	(C) CoC1 ₃ .5NH ₃	(D) CoCl ₃ .6NH ₃	
Q.93	How many moles of <i>A</i> gNO ₃ ?	AgCl would be obtaine	ed, when 100 ml of 0.1	$M \operatorname{CoCl}_3(\operatorname{NH}_3)_5$ is treated with	
	(A) 0.01	(B) 0.02	(C) 0.03	(D) none of these	
Q.94	0.001 mol of Co(NH ₃ it required 20 ml of 0.) ₅ (NO ₃)(SO ₄) was passe 1 M NaOH for neutralis	ed through a cation exch sation. Hence, the comp	anger and the acid coming out of lex is	
	(A) $[CoSO_4(NH_3)_5]$	NO ₃	(B) $[CoNO_3(NH_3)_5]$	SO4	
	(C) $[Co(NH_3)_5]SO_4$	NO ₃	(D) None of these		
Q.95	Consider the following	g statements:			
	According to Werner'	s theory.			
	(1) Ligands are conne	ected to the metal ion by	covalent bonds.		
	(2) Secondary valenci	es are directional			
	(3) Secondary valenci	es are non-ionisable			
	(4) Secondary valenci	es are satisfied by either	neutral or negative ions	5	
	Of these statements:				
	(A) 2, 3 & 4 are corre	ect	(B) 2 & 3 are correct	t	
	(C) 1 & 3 are correct		(D) 1, 2 & 4 are corr	rect	
Q.96	Cobalt (III) chloride for not give test for chloride	orms several octahedral	ecomplexes with ammo	onia. Which of the following will	
	(A) CoCl 4NH	(\mathbf{B}) CoCl 5NH	$(C) C_0 C_1 6NH$	(D) CoCl 3NH	
	(11) COCI3.41113	(D) COCI ₃ .51(H ₃)	(c) coci ₃ .0111 ₃	$(D) \cos (1_3 \cdot 5) \sin (1_3)$	
		Valence Bond	Theory (V.B.T.)		
Q.97	Hexafluorocobaltate cobalt is –	e(III) ion is found to	be high spin comple	ex, the hybridisation state of	
	(A) d^2sp^3	(B) sp ³	(C) sp^3d	(D) sp^3d^2	
Q.98	The number of unpair	ed electrons calculated	in $[Co(NH_3)_6]^{3+}$ and $[Co(NH_3)_6]^{3+}$	$CoF_{6}]^{3-}$ are :	
	(A) 4 and 4	(B) 0 and 2	(C) 2 and 4	(D) 0 and 4	
Q.99	The complex ions [Fe((A) Are both octahed (B) Are both octahed	$(CN)_6]^{3-}$ and $[Fe(CN)_6]^6$ ral and paramagnetic ral and diamagnetic	1-		
	(C) Have same struct	ure but different magne	tic character		
	(D) Have different structures but same magnetic character				

SUPER F	PROBLEMS IN INORGANIC	CHEMISTRY		COORDINATION COMPOUND			
Q.100	A complex of certain r	A complex of certain metal has the magnetic moment of 4.91 BM whereas another complex of the same					
	metal with same oxida	ation state has zero mag	netic moment. The metal	ion could be			
	(A) Co ²⁺	(B) Mn^{2+}	(C) Fe^{2+}	(D) Fe^{3+}			
Q.101	Point out the correct st (A) $[Cu(CN)_4]^{3-}$ has t (B) $[Ni(CN)_6]^{4-}$ is oct (C) $[ZnBr_4]^{2-}$ is tetrah	atements amongst the fo etrahedral geometry and tahedral and Ni has d ² sp edral and diamagnetic	bllowing d dsp ² hybridization 9 ³ hybridization				
	(D) $[Cr(NH_3)_6]^{3+}$ has	octahedral geometry an	d sp ³ d ² hybridization				
Q.102	Which complex has s (A) Ni(CO) ₄	quare planar structure ' (B) [NiCl ₄] ^{2–}	? (C) $[Ni(H_2O)_6]^{2+}$	(D) [Cu(NH ₃) ₄] ²⁺			
Q.103	 3 Complexes with CN⁻ ligands are : (A) High spin complexes (B) Usually low spin complexes (C) High spin complex with diamagnetic behaviour (D) Always diamagnetic in nature 						
Q.104	Which order is correct (A) $Cl^- < F^- < C_2O$ (C) $C_2O_4^{2-} < F^- < O$	et in spectrochemical se $_4^{2-} < NO_2^- < CN^-$ $Cl^- > NO_2^- < CN^-$	ries of ligands – (B) $CN^- < C_2O_4^{2-}$ (D) $F^- < Cl^- < NO_2^{2-}$	$< Cl^{-} > NO_{2}^{-} < F^{-}$ $2^{-} < CN^{-} < C_{2}O_{4}^{2-}$			
0 105	Cu^{++} and Au^{3+} recomb	lain formation of as or	dination compound				
Q.105	(A) C N = 2 linear		(B) C N = 4 totroho	dron			
	(A) C.N. = 2, Integration (A) C.N. = 4 , acquare to	nlanar	(\mathbf{D}) \mathbf{C} . \mathbf{N} . = 4, tetrane	uron			
	(C) C.N. = 4, square planar (D) Γ		(D) None of these				
0.106	Which of the followin	g complexes doesn't hay	$ve d^2sp^3$ hybridisation?				
	(A) $[Cr(NH_3)_6]^{3+}$	(B) $[Fe(CN)_6]^{3-1}$	(C) $[Co(NH_3)_6]^{3+}$	(D) $[Co(H_2O)_6]^{2+}$			
0 107	Hybridization of meta	lion in [Ni(H, O) 1^{2+} co	mplex is				
Q .107	(A) d^3sp^2	(B) sp^3d^2	(C) sp^3	(D) dsp^2			
Q.108	Which of the followin	Which of the following complex has a square planar geometry?					
	(A) $[Ag(NH_3)_2]^+$	(B) $[Cu(en)_2]^{2+}$	$(C) [MnCl_4]^{2-}$	(D) $Ni(CO)_4$			
O.109	Among the following.	the species having squa	re planar geometry/shap	e			
-	(i) XeF_4	(ii) SF_{A}	(iii) $[NiCl_{4}]^{2-}$	(iv) $[PdCl_{\lambda}]^{2-}$			
	(A) (i) and (iv)	(\mathbf{B}) (i) and (ii)	(C) (ii) and (iii)	(D) (iii) and (iv)			
chemstudio	os by pms			Page # 193			

SUPER	PROBLEMS IN INORGANIC	COORDINATION COMPOUND			
Q.110	Hybridization of Cr in	chromium hexacarbonyl	is		
	(A) sp^3d^2	(B) dsp^2	(C) d^2sp^3	(D) d^3sp^2	
0 111	The constant herein a feet	unh a dur l'alta una da			
Q.111	The species having ter (A) [G ((a)) 1^{2+}	tranedral snape is $(D) D (CN) 1^2 -$		(D) $[C (CNI)]^{3}$	
	(A) $[Cu(en)_2]^{2+1}$	(B) $[Ni(CN)_4]^2$	$(\mathbf{C})[\mathrm{AgF}_4]$	(D) $[Cu(CN)_4]^{3}$	
Q.112	Which of the following	g molecules is not tetrahe	dral		
	(A) $[Ni(en)_2]^{2+}$	(B) [Ni(CO) ₄]	$(C) [Zn(NH_3)_4]^{2+}$	(D) [NiCl ₄] ^{2–}	
Q.113	In $Fe(CO)_5$, sigma bor	nd between Fe and CO r	esults by the overlap bet	ween filled sp hybrid orbital of	
	C -atom of CO molecu	ile and which hybrid ort	oitals of Fe :		
	(A) d^2sp^3	(B) sp ³	(C) $d_{x^2-y^2}sp^3$	(D) $d_{z^2}sp^3$	
Q.114	14 For the correct assignment of electronic configuration of a complex, the valence bond theory of requires the measurement of				
	(A) molar conductance	e	(B) optical activity		
	(C) magnetic moment		(D) dipole moment		
0 115	The had widing the send	in-d-la-tuin DT	(U, O) 1 ²⁺ :		
Q.115	The hybridisation and $(A) = 3 \frac{12}{12} \frac{4}{12}$	unpaired electrons in $[F($	$(H_2O)_6 J^{2/3}$ 10n are:	$(D) = \frac{31^2}{12}$	
	(A) $sp^{3}d^{2}; 4$	(B) d^2sp^3 , 3	(C) d^2sp^3 , 4	(D) $sp^{3}d^{2}$, 2	
Q.116	The hybridisation of C	Co in $[Co(H_2O)_6]^{3+}$ is			
	(A) d^2sp^3	$(B) dsp^2$	(C) sp ³	(D) sp^3d^2	
Q.117	Which of the following	g statements about Fe(C	O) ₅ is correct?		
	(A) It is paramagnetic	and high spin complex	(B) It is diamagnetic ar	nd high spin complex	
	(C) It is diamagnetic a	nd low spin complex	(D) It is paramagnetic	and low spin complex	
0.118	Which of the following	statements is not true?			
	(A) $[MnCL]^{2-}$ ion has	tetrahedral geometry an	d is paramagnetic		
	(B) $[Mn(CN), 1^2 - ion h]$	as octahedral geometry	and is paramagnetic		
	(C) $[CuCl_{-}]^{2-}$ has some	are planar geometry and	lis paramagnetic		
	(D) $[NiBr_2(Ph_3P)_3]$ has	as trigonal bipyramidal g	geometry and two unpair	ed electron	
Q.119	Which of the following	g is not expected to show	paramagnetism?	_	
	(A) $[Fe(NH_3)_6]^{2+}$	(B) $Ni(CO)_4$	(C) $[Cr(en)_3]^{2+}$	(D) $[Cu(NH_3)_4]^{2+}$	

SUPER F	PROBLEMS IN INORGANIC	COORDINATION COMPOUND					
Q.120	Considering H_2O as a	a weak field ligand, the	number of unpaired el	ectrons in $[Mn(H_2O)_6]^{2+}$ will be :			
	(Atomic no. of $Mn =$	25)					
	(A) 3	(B) 5	(C) 2	(D) 4			
Q.121	1 The d-electron configuration of Cr ²⁺ , Mn ²⁺ , Fe ²⁺ and Ni ²⁺ are 3d ⁴ , 3d ⁵ , 3d ⁶ and 3d ⁸ respectively, whi one of the following aqua-complex will exhibit the minimum paramagnetic behaviour ?						
	(A) $[Cr(H_2O)_6]^{2+}$	(B) $[Mn(H_2O)_6]^{+2}$	(C) $[Fe(H_2O)_6]^{2+}$	(D) $[Ni(H_2O)_6]^{2+}$			
Q.122	A magnetic moment of	of 1.73 BM will be show	n by one among the fol	lowing :			
	(A) $[Ni(CN)_4]^{2-}$	(B) TiCl ₄	(C) $[CoCl_6]^{4-}$	(D) $[Cu(NH_3)_4]^{2+}$			
Q.123	 3 CN- is strong field ligand. This is due to the fact that (A) it carries negative charge (B) it is a pseudohalide (C) it can accept electrons from metal species (D) it forms high spin complexes with metal species 						
Q.124	124 Which pair of ion form homoleptic octahedral complex with H ₂ O having low spin and high respectively? (A) Fe^{2+} Fe^{3+} (B) Co^{2+} Co^{3+}						
	(C) Fe^{3+} , Fe^{2+}		(D) Co^{3+} , Co^{2+}				
Q.125	Statement–1 : [Ni(C	$[N)_{4}]^{2-}$ is a diamagnetic	complex				
	Statement-2 : Comp	ound is low spin compl	ex.				
	(A) Statement-1 is tru	ie, Statement-2 is true a	nd Statement-2 is corre	ect explanation for Statement-1			
	(B) Statement-1 is the Statement-1	rue, Statement·2 is true	e and Statement-2 is N	NOT the correct explanation for			
	(C) Statement-1 is tru	e, Statement-2 is false					
	(D) Statement-1 is fail	lse, Statement-2 is true					
Q.126	 5 Statement-1: K₃[Fe(CN)₆] is a low spin complex. Statement-2: Fe³⁺ ion in this complex undergoes sp³d² hybridization. (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1 (B) Statement-1 is true, Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1 (C) Statement-1 is true, Statement-2 is false (D) Statement-1 is false, Statement-2 is true 						

SUPER	PROBLEMS IN INORGANI	CCHEMISTRY		COORDINATION COMPOUND
		Crystal Field	l Theory (C.F.T.)	
Q.127	The strongest field lig	and in the following is		
	(A) CN^{-}	(B) NH ₃	(C) OH [−]	(D) SCN ⁻
Q.128	Among the following	g, which one has higher C	CFSE?	
	(A) $[Zn(NH_3)_4]^{2+}$	(B) $[Zn(OH)_4]^{2-}$	(C) $[Zn(CN)_4]^{2-}$	(D) $[Zn(H_2O)_4]^{2+}$
Q.129	The purple colour of	$[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$ in aqueous	solution is due to :	
	(A) d-d transition of unpaired d-electron		(B) charge transfer spectrum	
	(C) intermolecular vi	bration	(D) polarisation of ca	tion.
Q.130	Which of the followi	ng statements is correct	with respect to the crysta	l field theory ?
	(A) It considers only	the metal ion d-orbitals	and gives no considerati	on at all to other metal orbitals.
	(B) It cannot account	t for the π bonding in cor	nplexes.	
	(C) The ligands are p	oint charges which are e	ither ions or neutral mole	ecules.
	(D) All of these			
	`			
0 131	All the following cor	nnlex ions are found to b	e naramagnetic ·	
Q .1151	$P \cdot [F_{e}F_{a}]^{3-}$	$\mathbf{O} \cdot [\mathbf{CoF}]^{3-}$	e paramagnetie .	
	$\mathbf{R} \cdot [\mathbf{V}(\mathbf{H} \mathbf{O})]^{3+}$	$Q \cdot [COI_{6}]$ $S \cdot [Ti(H O)]^{3+}$		
	$\mathbf{K} \cdot \left[\mathbf{V} \left(\mathbf{H}_2 \mathbf{O} \right)_6 \right] ,$ The correct order of t	$5 \cdot [\Pi(\Pi_2 O)_6]$	ont (onin only) is :	
	$(A) \mathbf{P} > \mathbf{O} > \mathbf{P} > \mathbf{S}$	(P) $\mathbf{P} < \mathbf{O} < \mathbf{P} < \mathbf{S}$	$(C) \mathbf{P} = \mathbf{O} = \mathbf{P} = \mathbf{S}$	$(\mathbf{D}) \mathbf{D} \times \mathbf{D} \times \mathbf{O} \times \mathbf{S}$
	(A) P > Q > K > S	$(\mathbf{D})\mathbf{F} < \mathbf{Q} < \mathbf{K} < \mathbf{S}$	(C) P = Q = K = S	(D) P > R > Q > S
Q.132	For the $t_{2g}^6 e_g^2$ system	n, the value of magnetic	moment (µ) is –	
	(A) 2.83 B.M.	(B) 1.73 B.M.	(C) 3.87 B.M.	(D) 4.92 B.M.
Q.133	Which of the following	ng electronic arrangemen	t gives the highest value	of the magnetic moment in case of
	octahedral complex '	?		
	$(A) d^{6}$, strong field		(B) d ⁷ , high spin	
	$(C) d^4$, weak field		(D) d^2 , strong field	
Q.134	In which of the follow	ving coordination entities	s, the magnitude of Δ_0 wi	ll be maximum? :
	(A) $[Co(CN)_6]^{3-}$	(B) $[Co(C_2O_4)_3]^{3-}$	(C) $[Co(H_2O)_6]^{3+}$	(D) $[Co(NH_3)_6]^{3+}$
Q.135	The crystal field stabi	ilization energy (CFSE) i	is the highest for	
-	(A) $[CoF_{4}]^{2-}$	(B) [Co(SCN)] ^{2–}	$(C) [Co(dmg)_{3}]^{3+}$	(D) $[CoCl_{4}]^{2-}$
	4*	· · · · · · · · · · · · · · · · · · ·		· · · 4·

SUPER I	PROBLEMS IN INORGANIC (CHEMISTRY		COORDINATION COMPOUND		
Q.136	Crystal field stabilization	on energy for low spin d	⁴ octahedral complex is			
	$(A) - 0.6 \Delta_0$	(B) – 1.8 Δ_0	(C) $- 1.6 \Delta_0 + P$	(D) $-1.2 \Delta_0$		
Q.137	The most stable ion is					
	(A) $[Fe(py)_6]^{3+}$	(B) $[FeF_6]^{3-}$	(C) $[Fe(CN)_6]^{3-1}$	(D) $[Fe(H_2O)_6]^{3+}$		
Q.138	 Which of the following factors tends to increase the stability of metal ion complexes (A) Higher ionic radius of the metal ion (B) Higher charge/size ratio of the metal ion (C) Lower ionisation potential of the metal ion (D) Lower basicity of the ligand 					
Q.139	 9 Which one of the following statement is incorrect ? (A) Greater the formation constant (K_f) of a complex ion, greater is its stability. (B) Greater the positive charge on the central metal ion, greater is the stability of the complex (C) Greater is electron pair donating ability of the ligand, lesser is the stability of the complex. (D) Chelate complexes have high stability constants. 					
Q.140	 40 Select the correct statement about brown ring complex ion [Fe(H₂O)₅(NO)]²⁺. (A) Colour change is due to charge transfer (B) It has iron in +1 oxidation state and nitrosyl as NO⁺ (C) It has magnetic moment of 3.87 BM confirming three unpaired electrons in Fe (D) All the above are correct statements. 					
Q.141	The value of Δ_0 for corion will be	mplex ion $[CoCl_6]^{4-}$ is 2	$18000 \mathrm{cm}^{-1}$. Then the va	lue of Δ_t for $[CoCl_4]^{2-}$ complex		
	(A) 18000 cm^{-1}	(B) 16000 cm^{-1}	(C) 8000 cm^{-1}	(D) 2000 cm^{-1}		
Q.142	The spin only magnetic (A) 0	c moment value (in Boh (B) 2.84	magneton units) of Cr(C (C) 4.90	CO) ₆ is (D) 5.92		
Q.143	The correct distribution	n of 3d electrons in chro	omium for the complex [$Cr(CN)_{6}]^{3-}$		
-	(A) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{xz}^1$		(B) $3d_{xy}^{1}$, $3d_{yz}^{1}$, $3d_{zx}^{0}$			
	(C) $3d_{x^2-y^2}^1$, $3d_{z^2}^1$, $3d_{z^$	d^1_{xz}	(D) $3d_{xy}^1$, $3d_{x^2-y^2}^1$, $3d_{x^2-y^2}^1$	d^1_{yz}		
Q.144	Among the following c	complexes, which has m	agnetic moment of 5.9 B	Μ		
	(A) $Ni(CO)_4$	(B) $[Fe(H_2O)_6]^{2+}$	(C) $[Co(NH_3)_6]^{3+}$	(D) $[MnBr_4]^{2-}$		
chemstudio	os by pms			Page # 201		

SUPER	PROBLEMS IN INORGANIC	CHEMISTRY		COORDINATION COMPOUND		
Q.145	Which of the following	g complex ion absorb vis	sible light			
	$(A) [Sc(H_2O)_3 (NH_3)]$) ₃] ³⁺	(B) $[\text{Ti}(\text{en})_2(\text{NH}_3)_2]$] ⁴⁺		
	(C) $[Cr(NH_3)_6]^{3+}$		(D) $[Zn(NH_3)_6]^{2+}$			
Q.146	Which of the following	g is diamagnetic in natur	e			
	(A) Co ³⁺ octahedral complex with weak field ligands					
	(B) Co^{3+} octahedral co	(B) Co ³⁺ octahedral complex with strong field ligands				
	(C) Co^{2+} in tetrahedra	ll complex				
	(D) Co^{2+} in square pla	anar complex				
Q.147	Among the following,	, the compound that is b	oth paramagnetic and c	coloured is		
	(A) $K_2 \operatorname{Cr}_2 \operatorname{O}_7$	$(B) (NH_4)_2 [TiCl_6]$	(C) VOSO ₄	(D) $K_3[Cu(CN)_4]$		
Q.148	Prussian blue is forme	d when				
	(A) Ferrous sulphate	cambines with K ₄ [Fe(C	$(N)_6$]			
(B) Ferric sulphate combines with $K_4[Fe(CN)_6]$						
	(C) Ferrous ammoniu	m sulphate combines w	ith K ₃ [Fe(CN) ₆]			
	(D) FeCl ₃ combines w	with K_3 [Fe(CN) ₆]				
Q.149	Octahedral complex of	of Ni(II) will be always				
	(A) inner orbital					
	(B) outer orbital					
	(C) inner or outer orbi	tal depending upon the	strong or weak field lig	gand		
	(D) none of these					
Q.150	Mn ²⁺ forms a complex	x with Br ⁻ ion. The mag	netic moment of the cor	nplex is 5.92 B.M. What could not		
	be the probable formu	la and geometry of the	complex?			
	(A) $[MnBr_6]^{4-}$, octaho	edral	(B) $[MnBr_4]^{2-}$, squa	are planar		
	(C) $[MnBr_4]^{2-}$, tetrah	edral	(D) [MnBr ₅] ^{3–} , trigo	onal bipyramidal		
Q.151	A complex of certain r metal with same oxida	netal has the magnetic n ation state has zero mag	noment of 4.91 BM wh netic moment. The met	ereas another complex of the same al ion could be		
	(A) Co^{2+}	(B) Mn^{2+}	(C) Fe^{2+}	(D) Fe^{3+}		
Q.152	The complex having h	ighest∆value				
	(A) $[Ni(en)_3]^{2+}$	(B) $[Ni(CN)_4]^{2-}$	(C) [NiCl ₄] ^{2–}	(D) $[Ni(NH_3)_6]^{2+}$		
	-					

SUPER	PROBLEMS IN INORGAI	NIC CHEMISTRY		COORDINATION COMPOUND	
Q.153	The colour of light	absorbed by an aqueous	solution of CuSO ₄ is		
	(A) Red	(B) blue-green	(C) yellow	(D) violet	
Q.154	d-orbital configura	tion of complex $[FeF_6]^{3-1}$	-		
	(A) $t_{2g}^3 e_g^2$	(B) t_{2g}^5	(C) $t_{2g}^2 e_g^3$	(D) e_{g}^{5}	
Q.155	Q.155 An ion M ²⁺ , forms the complexes $[M(H_2O)_6]^{2+}$, $[M(en)_3]^{2+}$ and $[MBr_6]^{4-}$, match the compropriate colour				
	(A) Green, Blue an	nd Red	(B) Blue, Red and G	breen	
	(C) Green, Red and	d Blue	(D) Red, Blue and C	Green	
Q.156	Colourless complex	x is :			
	(A) $[\text{TiF}_6]^{2-}$	(B) $[CoF_6]^{3-}$	(C) [NiCl ₄] ^{2–}	(D) $[Fe(CO)_5]$	
Q.157 Q.158	The correct order f (A) $[Ni(NO_2)_6]^{4-}$ (B) $[Ni(NO_2)_6]^{4-}$ (C) $[Ni(H_2O)_6]^{2+}$ (D) $[Ni(NH_3)_6]^{2+}$ Which of the follow (A) $[Cr(en)_3]^{3+}$	For the wavelength of ab $< [Ni(NH_3)_6]^{2+} < [Ni]^{2+} < [Ni]^{2+}$ wing coordination entities $(B) [CrCl_6]^{3-}$	sorption in the visible reg $i(H_2O)_6]^{2+}$ $i(NH_3)_6]^{2+}$ $i(NO_2)_6]^{4-}$ $i(NO_2)_6]^{4-}$ es should be expected to a $(C) [Cr(NH_3)_6]^{3+}$	gion is absorb light of lowest frequency ? (D) [Cr(CN) ₆] ^{3–}	
Q.159	 69 Correct increasing order for the wavelength of absorption in the visible region for the complexes of Co³⁺ is: (A) [Co(en)₃]³⁺, [Co(NH₃)₆]³⁺, [Co(H₂O)₆]³⁺ (B) [Co(H₂O)₆]³⁺, [Co(en)₃]³⁺, [Co(NH₃)₆]³⁺ (C) [Co(H₂O)₆]³⁺, [Co(NH₃)₆]³⁺, [Co(en)₃]³⁺ (D) [Co(NH₃)₆]³⁺, [Co(en)₃]³⁺, [Co(H₂O)₆]³⁺ 				
Q.160	Statement-1: Com Statement-2: In [7 (A) Statement-1 is (B) Statement-1 is Statement-1 (C) Statement-1 is	Typlex compound [Ni(en) Ni(en) ₃]Cl ₂ , geometry at true, Statement-2 is true s true, Statement-2 is tr true, Statement-2 is fals	₃]Cl ₂ has lower stability t round Ni ²⁺ is octahedral. and Statement-2 is corre rue and Statement-2 is N	than [Ni(NH ₃) ₆]Cl ₂ ect explanation for Statement-1 NOT the correct explanation for	
	(D) Statement-1 is	false, Statement-2 is tru	e		

SUPER	PROBLEMS	IN	INORGANIC	CHEMISTRY

COORDINATION COMPOUND

- Q.161 **Statement-1**: Δ_0 increases in the order of $[Cr(Cl_6)]^{3-} < [Cr(CN)_6]^{3-} < [Cr(C_2O_4)_3]^{3-}$ **Statement-2**: Stronger the ligand field, higher will be Δ_0 value.
 - (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
 - (B) Statement-1 is true, Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1
 - (C) Statement-1 is true, Statement-2 is false
 - (D) Statement-1 is false, Statement-2 is true

Q.162 **Statement–1**: Potassium ferrocyanide is diamagnetic where as potassium ferricyanide is paramagnetic. **Statement–2**: Crystal field splitting in ferrocyanide ion is lesser than that of ferricyanide ion.

- (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
- (B) Statement-1 is true, Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true
- Q.163 **Statement–1**: In octahedral geometry of ligands d-orbitals of a metal cation split into two sets of orbitals t_{2g} and eg.

Statement-2: Splitting of d-orbitals occurs only in the case of strong field ligands.

- (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
- (B) Statement-1 is true, Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true
- Q.164 **Statement-1**: $[Ti(H_2O_6]^{3+}$ is coloured while $[Sc(H_2O_6)^{3+}]^{3+}$ is colourless
 - **Statement–2 :** d-d transition is not possible in $[Sc(H_2O)^{3+}]$ due to having no d-electron, while possible for Ti³⁺ having d¹ configuration.
 - (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
 - (B) Statement-1 is true, Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1
 - (C) Statement-1 is true, Statement-2 is false
 - (D) Statement-1 is false, Statement-2 is true

Structural Isomerism

 $Q.165 \ \ In \ coordination \ compounds, the \ hydrate \ isomers \ differ-$

(A) In the number of water molecules of hydration only

(B) In the number of water molecules only present as ligands

(C) Both (A) and (B)

(D) In their coordination number of the metal atom

Q.166 Which of the following is pair of ionization isomers ? (A) $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]Br$ (B) $[Cr(H_2O)_5Cl]Cl_2.H_2O$ and $[Cr(H_2O)_4.Cl_2]Cl.2H_2O$ (C) $[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$

(D) cis-[Pt(NH₃)₂Cl₂] and trans-[Pt(NH₃)₂Cl₂]

Q.167 Which would exhibit co-ordination isomerism-

$(A) [Cr(NH_3)_6] [Co(CN)_6]$	(B) $[\operatorname{Co}(\operatorname{en})_2 \operatorname{Cl}_2]^+$
(C) $[Cr(NH_3)_6]Cl_3$	(D) $[Cr(en)_2Cl_2]^+$

Q.168 $[Pd(C_6H_5)_2(SCN)_2]$ and $[Pd(C_6H_5)_2(NCS)_2]$ are:(A) Linkage isomers(B) Co-ordination isomers(C) Ionisation isomers(D) Geometrical isomers

Q.169 Which will exhibit co-ordination isomerism (A) $[Cr(NH_3)_6] [Co(CN)_6]$

(B) $[Co(en)_2 Cl_2]Br$

Q.170 Coordination isomerism is caused by the interchange of ligands between the

- (A) Cis and Trans configuration
- (B) Complex cation and complex anion in a complex salt
- (C) Co-ordination sphere and simple counter ion
- (D) Low oxidation and higher oxidation state of metal cation

SUPER F	PROBLEMS IN INORGANIC C	HEMISTRY		COORDINATION COMPOUND	
Q.171	The pair of complex c	ompounds [Cr(H ₂ O) ₆]C	Cl_3 and $[Cr(H_2O)_5Cl]Cl_3$	$_2 \cdot H_2 O$ are	
	(A) Linkage isomers		(B) Ionisation isomers		
	(C) Coordination isome	ers	(D) Hydrate isomers		
Q.172	The ionization isomer of	of [Cr(H ₂ O) ₄ Cl(NO ₂)]C	lis		
	$(A) \left[Cr(H_2O)_4 (NO_2) \right]$	Cl ₂	$(B) [Cr(H_2O)_4Cl_2]NO$	2	
	$(C) [Cr(H_2O)_4 Cl(ON)]$	0)]Cl	(D) $[Cr(H_2O)_3Cl_2(NO_2)]H_2O$		
Q.173	The total number of po	ssible structural isomers	s for the complex compo	bund $[Cu(NH_3)_4]$ [PtCl ₄] are	
	(A) 3	(B) 4	(C) 5	(D) 6	
Q.174	Type of isomerism exh	ibited by [Cr(NCS)(NH	$_{3})_{5}][ZnCl_{4}]$		
	(A) Coordination isomerism		(B) Linkage isomerism		
	(C) Ionization isomerism	n	(D) Both coordination a	and linkage isomerism	
Q.175	Type of isomerism exh	ibited by [Ir(OCN) ₃ (H ₂)	O) ₃]		
	(A) Hydrate isomerism		(B) Linkage isomerism		
	(C) Polymerization ison	nerism	(D) Both (B) and (C)		
Q.176	76 Other than the X-ray diffractions, how could be the following pairs of isomers be distinguished from or another by				
	$[Cr(NH_3)_6]$ $[Cr(NO_2)_6]$	$_{5}$] and [Cr(NO ₂) ₂ (NH ₃) ₄] [Cr(NO ₂) ₄ (NH ₃) ₂]		
	(A) electrolysis of an ac	jueous solution	(B) measurement of mo	olar conductance	
	(C) measuring magneti	c moments	(D) measurement of op	tical activity	
Q.177	How the isomerism distinguished from one	complexes $[Co(NH_3)]$ another by	₆][Cr(NO ₂) ₆] and [Cr	$(NH_3)_6] [Co(NO_2)_6]$ can be	
	(A) measurement of mo	olar conductance	(B) measurement magnetic moments		
	(C) electrolysis of their	aqueous solutions	(D) measurement of op	tical activity	
Q.178	Which of the following	cannot show linkage iso	merism?		
	(A) SO ₃ ²⁻	(B) SCN ⁻	(C) $S_2 O_3^{2-}$	(D) SO ₄ ²⁻	
Q.179	The complexes [Co(N isomerism	$[Cr(C_2O_4)_3]$ and	$[Cr(NH_3)_6] [Co(C_2O_3)]$	$_{4})_{3}$] will have which type of	
	(A) Linkage isomerism		(B) Geometrical isomer	rism	
	(C) Coordination isome	erism	(D) Ionisation isomerism	n	

SUPER	PROBLEMS IN INORGANIC CHEMISTRY	COORDINATION COMPOUND
Q.180	Which of the following will give maxi	imum number of structural isomers?
	(A) $[Co(NH_3)_4Cl_2]$	(B) $[Ni (en)(NH_3)_4]^{2+}$
	(C) $[Ni(C_2O_4)(en)_2]^{2-1}$	(D) $[Cr(SCN)_2(NH_3)_4]^+$
Q.181	The complexes $[Co(NH_3)_6]$ $[Cr(CN_3)_6]$ isomerism?) ₆] and $[Cr(NH_3)_6]$ [Co(CN) ₆] are the examples of which type of
	(A) Linkage isomerism	(B) Ionization isomerism
	(C) Coordination isomerism	(D) Geometrical isomerism
Q.182	Complexes $[Co(SO_4)(NH_3)_5]Br$ and	d [CoBr(NH ₃) ₅]SO ₄ can be distinguished by
	(A) conductance measurement	(B) using $BaCl_2$
	(C) using AgNO ₃	(D) all
Q.183	 Statement-1: The complex [Cr(SC Statement-2: SCN⁻ is an ambident (A) Statement-1 is true, Statement-2 (B) Statement-1 is true, Statement-5 Statement-1 (C) Statement-1 is true, Statement-2 (D) Statement-1 is false, Statement-2 	N)(NH ₃) ₅]Cl ₂ is linkage isomer of [Cr(NCS)(NH ₃) ₅)]Cl ₂ . ligand. is true and Statement-2 is correct explanation for Statement-1 2 is true and Statement-2 is NOT the correct explanation for is false 2 is true
Q.184	 Statement-1: Coordination isomeries Statement-2: Co-ordination isomeries (A) Statement-1 is true, Statement-2 (B) Statement-1 is true, Statement-5 Statement-1 (C) Statement-1 is true, Statement-2 (D) Statement-1 is false, Statement-2 	sm can occur when both cation and anion are complex ions. s may exhibit geometrical isomerism. is true and Statement-2 is correct explanation for Statement-1 2 is true and Statement-2 is NOT the correct explanation for is false 2 is true

SUPER I	PER PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOU					
Q.190	Theoritically the No	o. of geometrical isor	ners expected for oct	ahedral complex [Mabcdef]		
	is-					
	(A) Zero	(B) 30	(C) 15	(D) 9		
Q.191	$[\mathrm{Co(NH_3)_4(NO_2)_2}]\mathrm{Cl}$	exhibits				
	(A) Linkage isomerism	n, ionisation isomerism a	nd optical isomerism			
	(B) Linkage isomerism	n, geometrical isomerism	and optical isomerism			
	(C) Linkage isomerism	n, ionisation isomerism ar	nd geometrical isomerism	n		
	(D) Ionisation isomerism, geometrical isomerism and optical isomerism					
Q.192	On treatment of [Ni(N	$[H_3)_4]^{2+}$ with concentrated	d HCl, two compounds I	and ${f II}$ having the same formula,		
	$[NiCl_2(NH_3)_2]$ are obtained, I can be converted into II by boiling with dilute HCl. A solution of I reacts					
	with oxalic acid to form $[Ni(C_2O_4)(NH_3)_2]$ wheras II does not react. Point out the correct statement of					
	the following					
	(A) I cis II trans; both	tetrahedral	(B) I cis II trans; both	square planar		
	(C) I trans, II cis; both	n tetrahedral	(D) I trans, II cis; both	n square planar		
Q.193	The difference in color	ur is not due to				
	(A) Linkage isomerism	1	(B) Geometrical isome	rism		
	(C) Optical isomerism		(D) Hydrate isomerism	1		
Q.194	The number of possibl	le isomers of square plar	nar complex [M(abcd)] a	are :		
	(A) 4	(B) 3	(C) 0	(D) 1		
Q.195	$[Co(NH_3)_4Cl_3]^+$ exhib	its				
	(A) Geometrical isome	erism	(B) Optical isomerism			
	(C) Ionisation isomeris	sm	(D) No isomerism			
O 196	Which one of the follow	wing will not show geom	etrical isomerism			
Q.170	(A) [Cr(NH) Cl] Cl	wing win not show geom	(B)[Co(en)]C[]C[]			
	$(\Gamma) [Co(NH_3)_4 Cl_2] Cl_3$	1C1	(D) $[Pt(NH), C]$			
	$(2) [20(111_3)_5(110_2)]$	1°-12				
Q.197	Total number of optica	ll isomers in $[Co(en)_2 Cl_2]$	$_{2}]^{+}$ is			
	(A) 2	(B) 3	(C) 4	(D) 6		

SUPER F	ER PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOUN					
Q.198	Which of the following	g complex will show ge	cometrical as well as optica	al isomerism		
	$(A) [Pt(NH_3)_2Cl_2]$		$(B) [Pt(NH_3)_2Cl_4]$			
	(C) $[Pt(en)_3]^{4+}$		(D) $[Pt(en)_2Cl_2]^{2+}$			
Q.199	Which of the following	g coordination compou	nds would exhibit optical a	activity		
	(A) trans-dicyanobis (e	ethylenediamine) chror	nium (III) chloride			
	(B) tris-(ethylenediam	ine) cobalt (III) bromic	le			
	(C) pentaamminenitro	cobalt (III) chloride				
	(D) diamminedichlorop	platinum (II)				
Q.200	Which of the following	g does not have optical	isomer			
	(A) $[Co(NH_3)_3Cl_3]$	(B) $[Co(en)_3]Cl_3$	$(C) [Co(en)_2 Cl_2] Cl$	(D) $[Co(en) (NH_3)_2 Cl_2]Cl$		
Q.201	Which of the following	g has only one pair of e	nantiomers			
	(A) $[CoBr(SCN)_2(H_2)]$	(O) ₃]	$(B) [Cr(NH_3)_6] [Co(O)]$	$(2N)_6$]		
	(C) $[CrCl_2(NH_3)_2(H_2)]$	O) ₂] ⁺	(D) $[IrBr_2(CN)(NO_2)(H_2O)(py)]^-$			
Q.202	The number of possib	le isomers of an octahe	edral complex [Co(C ₂ O ₄)) ₂ (NH ₃) ₂] [−] is		
	(A) 1	(B) 2	(C) 3	(D) 4		
Q.203	Which of the following	g complex does not sho	w geometrical isomerism			
	(A) $[IrCl_2(NH_3)_4]^+$	(B) $[Fe(NH_3)_2(CN)]$	$_{4}]^{-}$ (C) [Cr(Ox) ₃] ³⁻	(D) $[Co(NH_3)_3(NO_2)_3]$		
Q.204	For the given complex	$[\text{CoCl}_2(\text{en})(\text{NH}_3)_2]^+, t$	he number of geometrical	isomers, the number of optically		
	active isomers and tota	al number of stereoisor	ners are			
	(A) 3, 2 and 4	(B) 2, 2 and 4	(C) 3, 1 and 4	(D) 3, 2 and 3		
Q.205	The existence of two c	lifferent coloured com	plexes with the compositi	ion of $[Co(NH_3)_4Cl_2]^-$ is due to		
	(A) Ionization isomeris	Sm	(B) Linkage isomerism	1		
	(C) Geometrical isome	erism	(D) Coordination ison	nerism		
Q.206	Which one of the follo	wing complexes is not	expected to exhibit isome	rism		
	(A) $[Ni(NH_3)_4(H_2O)]$	$2^{2^{+}}$	$(B) [Pt(NH_3)_2Cl_2]$			
	(C) $[Ni(en)Cl_2]$		(D) $[Ni(en)_3]^{2+}$			
Q.207	The number of geome	trical isomers of the co	omplex [Co(NO ₂) ₃ (NH ₃)	₃] is		
	(A) 2	(B) 4	(C) 3	(D) 0		

SUPER	PROBLEMS IN INORGANIC	CHEMISTRY		COORDINATION COMPOUND
Q.208	Which of the followin	g statements is incorre	ect?	
	(A) Geometrical isom	erism is not exhibited	by complexes having tetr	ahedral geometry
	(B) Square planar com	plexes may show opt	tical isomerism with ligan	ds having chiral centre
	(C) Octahedral compl isomerism	exes having two che	lating ligands in perpendi	cular plane always exhibit optical
	(D) Complex [Pt(Gly)	$[0_2]$ does not show geo	metrical isomerism	
Q.209	Which of the followin	g complexes will show	w geometrical as well as o	ptical isomerism?
	$(A) [Zn(bcac)_2]$	(B) $[Pt(gly)_3]^+$	(C) $[CrBr_4(en)]^-$	$(D) [Ir(acac)_3]$
Q.210	A square planar compl	lex can exhibit optical	isomerism with ligand:	
	(A) gly	(B) bcac	(C) bn	(D) dmg
0.211	Which one of the follo	wing is expected to e	xhihit ontical isomerism?	(en – ethylenediamine)
Q.211	(A) $cis_{Pt}(NH) Cl^{-1}$	l	(B) trans_[Co(en) (1]+
	$(A) \operatorname{CIS}_{[1]}((NH_3)_2 \operatorname{CI}_2]$		(D) $\operatorname{cis}_{(\operatorname{Co}(\operatorname{en}))} C$]+
	(c) trans $[1 ((1 (1_3)_2 C_2)]$ (D) cis $[CO(Ci)_2 C_2]$			
Q.212	Which of the followin	g will give a pair of er	nantiomers?	
-	(A) $[Pt(NH_2)_{4}][PtCl_{6}]$		(B) $[Co(NH_2)_4Cl_2]$	NO
	$(C) [Cr(NH_2)_2][Co(CN)_2]$		(D) $[Co(en)_2Cl_2]Cl_3$	2
	5,022	. 02		
Q.213	The complex, [Pt(Py)	(NH ₃)BrCl] will have	how many geometrical is	somers?
	(A) 3	(B) 4	(C) 0	(D) 2
Q.214	Statement-1: The ge	ometrical isomer of	the complex $[M(NH_3)_4C]$	$[l_2]$ are optically inactive.
	Statement-2: Both g	eometrical isomers o	of the complex $[M(NH_3)_4]$	$[Cl_2]$ possess axis of symmetry.
	(A) Statement-1 is tru	e, Statement-2 is true	e and Statement-2 is corre	ect explanation for Statement-1
	(B) Statement-1 is tr	ue, Statement 2 is the	rue and Statement-2 is N	NOT the correct explanation for
	(C) Statement 1 is tru	e Statement 7 is fals	0	
	(D) Statement-1 is fal	se Statement-2 is true		
		se, Statement-2 is u u		
Q.215	Statement-1: Compl	exes of type $[MA_6]^{n\pm}$	and $[MA_5B]^{n\pm}$ do not she	ow geometrical isomerism.
	Statement-2: Geome	trical isomerism is no	ot exhibited by complexes	of coordination number 6.
	(A) Statement-1 is tru	e, Statement-2 is true	e and Statement-2 is corre	ect explanation for Statement-1
	(B) Statement-1 is tr	ue, Statement·2 is the	rue and Statement-2 is N	NOT the correct explanation for
	Statement-1			
	(C) Statement-1 is tru	e, Statement-2 is fals	e	
	(D) Statement-1 is fal	se, Statement-2 is tru	e	

Q.216 **Statement-1**: Cis-isomer of $[Co(en)_2Cl_2]^+$ shows optical activity.

Statement-2: Cis-isomer of $[Co(en)_2Cl_2]^+$ is a symmetric molecule.

(A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1

- (B) Statement-1 is true, Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true
- Q.217 Statement-1: Complex compounds containing three symmetrical bidentate ligands exhibit optical activity.Statement-2: Such octahedral complex have plane of symmetry.
 - (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
 - (B) Statement-1 is true, Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1
 - (C) Statement-1 is true, Statement-2 is false
 - (D) Statement-1 is false, Statement-2 is true

Synergic bonding

- Q.218In which compound synergic bonding is present(A) $[Ni(CO)_4]$ (B) $[Ni(NH_3)_4]^{2+}$ (C) $[Zn(OH)_4]^{2-}$ (D) $[FeF_6]^{3-}$
- Q.219 Which of the following is not true for metal carbonyls ?
 - (A) The oxidation state of central metal in the carbonyls can be zero, negative or low positive
 - (B) $d\pi$ -p π back bonding from M \rightarrow CO is present
 - (C) $d\pi \pi^*MO$ back bonding is present from $M \rightarrow CO$
 - (D) bond order of CO decreases during $M \xrightarrow{\pi} CO$

Q.220 Which of the following is π -acid ligand (A) NH₃ (B) CO

Q.221 In the isoelectronic series of metal carbonyl, the CO bond strength is expected to increase in the order. (A) $[Mn(CO)_6]^+ < [Cr(CO)_6] < [V(CO)_6]^-$ (B) $[V(CO)_6]^- < [Cr(CO)_6]^+ < [Mn(CO)_6]^+$ (C) $[V(CO)_6]^- < [Mn(CO)_6]^+ < [Cr(CO)_6]$ (D) $[Cr(CO)_6] < [Mn(CO)_6]^+ < [V(CO)_6]^-$

(C) F⁻

(D) Ethylene diamine

SUPER F	PROBLEMS IN INORGANIC	COORDINATION COMPOUND		
Q.222	In which complex, CO	Bond order is minimum		
	(A) $Cr(CO)_6$	(B) [Ni(CO) ₄]	(C) $[Fe(CO)_4]^{2-}$	(D) $[Co(CO)_4]^-$
0.223	The metal which does	not form polynuclear car	bonvl is	
	(A) Mn	(B) Co	(C) Zn	(D) Fe
0.004				
Q.224	Which of the following	g has longest C–O bond	length ? (Free C–O bon	d length in CO is 1.128A)
	$(A) [Mn(CO)_6]^+$	(B) Ni(CO) ₄	(C) $[Co(CO)_4]^{\ominus}$	(D) $[Fe(CO)_4]^{2-}$
0.225	Assertion : CO an	d CN^- are referred as τ	t acid acid ligands.	
L.	Reason : In CO	and CN^- vacant π^* typ	pe orbitals are present.	
	(A) If both Assertion a	and Reason are True and	the Reason is a correc	t explanation of the Assertion.
	(B) If both Assertion a	nd Reason are True but I	Reason is not a correct e	xplanation of the Assertion.
	(C) If Assertion is True	e but the Reason is False		L
	(D) If both Assertion a	nd Reason are False.		
	(_)			
		Organometall	ic compounds	
Q.226	Which amongst the fol	llowing are organometall	lic compounds ?	
	$1. Al_2(CH_3)_6$	2. K[PtCl ₃ C ₂ H ₂]	3. $N(CH_3)_3$	
	(A) 1 only	(B) 3 only	(C) 1 and 2 only	(D) 1, 2 and 3
Q.227	CH ₃ MgI is an organor	netallic compound due to	o presence of	
-	(A) $Mg - I$ bond	(B) C – I bond	(C) C – Mg bond	(D) $C - H$ bond
0 228	Which of the following	y is not considered as an o	organometallic compour	ad
Q.220	(A) Cis-platin	(B) Ferrocene	(C) Zeise's salt	(D) Grignard reagent
			(C) 20150 5 Suit	(D) Singhard reagoni
Q.229	Which one is organome	etallic compound		
	(A) Lithium methoxide		(B) tetracyanidonicklat	te (II) ion
	(C) Lithium acetate		(D) Methyl lithium	
Q.230	Formula of ferrocene is	5:		
-	(A) $[Fe(CN)_{\epsilon}]^{4-}$	(B) $[Fe(CN)_{\epsilon}]^{3+}$	$(C) [Fe(CO)_{5}]$	(D) $[Fe(C_5H_5)_2]$
				J J Z-

SUPER	PROBLEMS IN INORGA	NIC CHEMISTRY		COORDINATION COMPOUND
Q.231	Ferrocene is an ex	ample of		
	(A) Sandwich con	nplex		
	(B) π -bonded con	nplex		
	(C) A complex in	which all the five carbon	atoms of cyclopentadier	nyl anion are in contact to the metal
	(D) All of the above	ve		
Q.232	Which of the follo	owing is π -complex?		
	(A) Trimethyl alun	ninium	(B) Ferrocene	
	(C) Diethyl zinc		(D) Nickel carbor	nyl
Q.233	Among the follow	ving which is not the π -boi	nded organometallic con	npound?
	(A) K[PtCl ₃ (η^2 –	$C_{2}H_{4})]$	(B) $Fe(\eta^5 - C_5H_5)$	2
	(C) $Cr(\eta^6 - C_6 H_6)$	$)_2$	$(D) (CH_3)_4 Sn$	
		<u>A</u>	oplications	
Q.234	Which metal is found in vitamin B_{12} ?			
	(A) Co	(B) Pt	(C) Fe	(D) Mg
Q.235	Wilkionson's cata	lyst is used as a homogen	eous catalyst in the hydr	ogenation of alkenes it contains
	(A) Iron	(B)Aluminium	(C) Rhodium	(D) Titanium
Q.236	Solution of TiCl ₄ a	nd trialkylaluminium use	d as a catalyst in polyme	risation of olefins is called :
	(A) Wilkinson's ca	ntalyst	(B) Zeigler Natta c	catalyst
	(C) Homogeneous	s catalyst	(D) Grignard reage	ent
Q.237	Ligands used in ar	nti-cancer drug called Cis	platin :	
	(A) NH_3 , Cl^-	$(B) \operatorname{NH}_3, \operatorname{H}_2 O$	(C) Cl ⁻ , H ₂ O	(D) NO_2^- , Cl ⁻
Q.238	Which reagent is u	used to estimate Ni ⁺⁺ ions	gravimetrically:	
	(A) ethylene diami	ine	(B) Dimethyl glyox	kime [DMG] in basic medium
	(C) NH_3 solution		(D) Potassium ferr	ocyanide

SUPER F	ER PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOUND						
Q.239	The disodium salt of et	hylene diamine tetraceti	c acid can be used to esti	mate the following ion(s) in the			
	aqueous solution						
	(A) Mg^{2+} ion	(B) Ca^{2+} ion	(C) Na ⁺ ion	(D) both Mg^{2+} and Ca^{2+}			
Q.240	Q.240 Ethylenediaminetetraacetic acid (EDTA) is the antidote for lead poisoning. It is administ of						
	(A) free acid		(B) sodium dihydrogen	salt			
	(C) calcium dihydrogen	n salt	(D) none of these				
Q.241	Which of the following	has magnesium ?					
	(A) Chlorophyll		(B) Haemocyanin				
	(C) Carbonic anhydras	5e	(D) Vitamin B ₁₂				
Q.242	 2 In the silver palting of copper, K[Ag(CN)₂] is used instead of AgNO₃. The reason is : (A) a thin layer of Ag is formed on copper. (B) more voltage is required. (C) Ag⁺ ions are completely removed from the solution. (D) less availability of Ag⁺ ions as Cu cannot displace Ag from [Ag(CN)₂]⁻ ion. 						
Q.243	Among the following	complexes the one which	h shows Zero crystal fiel	d stabilizations energy (CFSE)			
	(A) $[Mn(H_2O)_6]^{3+}$	(B) $[Fe(H_2O)_6]^{3+}$	(C) $[Co(H_2O)_6]^{2+}$	(D) $[Co(H_2O)_6]^{3+}$			
Q.244	The correct increasing	order of trans-effect of t	he following species is				
	(A) $CN^{-} > Br^{-} > C_{6}^{-}$	$H_5^- > NH_3$	(B) $NH_3 > CN^- > Br$	$- > C_6 H_5^-$			
	(C) $CN^- > C_6H_5^- > H_5^-$	$Br^- > NH_3$	(D) $Br^- > CN^- > NH$	$V_3 > C_6 H_5^{-1}$			
Q.245	Jahn-Teller effect is no	t observed in high spin c	omplexes of				
	(A) d^9	(B) d ⁷	(C) d ⁸	(D) d ⁴			
Q.246	Dimethyl glyoxime for	ms a coloured water inso	luble complex with				
	(A) Fe^{2+}	(B) Ni ⁺⁺	(C) Co ³⁺	(D) None of these			
Q.247	Which of the following	g cation forms complex of	of coordination number t	wo with excess of CN ⁻			
	(A) Cu^{2+}	(B)Ag ⁺	(C) Ni^{2+}	(D) Fe^{2+}			

SUPER F	PROBLEMS IN INORGANIC		COORDINATION COMPOUND	
Q.248	On addition of excess	solution disappears it is due to		
	formation of:			
	(A) $[Cu(CN)_4]^{2-}$	(B) $[Cu(CN)_4]^{3-}$	(C) Cu(CN) ₂	(D) CuCN
Q.249	Oxidation number of F (A) 0	Te in violet coloured con (B) 2	nplex Na ₄ [Fe(CN) ₅ (NOS (C) 3	S)] sodium nitrosoprusside is: (D) 4
Q.250	Which has yellow colour(A) Potassium hexanitrito-Ocobaltate(III)(C) Fischer's salt		(B) Potassium hexanita (D) All the above	ito-Ncobaltate(II)

SUPER	PROBLEMS IN INORGANIC	CHEMISTRY		COORDINATION COMPOUND				
		EXE	RCISE-2					
	[MULTIPLE CORRECT CHOICE TYPE]							
Q.1	Which of the followin (A) $[Cu(NH)]^{2+}$	(\mathbf{B}) [Ni(CO) 1	hedral shape? (C) [NiCl 1^{2-}	(D) $[7n(NH)]^{2+}$				
	$(\mathbf{A}) [Cu(\mathbf{I}\mathbf{I}\mathbf{I}_3)_4]$	$(\mathbf{D})[\mathbf{W}(\mathbf{CO})_4]$	(c) $[\operatorname{IVICI}_4]$	$(D) \left[\Sigma \Pi (\Pi_3)_4 \right]$				
Q.2	Which of the following	ng is/are inner orbital co	mplex(es) as well as diar	nagnetic in nature.				
	(A) $[Ir(H_2O)_6]^{3+}$	(B) $[Ni(NH_3)_6]^{2+}$	(C) $[Cr(NH_3)_6]^{3+}$	(D) $[Co(NH_3)_6]^{3+}$				
Q.3	Which of the followi	ng is/are correct about [$[Cu(NH_3)_4]SO_4$					
	(A) It is a square plar	har complex.						
	(B) It is paramagnetic	e with one unpaired elec	tron in the d-subshell					
	(C) It gives white ppt	with BaCl ₂						
	(D) Its molar conduct	tivity is approximately	equal to that of [CrBr(N]	$H_{3})_{5}$]SO ₄				
Q.4	Which of the followi	ng statement(s) is (are) o	correct?					
	(A) The oxidation sta	ate of iron in sodium nit	ro prusside Na ₂ [Fe(CN)	$_{5}(NO)$] is +2.				
	(B) $[Ag(NH_3)_2]^+$ is lim	near in shape.						
	(C) In $[Fe(H_2O)_6]^{+3}$,	Fe is d ² sp ³ hybridized						
	(D) In $Ni(CO)_4$, the c	oxidiation state of Ni is	zero.					
0.5	INCORRECT order	r of stability of complex	compound is:					
	$(A) [Fe(dmg)_{2}] > [Fe(dmg)_{2}]$	$e(en)_{2}^{2+}$	1					
	(B) $[Co(en)_3]^{3+} > [Co(en)_3]^{3+}$	$co(ox)_{3}]^{3-} > [Co(NH_{3})_{3-}]^{3-}$	₅] ³⁺					
	(C) $[Co(ox)_3]^{3-} > [Co(ox)_3]^{3-}$	co(acac) ₃]						
	(D) $[IrF_6]^{3-} > [RhF_6]^{3-}$	$]^{3-} > [CoF_6]^{3-}$						
0.6	CESE value of [Ee/H	$I \cap I(N \cap) I \subseteq O$	wn Ping Compley) is					
Q.0	(A) $-0.8 \Lambda_{\circ}$	$(B) - 0.4 \Lambda_{\circ}$	(C) $-1.8 \Lambda_{\circ}$	(D) $-2.4 \Lambda_{\rm c}$				
	((_) 00	(0) 110 -0	(-)0				
Q.7	INCORRECT order	of stability of complexe	es					
	$(A) [Cu(trien)]^{++} [Cu$	$(en)_2]^{++}$	(B) $[Ni(ox) (NH_3)_2]$	$ >[Ni(acac) (NH_3)_2]^+$				
	(C) $[Ni(H_2O)_6]^{++} > [$	[NiF ₆] ⁴⁻	(D) $[CoF_3(H_2O)_3] >$	> [CoF ₆] ³⁻				
0.8	The value of crystal	field energy (Δ_0) for [T	$((H_2O)_2)^{3+}$ is 243 kJ mol	l ⁻¹ . The crystal field stabilization				
	energy (CFSE) in this	s complex is: (in kJ m o	l ⁻¹)					
	3	2	2 2 212					
	(A) $\frac{-}{5} \times 243$	(B) $\frac{-}{5} \times 243$	(C) $3 \times - \times 243$	(D) 243				

chemstudios by pms

Page # 217

SUPER	SUPER PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOUND									
Q.9	Wave	elength c	of absorp	tion is n	ninimum in the	visible reg	gion for	the comp	plex ion.	
	(A) [Cr(H ₂ O) ₆] ³⁺	(B) [$[Cr(NH_3)_6]^{3+}$	(C) [Cr(NO ₂	$(2)_{6}]^{3-}$	(D) [Cr(ONO) ₆] ³⁻
Q.10	In wh	hich of th	ne follow	ving con	plex ion upair	ed electro	n is pres	sent in 4c	l orbital.	
	(A) [Cu(NO	$_{2})_{5}]^{3-}$	(B)[$Cu(NH_3)_4]^{2+}$	(C) [Co(H ₂ C	$(0)_6]^{2+}$	(D)[]	$\operatorname{Fe(CO)}_4]^{2-}$
Q.11	Whic	h of the	followi	ng stater	ment is incorre	ct for [Fe	(H ₂ O) ₅ ((NO)]S(D_4	
	(A) C	Dxidatio	n state o	f iron is	+1	(B) C	oordina	tion nun	nber of H	Fe is six
	(C) Charge on NO ligand is +1				(D) It	t's brow	n colour	is due to	d-d-transition	
Q.12	In wh	nich of th	ne follow	ving con	nplex ion, trans	sference o	of electro	on occur	s from 3	d to 4p orbital
	(A) [Cu(H ₂ C	0 ₄)] ²⁺	(B) [$Co(CN)_6]^{4-}$	(C) [Co(H ₂ C	$[0)_6]^{2+}$	(D) [$Cu(py)_4]^{2+}$
Q.13	Cons	ider the	followir	ig comp	lex ions and 'C-	-O' stretc	hing bar	nds/frequ	uencies.	
	Column-I			Column-II						
		(Con	nplex io	ns)		$\overline{\nu}_{CO}$	\overline{v}_{CO} (in cm ⁻¹)			
	(P)	[Ti(C	$(O)_6]^{2-}$			(i) 2204				
	(Q)	[V(C	² O) ₆] ⁻			(ii) 21	2100			
	(R)	[Mn($(CO)_{6}]^{+}$			(iii) 1	859			
	(S)	[Fe(C	$[CO)_6]^{2+}$			(iv) 1	748			
	Then	accordi	ng to the	given i	nformation the	correct m	correct match is :			
		(P)	(Q)	(R)	(S)		(P)	(Q)	(R)	(S)
	(A)	(i)	(ii)	(iii)	(iv)	(B)	(iii)	(iv)	(i)	(ii)
	(C)	(iv)	(iii)	(ii)	(i)	(D)	(i)	(iii)	(ii)	(iv)
Q.14	Whic	h of the	followir	ng are π-	bonded organo	ometallic	compou	nds?		
	(A) F	errocen	e			(B) [(B) $[Ni(\pi - C_5H_5)_2]$			
	(C) E	thylmag	nesium i	odide		(D) [C	Dibenzen	e chrom	ium	
Q.15	The I	R streto	ching fro	equenci	es of free CO	, and CO	in [V(C	CO) ₆] ⁻ ,	[Cr(CO]	$_{6}$] and [Mn(CO) ₆] ⁺ are
	2143	cm ⁻¹ , 1	1859 cm	$^{-1}$, 200	$0 \text{ cm}^{-1} \text{ and } 21$	00 cm^{-1}	respecti	vely. Tł	nen INC	CORRECT statement(s)
	about	t metal c	arbonyl	s is/are						
	(A) 'C	(A) 'C–O' bond is strongest in the cation and weakest in the anion.								
	(B) 'C	C–O" bo	nd order	r is less i	n the cation th	an in anio	m.			
	(C) 'C	C–O" bo	nd is lon	iger in th	ne cation than i	n anion o	r neutral	carbon	yl.	
	(D) 'N	M−C' bo	nd order	is high	er in the cation	than in ar	nionic or	rneutral	carbony	<i>d</i> .

SUPER PROBLEMS IN INORGANIC CHEMISTRY

COORDINATION COMPOUND

- Q.16 Which of the following properties is/are same in between $[Fe(CO)_2 (NO)_2]$ and $[Fe(\pi-C_5H_5)_2]$ complexes.
 - (A) Oxidation state of central metal atom/ion
 - (B) Effective atomic number
 - (C) All ligands exhibit synergic bonding
 - (D) Ligands show π -donor- π -acceptor behaviour in both complexes.

Q.17 Find IUPAC name of the hydrate isomer of $CrC1_3 \cdot 6H_2O$, which is having lowest electrical conductivity.

- (A) Hexaaquachromium(III) chloride
- (B) Tetra a quadichlorido chromium (III) chlorided i hydrate
- $(C) \ Penta a quachlorido chromium (III) \ chloride monohydrate$
- (D) Triaquatrichloridochromium (III) trihydrate
- Q.18 Choose the correct IUPAC name(s) of the given compound

- $(A) Bis (ethylenediamine) cobalt (III) di-\mu-hydroxidobis (ethylenediamine) cobalt (III) ion.$
- $(B) \, Di\-\mu-hydroxidotetrak is (ethylenediamine) dicobalt (III) \, ion.$
- $(C) Di-\mu-hydroxidobis \{ bis (ethylenediamine) cobalt (III) \} ion.$
- (D) $Bis\{\mu$ -hydroxidobis(ethylenediamine)cobalt(III) $\}$ ion.

Q.19 Which of the following names is/are correct for the compound $Na[CoCl_2(NO_2)(\sigma-C_3H_5)(NH_3)_2]$

(A) Sodium allyl diammined ichloron itrito-N-cobaltate (III)

 $(B) Sodium \, diammined ichloroally lnitrito-N-cobaltate\, (III)$

(C) Sodium diamminedichlorocyclopropylnitrito-N-cobaltate (III)

(D) Sodium diamminecyclopropylnitrito-N-dichlorocobaltate (III)

Q.20 Consider the following two statements

(i) Complex compound gives white ppt with $AgNO_3$ solution.

(ii) Complex compound exhibits geometrical isomerism.

Which complex compound is following both above given conditions.

(A) CoCl ₃ . 5NH ₃ .H ₂ O	(B) CoCl ₃ .3NH ₃
(C) $PtCl_4$. $5NH_3$	(D) PtCl ₄ .4NH ₃

SUPER	PROBLEMS IN INORGANIC CHEMISTR	Y COORDINATION COMPOUND
Q.21	Which of the following will pro	duce a white precipitate upon reacting with AgNO ₃ ?
	(A) $[Co(NH_3)_6]Cl_3$	(B) $[Co(NH_3)_3Cl_3]$
	(C) $K_2[Pt(en)Cl_4]$	(D) $[Fe(en)_3]Cl_3$

Q.22Co-ordination number of Cr in $CrC1_3.5H_2O$ is six. The volume of 0.1 N AgNO_3 needed to ppt. the
chlorine in outer sphere in 200 ml of 0.01 M solution of the complex is/are:
(A) 140 ml(B) 40 ml(C) 80 ml(D) 20 ml

SUPER	PROBLEMS IN INORG	COORDINATION COMPOUND					
Q.24	Which of the follo	owing statement is/are inco	rrect				
	$(A) [Pt(NO_3)_2(er)]$	$(n)_2]^{2+}$ complex ion can show	w linkage isomerism				
	(B) $[Cr(CO_3)(NH)]$	H_3 , H_3]Br can show ionization	n isomerism				
	(C) $FeCl_2.6H_2O$ can show hydrate isomerism						
	(D) $[FeCl_3(NH_3)_3]$ can exhibit structural isomerism						
Q.25 The complex compound which can exhibit both structural and optical isomerism				l isomerism			
	(A) $[IrBr_2(en)_2]E$	Br	(B) $[Co(NO_2)_3(H_2)]$	O) ₃]			
	$(C) [Cr(NO_2)(SO_2)(SO_2)(SO_2))]$	$(H_2O) (NH_3)_3]Br$	(D) $[Pt(acac)_3]Br$				
Q.26	Which type of iso	omerism(s) are exhibited by	y complex [CrCl ₂ (H ₂ O)	₂ (NH ₃) ₂]Br			
	(I) Ionization ison	nerism	(II) Hydrate isomeri	sm			
	(III) Geometrical	isomerism	(IV) Optical isomerism				
	(A) I and II	(B) II and IV	(C) I, III and IV	(D) I, II, III & IV			
Q.27	How many isome	ers exist for $[Co(NH_3)_4Cl_2]$	$]^+$ and $[Co(en)_2 Cl_2]^+$ cos	mplex ions, respectively			
	(A) 2 and 2	(B) 2 and 3	(C) 3 and 2	(D) 3 and 3			
Q.28	Possible isomeri	sm in complexes [Co(NH ₃	$(NO_2)_3$ and $[Co(NH_2)_3]$	(NO_2) Cl ₂ respectively are			
	(A) Linkage and	optical	(B) Geometrical and	llinkage			
	(C) Optical and id	onisation	(D) Linkage and geo	ometrical			
Q.29	Consider the follo	owing configuration arrang	gement between central 1	metal atom/ion and donor site(s) of			

Which of the following IUPAC name of complex ion is not satisfied with the given arrangement

- (A) Ethylenediaminetetraacetatonickelate(II)ion
- (B) Ethylenediaminebis(oxalato)chromate(III)ion
- $(C) \ Tetra a quaethy lene diamine cobalt (III) ion$

respective ligand:

(D) Trans-(glycinato)bisoxalatoferrate(III)ion

SUPER	PROBLEMS IN INORGANIC C	HEMISTRY		COORDINATION COMPOUND
Q.30	The complex ion having	g only two stereoisomer	rs, is	
	(A) $[CoBr_2(en)_2]^+$		(B) $[Pt(Br)(CN)(NO_2)(NH_3)]^-$	
	(C) $[Zn(en)_2]^{++}$		(D) $[Cr(ox)_3]^{3-}$	
	2		5	
Q.31	Which of the following	exhibit geometrical but	not exhibit optical isome	rism (M stands for a metal, and a
	and b are monodentate	ligands)?		
	(A) Ma_3b_2c	$(B) M (AA)_3$	$(C) Ma_4(AA)$	$(D) M(AB)_2(AA)$
Q.32	Both geometrical and o	ptical isomerism are sh	own by	
	$(A) [Co(en)_2 Cl_2]^+$	(B) $[Co(NH_3)_5Cl]^{2+}$	(C) $[Co(NH_3)_4Cl_2]^+$	(D) $[Cr(Ox)_3]^{3-}$
Q.33	Three arrangements are	e shown for the comple	x $[Co(en) (NH_3)_2 Cl_2]^+$.	Pick up the wrong statement
	Cl	Cl		Cl
	Cl	H ₃ N		NH ₃
	Co		en en	Co
	H ₃ N	H ₃ N		······································
	NH ₃	Ċl		Ċl
	(1)	(11)		(111)
	(A) I and II are geometric	rical isomers	(B) II and III are optic	al isomers
	(C) I and III are optical	isomers	(D) II and III are geon	netrical isomers
0.04		1/ \ 1 / \		
Q.34	Which of the following $(A) [D(A - A)]^{2+}$	compound(s) show(s) of	optical isomerism	
	(A) $[Pt(on)_2]^{2^+}$		(B) $[CrCl_2(en)_2]^{+}$	
	$(C) [Co(en)_3] [CoF_6]$		$(D) [Zn(gly)_2]$	
0.25	Which of the following	statements is not true al		$C(NO)(an)$ $\frac{1}{an}$ (an antibulance
Q.33	diamino)	statements is not u ue a	bout the complex for [Ci	$CI(INO_2)(eII)_2$ (eII – enuryiene
	(A) It has two geometri	cal isomers cis and tra	25	
	(R) cis and trans forms	are not diastereomers	to each other	
	(C) Only the cis isomer	displays optical activity		
	(D) It has three opticall	vactive isomers : d. La	y nd meso forms	
	(D) It has thee opticall	y active isoiners . U, <i>l</i> à	10 11050 1011115	
0 36	Which of the following	will have two stereoiso	meric forms?	
Q .50	(A) $[Cr(NO) (NH)]$		(B) K [Fe($C \cap $)]	
	(C) $[C_0C_1] (e_1)^{1+}$	I	(D) $[C_0 RrCl(\Omega x)]^{3-1}$	
	$(C) [COCI_2(CII)_2]$		$(D) [CODICI(OX)_2]$	

chemstudios by pms

SUPER	PROBLEMS IN INORGANIC	CHEMISTRY		COORDINATION	COMPOUND
Q.37	Which of the followin	g isomerisms is/	/are shown by the complex	[CoCl ₂ (OH) ₂ (NH ₃) ₂]Br?	,
	(A) Ionization	(B) Linkage	(C) Geometrical	(D) Optical	

Q.38 Consider the following representation for "Bromidochloridoethylenediamineglycinato cobaltate(III)" complex compound

Which of the following statement(s) is/are correct regarding given information

(A) If both halogen present in (1) and (3) position then compound should be optically active

(B) If both halogen present in (5) and (3) position then compound should be optically active

(C) If position (2), (6) and (5) occupy with 'N' atoms as donating site then it is a trans isomer.

(D) All possible geometrical isomers are optically active

Q.39
$$[(NH_3)_5Co-O-O-Co(NH_3)_5]^{+4} \xrightarrow{[S_2O_8]^{2-}}_{Oxidise} [(NH_3)_5Co-O-O-Co(NH_3)_5]^{+5}$$

The magnetic moment of green complex is 1.7 BM & for brown complexes magnetic moment is zero. (O-O) is same in all respect in both the complexes.

The O.S. of Co in brown complex and green complex respectively are -

(A)	III III &	IV III	(B)	III II &	III III
	brown	green		brown	green
(B)	III III &	III II	(D)	III IV &	III III
	brown	green		brown	green

Q.40 The complex $K_2[Zn(CN)_2(O_2)_2]$ is oxidised into $[Zn(CN)_2(O_2)_2]$, then which of the following is/are correct?

(A) Zn(II) is oxidised into Zn(IV)	(B

- (C) O O bond length increase
- (B) Magnetic moment decreases
- (D) Magnetic moment increases

SUPER PROBLEMS IN INORGANIC CHEMISTRY

COORDINATION COMPOUND

Q.41
$$K_6[(CN)_5CO-O_2-CO(CN)_5] \xrightarrow{Oxidizes} K_5[(CN)_5 CO-O_2-CO (CN)_5]$$

(X) (Y)
In both the complexes oxidation state of Co cation is same
The B.E. of (O-O) in X & Y is-

(A) B.E. of (O - O) in Y < B.E. of (O - O) in X (B) B.E. of (O - O) in X < B.E. of (O - O) in Y (C) B.E. of (O - O) in X = B.E. of (O - O) in Y (D) can't be compared

Q.42 What is oxidation state, magnetic moment and type of hybridisation of central metal cation in following complex. $[Os(ONO) (O)_2 (O_2) (SCN) (H_2O)]OH$

(A) + 7, $\sqrt{3}$ B.M., d ² sp ³ hybridisation	$(B) + 8, 0 B.M., sp^3d^2$ hybridisation
$(C) + 8, 0$ B.M., d^2sp^3 hybridisation	$(D) + 9, 0$ B.M., d^2sp^3 hybridisation

Q.43 Which of the following statement(s) is (are) correct?

(A) Hexacyanidoferrate (II) ion has four unpaired electrons in 3d-orbital

(B) tetracyanidonickelate (II) ion is square planar

(C) IUPAC name of $[Zn(OH)_4]^{-2}$ ion is tetrahydroxidozinc(II) ion

(D) The coordination number of Cr in $[Cr(NH_3)_2 (en)_2]^{+3}$ is 6

```
Q.44 Which of the following is/are paramagnetic
(A) [Ru(H_2O)_6]^{3+} (B) [Mn(CO)_5]^- (C) [Fe(NH_3)_6]^{2+} (D) Cr_2O_7^{2-}
```

Q.45 Correct statement is

(A) $[Co(Ox)_3]^{3-}$ is more stable than $[Co(H_2O)_6]^{3+}$

(B) In $[Co(NH_3)_6]^{2+}$ and $[Cu(NH_3)_4]^{2+}$ unpaired e^- lies in valence d and p orbital respectively

(C) Colour due to charge transfer spectra is found to be more intense than d-d transition

(D) $\delta\text{-bond}$ is found between metals in polynuclear metal carbonyl compounds

Q.46 Select incorrect statement(s) for $[Cu(CN)_4]^{3-}$, $[Cd(CN)_4]^{2-}$ and $[Cu(NH_3)_4]^{2+}$ complex ion. (A) Both $[Cd(CN)_4]^{2-}$ and $[Cu(NH_3)_4]^{2+}$ have square planar geometry (B) $[Cu(NH_3)_4]^{2+}$ and $[Cd(CN)_4]^{2-}$ have equal no. of unpaired electron (C) $[Cu(CN)_4]^{3-}$ and $[Cd(CN)_4]^{2-}$ can be separated from the mixture on passing H₂S gas (D) All the three complexes have magnetic moment equal to zero SUPER PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOUND **O**.47 Select the correct statement(s) (A) Co(III) is stabilised in presence of weak field ligands, while Co(II) is stabilised in presence of strong field ligand (B) Four coordinated complexes of Pd(II) and Pt(II) are diamagnetic and square planar (C) $[Ni(CN)_4]^{4-}$ ion and $[Ni(CO)_4]$ are diamagnetic tetrahedral complexes (D) Ni²⁺ ion does not form inner orbital octahedral complexes Both complex compound pentamminethiocyanatocobalt(III) bromide and pentaamminebromidocobalt(II) Q.48 thiocyanate represent (A) Linkage isomerism (B) Ionization isomerism (C) Coordination isomerism (D) NO isomerism Which of the following octahedral complex exhibits structural isomerism Q.49 (A) $[CrCl(gly)(en)(NH_3)]$ (B) $[Co(SO_4)(H_2O)_4]Br$ (C) $[Ir (O_2N)(ox)_2]^{2-1}$ (D) $[RhBrH_2O(en)_2]SO_4$ [PARAGRAPH TYPE] Paragraph for question nos. 50 to 52 Ni (NH₃)₄ (NO₃)₂.2H₂O molecule may have two unpaired electrons or zero unpaired electron and measurement of magnetic moment helps us to predict the geometry. Q.50 If magnetic moment value is zero then the formula of the complex will be (A) $[Ni(NH_3)_4](NO_3)_2 \cdot 2H_2O$ (B) $[Ni(NH_3)_2(H_2O)_2](NO_3)_2 \cdot 2NH_3$ (C) $[Ni (NH_3)_4 (H_2O)_2](NO_3)_2$ (D) $[Ni (NO_3)_2(H_2O)_2] \cdot 4NH_3$ If the magnetic moment value is $2\sqrt{2}$ and conducts electricity then the formula of the complex is Q.51 (A) [Ni (NH₃)₄] (NO₃)₂.2H₂O (B) [Ni (NH₃)₂(H₂O)₂] (NO₃)₂.2NH₃ (C) $[Ni (NH_3)_4 (H_2O)_2] (NO_3)_2$ (D) $[Ni (NH_3)_4 (NO_3)_2].2H_2O$ The higher and lower value of magnetic moment of the given complex corresponds to the following Q.52 geometries respectively. (A) Octahedron and Tetrahedron (B) Octahedron and square planar (C) Square planar and Octahedron (D) Octahedron and Octahedron chemstudios by pms Page # 226

SUPER PROBLEMS IN INORGANIC CHEMISTRY

Paragraph for question nos. 53 to 54

No single theory of bonding of complex compound is sufficient to describe the bonding, magnetic property, colour, etc of a given complex.

Q.53 The tetrahedral complex which is diamagnetic but coloured-
(A) $[NiCl_4]^{2-}$ (B) $[CrO_4]^{2-}$ (C) $[MnO_4]^{2-}$ (D) $[Cd(CN)_4]^{2-}$

Q.54 The incorrect statement about Ni(CO)₄ is-

(A) The bond order of CO in the complex is less than bond order of CO molecule

(B) The complex is diamagnetic and dsp² hybridised

(C) The bond order of Ni–C bond is greater than one

(D) The complex cannot act as oxidising or reducing agent according to sidgwick EAN rule

Paragraph for question nos. 55 to 57

When a transition metal ion (usually) is involved in octahedral complex formation, the five degenerate d-orbitals split into two set of degenerate orbitals (3 + 2). Three degenerate orbitals of lower energy (d_{xy}, d_{yz}, d_{zx}) and a set of degenerate orbitals of higher energy $(d_{x^2-y^2} \text{ and } d_{z^2})$. The orbitals with lower energy are called t_{2g} orbitals and those with higher energy are called e_g orbitals.

In octahederal complexes, positive metal ion may be considered to be present at the centre and negative ligand at the corner of a regular octahedron. As lobes $d_{x^2-y^2}$ and d_{z^2} lie along the axes, i.e., along the

ligand the repulsions are more and so high is the energy. The lobes of the remaining three d-orbitals lie between the axes i.e., between the ligands. The repulsion between them are less, so lesser the energy. In the octahedral complexes, if metal ion has electrons more than 3 then for pairing them, the options are (i) Pairing may start with 4th electron in t_{2g} orbitals.

(ii) Pairing may start normally with 6^{th} electrons when t_{2g} and e_g orbitals are singly filled.

Q.55 In which of the following configurations, hybridisation and magnetic moment of octahedral complexes are independent of nature of ligands.

(I) d^3 configuration of any metal cation

(II) d^6 configuration of IIIrd transition series metal cation

(III) d^8 configuration of Ist transition series metal cation

 $(IV) d^7$ configuration of any metal cation

Select the **correct** code :

 $(A) III, IV \qquad (B) I, III, IV \qquad (C) I, II, IV \qquad (D) I, II, III$

SUPER	PROBLEMS IN INORGANI	C CHEMISTRY		COORDINATION COMPOUND					
Q.56	Which of the follow	ing electronic arrangem	ent is/are possible for inr	ner orbital octahedral complex.					
	(I) $t_{2g}^3 e_g^2$	(II) $t_{2g}^6 e_g^1$	(III) $t_{2g}^3 e_g^0$	(IV) $t_{2g}^4 e_g^2$					
	Select the correct co	ode :							
	(A) I, IV	(B) II, III	(C) III only	(D) III, IV					
Q.57	Select incorrect mate	ch for the following con	nplexes.						
	(A) $[IrF_6]^{3-} (\Delta > P)$)	(B) $[Co(H_2O)_6]^{3+}$ ($\Delta < P$)					
	(C) $\operatorname{Fe}(\operatorname{CO})_5 (\Delta > \operatorname{Fe})$	2)	(D) $[PdCl_2(SCN)_2]$	$^{2-}(\Delta > P)$					
		Paragraph for	question nos. 58 to 60						
	The necessary and sufficient condition to exhibit optical activity, the configuration of the given complex								
	should be assymmet	ric							
Q.58	The complex that co	ontains two space isome	ers is-						
	$(A) [Zn(acac)_2]$	(B) [Ca(EDTA)] ^{2–}	(C) [Be(acac)(gly)]	(D) $[\text{CoBrCl(en)}_2]^+$					
Q.59	2.59 The complex which does not exhibit cis-trans isomerism but optically active-								
	$(A) [Zn(gly)_2]$	$(B) [Pt(gly)_2]$	(C) $[Ni(gly)_2]$	(D) $[Pd(gly)_2]$					
Q.60	The complex in which	ch six pair of enantiome	rs available form is optica	ally active -					
	(A) [CoBrCl(CN)(I	$H_2O(NH_3)_2]$	(B) $[Rh((CN)_2(gly))]$	$(\mathrm{H_2O})(\mathrm{NH_3})]$					
	(C) $[FeF_2(OH)_2(en)]$)]-	(D) $[CrBr_2Cl(CN)(NH_3)_2]^-$						
		Paragraph for q	uestion nos. 61 to Q.63	3					
	The splitting of five	degenerated d-orbitals	of the metal ion into sets o	f orbitals having different energies					
	is called crystal field	splitting. The concept	forms the basis of crystal	field theory.					
Q.61	The expected spin-o	only magnetic moments	s of $K_3[Co(CN)_6]$ and K_4	[MnF ₆] respectively are					
	(A) 1.73 and 1.73 E	BM	(B) 1.73 and 5.92 E	(B) 1.73 and 5.92 BM					
	(C) 0.0 and 1.73 BM	Μ	(D) 0.0 and 5.92 BI	M					
Q.62	Which of the follow	ring complex has its CF	SE = -4 Dq						
	(A) $Cr(CO)_6$	(B) $[Cr(NH_3)_6]^{3+}$	(C) $[FeF_6]^{4-}$	(D) $[Ni(Py)_6]^{2+}$					
Q.63	The complex exhibit	ts lowest energy absorp	tion band is						
-	(A) $[NiCl]_4]^{2-}$	$(B) \operatorname{Ni}(\operatorname{CO})_4$	(C) $[Ni(CN)_4]^{2-}$	(D) $[Ni(H_2O)_6]^{2+}$					

SUPER	PROBLE	MS IN INORGANIC CHEMISTRY			COORDINATION COMPOUND
		[]	МАТС	Η ΤΥΡΕ]	
Q.64		Column-I (Complexes)	Colu	mn-II (C.N.)	
	(A)	$[Co(en)_3]^{2+}$	(P)	6	
	(B)	[Ca(EDTA)] ^{2–}	(Q)	4	
	(C)	$[Ni(CO)_4]$	(R)	2	
	(D)	[Ag(NH ₃) ₂]Cl	(S)	5	
Q.65		Colum-I(Complexes)	Colu	mn-II(E.A.N.)	
	(A)	[Fe(CO) ₄] ²⁻	(P)	34	
	(B)	[Co(NH ₃) ₅ Cl]Cl ₂	(Q)	35	
	(C)	$K_2[Ni(CN)_4]$	(R)	36	
	(D)	$[Cu(NH_3)_4]^{2+}$	(S)	37	
Q.66		Column-I	Colu	mn-II	
	(A)	$[Cu(NH_3)_4]SO_4$	(P)	dsp ²	
	(B)	$[Pt(NH_3)_2Cl_2]$	(Q)	Octahedral	
	(C)	$K_4[Fe(CN)_6]$	(R)	sp^3d^2	
	(D)	$[Fe(H_2O)_6]Cl_3$	(S)	square planar	
0.67		Column-I		Column-II	
	(A)	$[Fe(NH_{2})_{c}]^{2+}$	(P)	d ² sp ³	
	(B)	[NiF_] ^{2–}	(0)	sp^3d^2	
	(C)	$[Co(H_2O)_2]^{3+}$	(R)	diamagnetic	
	(D)	$[Pt(Cl_2)(NH_2)_4]Cl_2$	(S)	paramagnetic	
	~ /	2 ⁷ 3 ⁷ 4 ³ 2	(T)	outer orbital complex	
Q.68		Column-I		Column-II	
	(A)	$[MnCl_6]^{2-}$	(P)	One unpaired electron	
	(B)	$[Fe(CN)_{6}]^{3-}$	(Q)	d^2sp^3	
	(C)	[CoF ₆] ³⁻	(R)	sp^3d^2	

(D) $[Fe(H_2O)_6]^{2+}$

Four unpaired electrons

(S)

SUPER	PROBLE	MS IN INORGANIC CHEMISTRY		COORDINATION COMPOUND
Q.69		Column-I		Column-II
	(A)	$[Cu(NH_3)_4]^{2+}$	(P)	Low spin complex
	(B)	$[CuCl_4]^{2-}$	(Q)	Magnetic moment $= 1.73$ B.M.
	(C)	$K_2[Cr(CN)_4(NH_3)(NO^+)]$	(R)	Metal oxidation state +2
	(D)	$K_4[Co(NO_2)_6]$	(S)	During hybridisation d-orbital electron is
				transfered to higher energy orbital
Q.70		Column-I		Column-II
	(A)	$[Ma_2bcde]^{n\pm}$	(P)	Only 1 cis isomer w.r.t all ligands
	(B)	$[Ma_2b_2c_2]^{n\pm}$	(Q)	4 geometrical isomers
	(C)	$[M(AB)c_2d_2]^{n\pm}$	(R)	5 stereo (space) isomers
			(S)	3 trans isomers
	(wher	re AB \rightarrow Unsym, bidentate ligan	ds, a, b	, c, d & e \rightarrow monodentate ligands)
Q.71		Column-I		Column-II
	(A)	$[Ni(H_2O)_6]Cl_2$	(P)	d ² sp ³ hybridisation
	(B)	$[Co(CN)_2(NH_3)_4]OC_2H_5$	(Q)	Ionisation isomerism
	(C)	[IrCl ₆] ^{3–}	(R)	$\mu = 2.83 \text{ B.M.}$
	(D)	$[PtCl_2(NH_3)_4]Br_2$		₀ < P
Q.72		Column-I (Complexes)		Column-II (Stereoproperties)
	(A)	$[CoCl_3(NH_3)_3]$	(P)	Show facial isomer
	(B)	$[Cr(ox)_3]^{3-}$	(Q)	Cis form is optically active
	(C)	$[CrCl_2(ox)_2]$	(R)	Trans form is optically inactive
	(D)	$[RhCl_3(Py)_3]$	(S)	Show meridional form
			(T)	Two optically active isomer
Q.73		Column-I		Column-II
	(A)	Only four stereoisomer	(P)	$[M(AB)_3]^{n\pm}$
	(B)	Four optically active isomer	(Q)	$[M(AA)a_2b_2]^{n\pm}$
	(C)	Double the number of	(R)	$[M a_2 b_2 cd]^{n\pm}$
		geometrical isomer compared	(S)	$[Ma_3bcd]^{n\pm}$
		to any other complex given in		
		column-II		

SUPER	PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOUND
	[INTEGER TYPE]
Q.74	Total number of ligands which can act as didentate/polydentate ligands with same donor atoms/sites.
	DMG, en, Phen, Gly, acac, SO_4^{2-} , $S_2O_3^{2-}$, pyridine, PPh ₃
Q.75	If an octahedral complex ion $[M(AA)_x a_y]^{\pm n}$ does not show optical isomerism, then find out value of
	$ \mathbf{x} - \mathbf{y} ^2$.
	(Where AA is symmetrical bidentate ligand and 'a' is neutral monodentate ligand and x and y are natural
	number)
0.76	Find the value of $\mathbf{X} \div \mathbf{V}$ for complex [CoBr (CN)(NO) (HO) (NH)]
Q.70	where : $X = N$ umber of compound when both Br ⁻ at cis position
	V = Number of compound when both Br- are at trans position
	I – Number of compound when both bir are at trans position.
Q.77	Consider the following complexes.
	(i) $[Cr(EDTA)]^{-}$ (ii) $[Ru(en)_{3}]^{2+}$
	(iii) $[Pt(gly)Cl_2]^-$ (iv) $Cis-[Cr(Cl)_2(ox)_2]^{3-}$
	(v) trans-[Pt(en)(NH ₃) ₂ (py) ₂] ⁴⁺
	Then find out the value of expression $ \mathbf{p} \times \mathbf{q} ^2$.
	p = Total number of optically active complexes
	q = Total number of optically inactive complexes
Q.78	If CFSE value of complex ion $[FeF_6]^{4-}$ in terms of Dq. is X, then find $ X $.
Q.79	What are the values of $m + n$ in the anionic species [Ti(CO) _m] ⁿ⁻ , if it is following sidwick EAN rule and
	having octahedral shape.
Q.80	Write the sum of Geometrical isomers of $[Pt(H_2N - CH(CH_3) - COO^-)_2]$ complex and stereo isomers
	of $[Pt(gly)_3]^+$ complex.
Q.81	From Meridional and facial isomer of $[Ma_3b_3]^{n\pm}$ on replacement of only one 'a' by 'b', the number of
	isomer of the product obtained are and respectively.
	[If answer is 2 and 5 represent as 25]
Q.82	Predict the number of unpaired electrons in a tetrahedral d^6 ion and in a square planar d^7 ion.
	Note : If answer is 1 and 2 represent as 12.

SUPER	PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOUND
Q.83	The number of optically active isomer for $[Pt(NH_3)_2(F)(Cl)(Br)(I)]^\circ$ is
Q.84	Find the number of t_{2g} and e_g electrons in $[NiF_6]^{2-}$. [If ans. is 4 & 2 then represent as 42]
Q.85	Total possible stereoisomer for the molecule $[Ma_2bcde]^{n\pm}$ (where a,b,c,d,e are simple monodentate ligand having no chiral centre). is-
Q.86	Number of pair of enantiomer of $[Ma_2b_2cd]$ is
Q.87	Find the number of unpaired electrons in t_{2g} -set of d-orbitals in $[Co(H_2O)_3F_3]$ complex.
Q.88	How many pairs of enantiomers of [M(AA)(BC)de] are possible.
Q.89	Find the total number of isomer of $[Be(gly)_2]$.
Q.90	The total number of possible geometrical isomer for $[Ma_3b_3]^{n\pm}$ is
Q.91	How many geometrical isomer(s) is / are formed by $[Ma_2bcde]$
Q.92	Find the E.A.N. value of Fe in K_4 [Fe(CN) ₆].
Q.93	The number of geometrical isomer for $[PdCl_3Br(SCN)(NO_2)]^{2-}$ is ''.
Q.94	Calculate E.A.N. value of $K[PtCl_3(C_2H_4)]$.
Q.95	The number of ions furnished per molecule of the complex $[Cr(NH_3)_6]Cl_3$ is / are
Q.96	If Hund's rule violet then how many unpaired electrons are present in $[Cr(H_2O)_6]^{3+}$
Q.97	When one 'a' is replaced by 'b' in $[M(AA)a_2bc]^{n\pm}$ type of complex, then total number of geometrical isomer is increased by
Q.98	Find the number of unpaired electron in the t_{2g} set of d-orbital in the $[Mn(H_2O)_6]^{2+}$.
Q.99	How many unpaired electron(s) is / are present in $t_2 g$ orbitals of $[Mn(NH_3)_6]^{2+}$.

Q.100 Find out the total number of stereoisomer possible for $[Cr(C_2O_4)(en)(NO_2)Cl]^-$.

Q.101 Find the Effective atomic number of $[Fe(CO)_2(\pi-C_5H_5)Cl]$.

Q.102 Find the number of unpaired electrons in t_{2g} -set of d-orbitals in $K_3[Co(ox)_3]$ complex.

SUPER	PROBI	LEMS IN INORGANIC CHEMISTRY					COORDINATION CON	IPOUND
			[ANSWE	R KEY]				
			EXERC	ISE-1				
Q.1	А	Q.2 C	Q.3	D	Q.4	А	Q.5	D
Q.6	С	Q.7 B	Q.8	D	Q.9	В	Q.10	А
Q.11	А	Q.12 D	Q.13	A	Q.14	С	Q.15	D
Q.16	А	Q.17 B	Q.18	В	Q.19	D	Q.20	В
Q.21	В	Q.22 C	Q.23	В	Q.24	С	Q.25	С
Q.26	В	Q.27 A	Q.28	С	Q.29	А	Q.30	С
Q.31	С	Q.32 D	Q.33	В	Q.34	В	Q.35	В
Q.36	С	Q.37 D	Q.38	С	Q.39	В	Q.40	В
Q.41	В	Q.42 B	Q.43	D	Q.44	С	Q.45	В
Q.46	С	Q.47 A	Q.48	С	Q.49	А	Q.50	D
Q.51	С	Q.52 C	Q.53	D	Q.54	D	Q.55	С
Q.56	С	Q.57 D	Q.58	С	Q.59	В	Q.60	С
Q.61	С	Q.62 B	Q.63	С	Q.64	В	Q.65	С
Q.66	А	Q.67 C	Q.68	С	Q.69	А	Q.70	С
Q.71	С	Q.72 B	Q.73	A	Q.74	В	Q.75	А
Q.76	А	Q.77 B	Q.78	В	Q.79	А	Q.80	А
Q.81	А	Q.82 A	Q.83	D	Q.84	А	Q.85	С
Q.86	А	Q.87 D	Q.88	В	Q.89	В	Q.90	D
Q.91	С	Q.92 A	Q.93	В	Q.94	В	Q.95	А
Q.96	D	Q.97 D	Q.98	D	Q.99	С	Q.100	С
Q.101	С	Q.102 D	Q.103	В	Q.104	А	Q.105	С
Q.106	D	Q.107 B	Q.108	В	Q.109	А	Q.110	С
Q.111	D	Q.112 A	Q.113	D	Q.114	С	Q.115	А
Q.116	А	Q.117 C	Q.118	С	Q.119	В	Q.120	В
Q.121	D	Q.122 D	Q.123	В	Q.124	D	Q.125	В
Q.126	С	Q.127 A	Q.128	С	Q.129	А	Q.130	D
Q.131	А	Q.132 A	Q.133	С	Q.134	А	Q.135	С
Q.136	С	Q.137 C	Q.138	В	Q.139	С	Q.140	D
Q.141	С	Q.142 A	Q.143	A	Q.144	D	Q.145	С
Q.146	В	Q.147 C	Q.148	В	Q.149	В	Q.150	В
Q.151	С	Q.152 B	Q.153	A	Q.154	A	Q.155	В
Q.156	А	Q.157 A	Q.158	B	Q.159	A	Q.160	D
Q.161	D	Q.162 B	Q.163	C	Q.164	A	Q.165	C
Q.166	А	Q.167 A	Q.168	A	Q.169	A	Q.170	В
chemstudi	os by pn	ns					Pag	ge # 234

SUPER PROBLEMS	IN INORGANIC CHEMISTRY	coo	RDINATION COMPOUND	
Q.171 D	Q.172 B	Q.173 B	Q.174 D	Q.175 D
Q.176 B	Q.177 C	Q.178 D	Q.179 C	Q.180 D
Q.181 C	Q.182 D	Q.183 A	Q.184 B	Q.185 D
Q.186 B	Q.187 A	Q.188 C	Q.189 D	Q.190 C
Q.191 C	Q.192 B	Q.193 C	Q.194 B	Q.195 A
Q.196 C	Q.197 B	Q.198 D	Q.199 B	Q.200 A
Q.201 C	Q.202 C	Q.203 C	Q.204 A	Q.205 C
Q.206 C	Q.207 A	Q.208 D	Q.209 B	Q.210 C
Q.211 D	Q.212 D	Q.213 A	Q.214 B	Q.215 C
Q.216 C	Q.217 C	Q.218 A	Q.219 B	Q.220 B
Q.221 B	Q.222 C	Q.223 C	Q.224 D	Q.225 A
Q.226 C	Q.227 C	Q.228 A	Q.229 D	Q.230 D
Q.231 D	Q.232 B	Q.233 D	Q.234 A	Q.235 C
Q.236 B	Q.237 A	Q.238 B	Q.239 D	Q.240 C
Q.241 A	Q.242 D	Q.243 B	Q.244 C	Q.245 C
Q.246 B	Q.247 B	Q.248 B	Q.249 B	Q.250 C

SUPER	UPER PROBLEMS IN INORGANIC CHEMISTRY COORDINATION COMPOUND								
				EXER	CISE-2				
Q.1	BCD	Q.2	AD	Q.3	ACD	Q.4	ABD	Q.5	С
Q.6	А	Q.7	В	Q.8	В	Q.9	С	Q.10	А
Q.11	D	Q.12	D	Q.13	С	Q.14	ABD	Q.15	BCD
Q.16	BC	Q.17	В	Q.18	ABCD	Q.19	AC	Q.20	D
Q.21	AD	Q.22	BD	Q.23	А	Q.24	ABD	Q.25	С
Q.26	С	Q.27	В	Q.28	В	Q.29	D	Q.30	D
Q.31	А	Q.32	А	Q.33	BD	Q.34	ABCD	Q.35	BD
Q.36	AB	Q.37	ACD	Q.38	ABD	Q.39	А	Q.40	D
Q.41	В	Q.42	С	Q.43	BD	Q.44	AC	Q.45	ABCD
Q.46	А	Q.47	BCD	Q.48	D	Q.49	D	Q.50	А
Q.51	С	Q.52	В	Q.53	В	Q.54	В	Q.55	D
Q.56	В	Q.57	В	Q.58	В	Q.59	А	Q.60	А
Q.61	D	Q.62	С	Q.63	А				
Q.64	A - P; B - P; 0	C – Q; I	D – R	Q.65	A-R; B-R;	C – P; I	$\mathbf{D} - \mathbf{Q}$		
Q.66	A - P,S; B - P,	,S;C-0	Q; D – Q,R	Q.67	A – Q,S,T; B –	- P,R; C	– P,R; D – P,R		
Q.68	A-Q; B-P,Q	Q; C – R	.,S; D – R,S	Q.69	A – Q,R,S; B -	– Q,R; (C - P,Q; D - P,Q	Q,R,S	
Q.70	A - S; B - P;	C – Q;		Q.71	A-R,S; B-F	P,Q; C –	P; D – P,Q		
Q.72	A - PRS; B - 7	Г;C–QI	RT; D–PRS	Q.73	A - P, Q; B - I	P, R; C -	– R,S		
						Q.74	6	Q.75	9
Q.76	4	Q.77	81	Q.78	4	Q.79	0008	Q.80	0008
Q.81	21	Q.82	0041	Q.83	12	Q.84	60	Q.85	0015
Q.86	0002	Q.87	0002	Q.88	5	Q.89	2	Q.90	0002
Q.91	9	Q.92	36	Q.93	4	Q.94	84	Q.95	4
Q.96	1	Q.97	0	Q.98	3	Q.99	3	Q.100	5
Q.101	36	Q.102	0						