RACE # 16		QUADR	ATIC EQUATION	MATHEMATICS							
		STRAIG	HT OBJECTIVE TYPE	£							
1.	Let p, q \in {1, 2, 3, 4}. The number of equation of the form $px^2 + qx + 1 = 0$ having real roots is										
	(A) 15	(B) 9	(C) 7	(D) 8							
2.	If $b \in R^+$ then roots of the equation (2+b) $x^2 + (3+b) x + (4+b) = 0$ is										
	(A) Real and distin	ct	(B) Real and equal								
	(C) Imaginary		(D) Cannot be pred	icted							
3.	Suppose a, b, $c > 0$, then the number of real	roots of the equation ax^2	+ blxl $+$ c $=$ 0 is							
	(A) 1	(B) 4	(C) 2	(D) None of these							
4.	If $x = \sqrt{3 + 2\sqrt{2}}$, then $x^2 + \frac{1}{x^2}$ is equal to										
	(A) $2\sqrt{2}$	(B) 8	(C) 6	(D) 1							
5.	If $x = 3 - \sqrt{8}$, then	$x^3 + \frac{1}{x^3}$ is equal to									
	(A) 6	(B) 198	(C) $6\sqrt{2}$	(D) 102							
6.	If $\frac{3+2\sqrt{2}}{3-\sqrt{2}} = a + b\sqrt{2}$, then a and b (a, b \in Q) are respectively equal to										
	(A) $\frac{13}{7}, \frac{9}{7}$	(B) $\frac{9}{7}, \frac{13}{7}$	(C) $\frac{13}{7}, \frac{7}{9}$	(D) $\frac{7}{9}, \frac{7}{13}$							
7.	The number of solu	tion of the equation, log($(-2x) = 2 \log (x + 1)$ is								
	(A) zero	(B) 1	(C) 2	(D) none							
8.	The solution set of	the equation $e^{4x} - 5e^{2x} + 4$	4 = 0 over R is								
	(A) {1, 4}	(B) {−4, −1}	(C) $\{-\log_{e} 2, 0, \log_{e} 2\}$	2} (D) $\{0, \log_e 2\}$							
9.	The sum of the solu	tions of the equation 9^x	$-6 \cdot 3^x + 8 = 0$ is								
	(A) $\log_3 2$	(B) $\log_3 6$	(C) $\log_3 8$	(D) $\log_3 4$							
10.	If sin θ and cos θ are the roots of the equation $ax^2 - bx + c = 0$, then										
	(A) $a^2 - b^2 = 2ac$	(B) $a^2 + b^2 = 2ac$	(C) $a^2 + b^2 + 2ac = 0$	0 (D) $b^2 - a^2 = 2ac$							
11.	The roots of the equation $x^2 - 2\sqrt{2}x + 1 = 0$ are										
	(A) real and differe	ent	(B) imaginary and	different							
	(C) real and equal		(D) rational and dif	ferent							
12.	The roots of the equation $(b + c)x^2 - (a + b + c)x + a = 0$ (a, b, $c \in Q$, $b + c \neq a$) are										
	(A) irrational and d	lifferent	(B) rational and dif	ferent							
	(C) imaginary and	different	(D) real and equal								
13.	If the roots of the e	quation $ax^2 + x + b = 0$	be real and different, then	n the roots of the equation							
	$x^2 - 4\sqrt{ab} x + 1 = 0$ will be										
	(A) rational	(B) irrational	(C) real	(D) imaginary							

14.	If a < c < b then the roots of the equation $(a - b)^2 x^2 + 2(a + b - 2c)x + 1 = 0$ are												
	(A) imaginary		(B) real										
	(C) one real & imagina	ry	(D) equal & imaginary										
		1	1										
15.	The number of real solu	tions of $x - \frac{1}{x^2 - 4} = 2 - \frac{1}{x^2 - 4}$	$-\frac{1}{x^2-4}$ is										
	(A) 0	(B) 1	(C) 2	(D) infinite									
16.	Sum of roots of the equation $(x + 3)^2 - 4 x + 3 + 3 = 0$ is												
	(A) 4	(B) 12	(C) – 12	(D) – 4									
17.	If α , β are roots of the equation $x^2 + px - q = 0$ & γ , δ are roots of $x^2 + px + r = 0$, then the value o $(\alpha - \gamma)(\alpha - \delta)$ is												
	(A) p + r	(B) p – r	(C) q – r	(D) q + r									
18.	If α , β are roots of Ax^2	+ Bx + C = 0 and α^2 , β^2	² are roots of $x^2 + px + q = 0$ then p is equal to										
	(A) $\frac{B^2 - 4AC}{A^2}$	(B) $\frac{2AC - B^2}{A^2}$	(C) $\frac{4AC - B^2}{A^2}$	(D) None of these									
19.	If α , β are roots of the equation $x^2 - 5x + 6 = 0$ then the equation whose roots are $\alpha + 3$ and $\beta + 3$ is												
	(A) $x^2 - 11x + 30 = 0$		(B) $(x - 3)^2 - 5 (x - 3) + 6 = 0$										
	(C) Both (A) and (B)		(D) None of these										
20.	If α , β are the root of a quadratic equation $x^2 - 3x + 5 = 0$ then the equation whose roots are $(\alpha^2 - 3\alpha + 7)$ $(\beta^2 - 3\beta + 7)$ is												
	(A) $x^2 + 4x + 1 = 0$	(B) $x^2 - 4x + 4 = 0$	(C) $x^2 - 4x - 1 = 0$	(D) $x^2 + 2x + 3 = 0$									
21.	. The number of values of a for which $(a^2 - 3a + 2)x^2 + (a^2 - 5a + 6)x + a^2 - 4 = 0$ is an identity in x is												
	(A) 0	(B) 2	(C) 1	(D) 3									
22.	If a, b, be the roots of	the equation $ax^2 - 35x$ -	+ $2 = 0$ then the value of	f $(2a-35)^{3}(2b-35)^{3}$ is equal to									
	(A) 8	(B) 1	(C) 64	(D) None									
23.	• If $(2x + 1)^2 - 2x + 1 - 6 < 0$, then												
	(A) $-1 < x < 2$	(B) $-2 < x < 1$	(C) $-2 < x < -1$	(D) 1 < x < 2									
24.	If exactly one root of th	e quadratic equation f(x	$) = ax^{2} + bx + c = 0$ is a	at infinity then									
	(A) a tends to zero	(D) Both (A) and (C)											
25.	If $(3-4\sin^2 1)(3-4\sin^2 3)(3-4\sin^2 3)(3-3\sin^2 3)($	$3-4\sin^2 3^2$) $(3 - 4\sin^2 (3 + b))$ the unit place of $(a + b)$	(n^{n-1}) = sina/sinb, where cannot be-	$n \in N$ and n>1 & a, b are integers in									
	(A) 4	(B) 1	(C) 8	(D) 2									

Answers

RACE # 16

1.	(C)	2.	(C)	3.	(D)	4.	(C)	5.	(B)	6.	(A)	7.	(B)	8.	(D)	9.	(C)	10.	(D)
11.	(A)	12.	(B)	13.	(D)	14.	(A)	15.	(A)	16.	(C)	17.	(D)	18.	(B)	19.	(C)	20	(B)
21.	(C)	22.	(C)	23.	(B)	24.	(C)	25.	(B)										