PARABOLA

1.	Let P be a point or	the parabola $y^2 = 4a$	ax, where $a > 0$. The normal	to the parabola at P meets the
	x-axis at a point Q.	The area of the triangle	e PFQ, where F is the focus of	the parabola, is 120. If the slope
	m of the normal and a are both positive integers, then the pair (a,m) is			[JEE(Advanced) 2023]
	(A) (2,3)	(B)(1,3)	(C)(2,4)	(D)(3,4)

Consider the parabola $y^2 = 4x$. Let S be the focus of the parabola. A pair of tangents drawn to the parabola from the point P = (-2, 1) meet the parabola at P_1 and P_2 . Let Q_1 and Q_2 be points on the lines SP_1 and SP_2 respectively such that PQ_1 is perpendicular to SP_1 and PQ_2 is perpendicular to SP_2 . Then, which of the following is/are TRUE?

(A) $SQ_1 = 2$ (B) $Q_1Q_2 = \frac{3\sqrt{10}}{5}$ (C) $PQ_1 = 3$ (D) $SQ_2 = 1$

- Let E denote the parabola $y^2 = 8x$. Let P = (-2, 4), and let Q and Q' be two distinct points on E such that the lines PQ and PQ' are tangents to E. Let F be the focus of E. Then which of the following statements is (are) TRUE?

 [JEE(Advanced) 2021]
 - (A) The triangle PFQ is a right-angled triangle
 - (B) The triangle QPQ' is a right-angled triangle
 - (C) The distance between P and F is $5\sqrt{2}$
 - (D) F lies on the line joining Q and Q'

Question Stem for Questions Nos. 4 and 5

Question Stem

Consider the region $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0 \text{ and } y^2 \le 4 - x\}$. Let F be the family of all circles that are contained in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in F. Let (α, β) be a point where the circle C meets the curve $y^2 = 4 - x$.

4. The radius of the circle C is _____.

[JEE(Advanced) 2021]

5. The value of α is _____.

[JEE(Advanced) 2021]

- 6. If a chord, which is not a tangent, of the parabola $y^2 = 16x$ has the equation 2x + y = p, and midpoint (h, k), then which of the following is(are) possible value(s) of p, h and k? [JEE(Advanced) 2017]
 - (A) p = 5, h = 4, k = -3

(B)
$$p = -1$$
, $h = 1$, $k = -3$

(C) p = -2, h = 2, k = -4

(D)
$$p = 2$$
, $h = 3$, $k = -4$

- Let P be the point on the parabola $y^2 = 4x$ which is at the shortest distance from the center S of the circle $x^2 + y^2 4x 16y + 64 = 0$. Let Q be the point on the circle dividing the line segment SP internally. Then-
 - (A) $SP = 2\sqrt{5}$
 - (B) SQ: QP = $(\sqrt{5} + 1)$: 2
 - (C) the x-intercept of the normal to the parabola at P is 6
 - (D) the slope of the tangent to the circle at Q is $\frac{1}{2}$

[JEE(Advanced) 2016]

8.	If the normals of the parabola $y^2 = 4x$ drawn at the end points of its latus rectum are tangents to the circle					
	$(x-3)^2 + (y+2)^2 =$	$= r^2$, then the value of r^2 is		[JEE(Advanced) 2	2015]	
9.	Let the curve C be the mirror image of the parabola $y^2 = 4x$ with respect to the line $x + y + 4 = 0$. If A and					
	B are the points of intersection of C with the line $y = -5$, then the distance between A and B is					
				[JEE(Advanced) 2	015]	
10.	Let P and Q be distinct points on the parabola $y^2 = 2x$ such that a circle with PQ as diameter passes					
	through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle ΔOPQ is					
	$3\sqrt{2}$, then which of the following is(are) the coordinates of P?			[JEE(Advanced) 2	2015]	
	(A) $\left(4,2\sqrt{2}\right)$	(B) $\left(9,3\sqrt{2}\right)$	(C) $\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$	(D) $\left(1,\sqrt{2}\right)$		
11.	The common tange	ents to the circle $x^2 + y^2$	$= 2$ and the parabola y^2	= 8x touch the circle at the p	point	
	P, Q and the parabola at the points R,S. Then the area of the quadrilateral PQRS is -					
				[JEE(Advanced) 20)14]	
	(A) 3	(B) 6	(C) 9	(D) 15		
		Paragraph F	or Questions 12 and 13			
	Let a,r,s,t be nonzero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar) and S(as2, 2as) be distinct points on the					
	parabola $y^2 = 4ax$. Suppose that PQ is the focal chord and lines QR and PK are parallel, where K is the					
	point (2a, 0).					
12.	The value of r is-			[JEE(Advanced) 20)14]	

$$(A) - \frac{1}{t}$$

(B)
$$\frac{t^2 + 1}{t}$$

(C)
$$\frac{1}{t}$$

(D)
$$\frac{t^2 - 1}{t}$$

13. If st = 1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is-

[JEE(Advanced) 2014]

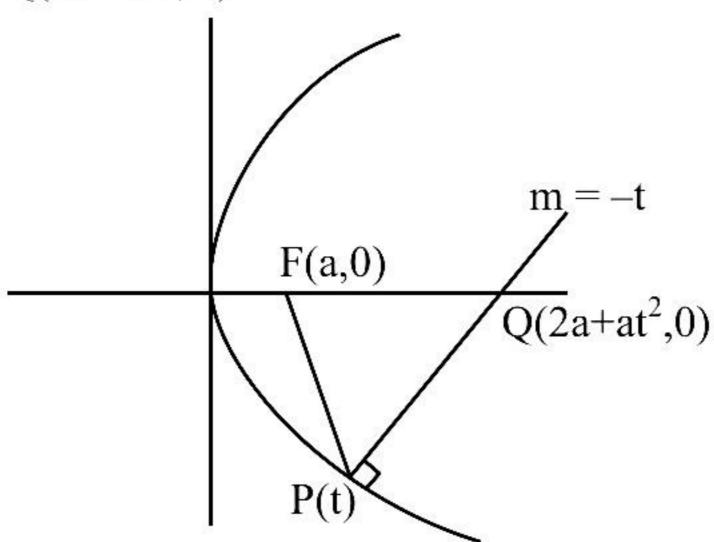
$$(A) \frac{\left(t^2+1\right)^2}{2t^3}$$

$$(B) \frac{a(t^2+1)^2}{2t^3}$$

$$(C) \frac{a(t^2+1)^2}{t^3}$$

(A)
$$\frac{\left(t^2+1\right)^2}{2t^3}$$
 (B) $\frac{a\left(t^2+1\right)^2}{2t^3}$ (C) $\frac{a\left(t^2+1\right)^2}{t^3}$ (D) $\frac{a\left(t^2+2\right)^2}{t^3}$

SOLUTIONS


1. Ans. (A)

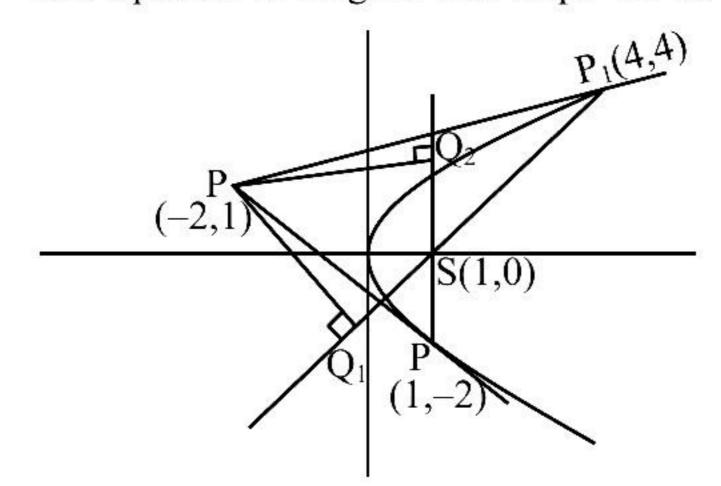
Sol. Let point P (at², 2at)

normal at P is
$$y = -tx + 2at + at^3$$

$$y = 0, x = 2a + at^2$$

$$Q(2a + at^2, 0)$$

Area of
$$\triangle PFQ = \left| \frac{1}{2} (a + at^2)(2at) \right| = 120$$


$$m = -t$$

$$a^2 [1 + m^2] m = 120$$

$$(a, m) = (2, 3)$$
 will satisfy

2. Ans. (B, C, D)

Sol. Let equation of tangent with slope 'm' be

$$T: y = mx + \frac{1}{m}$$

T: passes through (-2, 1) so

$$1 = -2m + \frac{1}{m}$$

$$\Rightarrow$$
 m = -1 or m = $\frac{1}{2}$

Points are given by $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$

So, one point will be (1, -2) & (4, 4)

Let
$$P_1(4, 4)$$
 & $P_2(1, -2)$

$$P_1S: 4x - 3y - 4 = 0$$

$$P_2S: x-1=0$$

$$PQ_1 = \left| \frac{4(-2) - 3(1) - 4}{5} \right| = 3$$

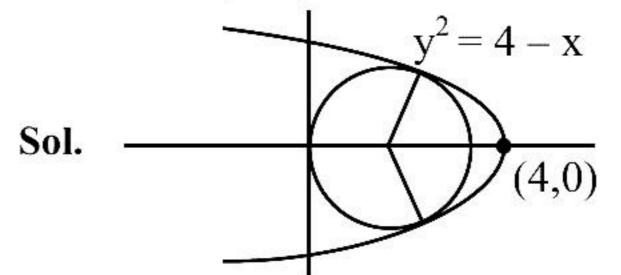
$$SP = \sqrt{10}$$
; $PQ_2 = 3$; $SQ_1 = 1 = SQ_2$

$$\frac{1}{2} \left(\frac{Q_1 Q_2}{2} \right) \times \sqrt{10} = \frac{1}{2} \times 3 \times 1$$

(comparing Areas)

$$\Rightarrow Q_1 Q_2 = \frac{2 \times 3}{\sqrt{10}} = \frac{3\sqrt{10}}{5}$$

3. Ans. (A, B, D)


Sol. P(-2, 4) $\Rightarrow y(4) = 4(x-2)$ $\Rightarrow y = x-2$ F(2, 0)

Note that P lies on directrix so triangle PQQ' is right angled, hence QQ' passes through focus F.

$$PF = 4\sqrt{2}$$

Equation of QF is y = x - 2 & PF is x + y = 2Hence A, B, D.

4. Ans. (1.50)

Let the circle be

$$x^2 + y^2 + \lambda x = 0$$

For point of intersection of circle & parabola $y^2 = 4 - x$.

$$x^{2} + 4 - x + \lambda x = 0 \Rightarrow x^{2} + x(\lambda - 1) + 4 = 0$$

For tangency:
$$\Delta = 0 \Rightarrow (\lambda - 1)^2 - 16 = 0$$

$$\Rightarrow \lambda = 5$$
 (rejected) or $\lambda = -3$

Circle:
$$x^2 + y^2 - 3x = 0$$

Radius =
$$\frac{3}{2}$$
 = 1.5

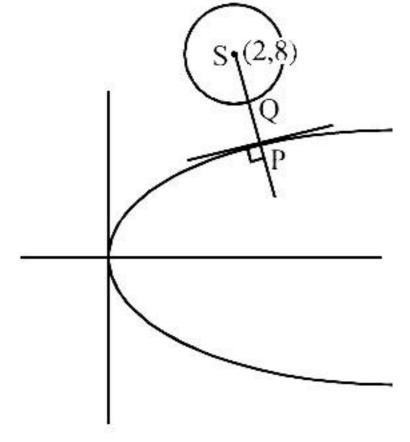
For point of intersection: Sol.

$$x^2 - 4x + 4 = 0 \Rightarrow x = 2$$
 so $\alpha = 2$

6. Ans. (D)

Equation of chord with mid point (h, k): Sol.

$$k.y - 16\left(\frac{x+h}{2}\right) = k^2 - 16h$$


$$\Rightarrow$$
 8x - ky + k² - 8h = 0

Comparing with 2x + y - p = 0, we get

$$k = -4$$
; $2h - p = 4$

only (D) satisfies above relation.

7. Ans. (A, C, D)

$$y^2 = 4x$$

Sol.

point P lies on normal to parabola passing through centre of circle

$$y + tx = 2t + t^3$$
(i)

$$8 + 2t = 2t + t^3$$

$$t = 2$$

P(4, 4)

$$SP = \sqrt{(4-2)^2 + (4-8)^2}$$

$$SP = 2\sqrt{5}$$

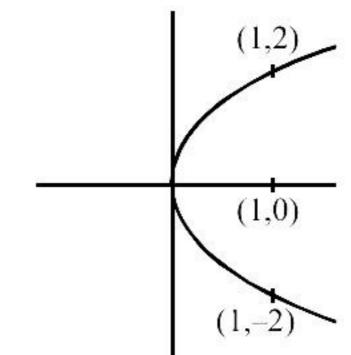
$$SQ = 2$$

$$\Rightarrow$$
 PQ = $2\sqrt{5} - 2$

$$\frac{SQ}{QP} = \frac{1}{\sqrt{5} - 1} = \frac{\sqrt{5} + 1}{4}$$

To find x intercept

put
$$y = 0$$
 in (i)


$$\Rightarrow$$
 $x = 2 + t^2$

$$x = 6$$

- Slope of common normal = -t = -2
- \therefore Slope of tangent = $\frac{1}{2}$

8. Ans. (2)

Sol.

The co-ordinates of latus rectum are (1,2) and (1,-2)

clearly slope of tangent is given by $\frac{dy}{dx} = \frac{2}{y}$

$$\therefore$$
 At y = 2 slope of normal = -1

and At y = -2 slope of normal = 1

 \therefore Equation of normal at (1,2)

$$(y-2)=-1(x-1) \Rightarrow x+y=3$$

Now, this line is tangent to circle

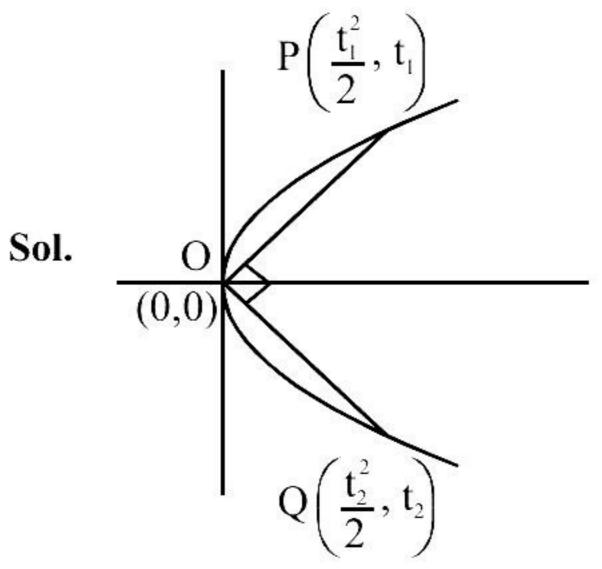
$$(x-3)^2 + (y+2)^2 = r^2$$

... perpendicular distance from centre to line = Radius of circle

$$\therefore \frac{|3-2-3|}{\sqrt{2}} = r \Rightarrow r^2 = 2$$

- Ans. (4)
- Let there be a point $(t^2, 2t)$ on $y^2 = 4x$

Clearly its reflection in x + y + 4 = 0 is given by


$$\frac{x-t^2}{1} = \frac{y-2t}{1} = \frac{-2(t^2+2t+4)}{2}$$

$$\therefore$$
 $x = -(2t + 4) \& y = -(t^2 + 4)$

Now,
$$y = -5$$
 \Rightarrow $t = \pm 1$

$$\therefore \quad x = -6 \quad \text{or} \quad x = -2$$

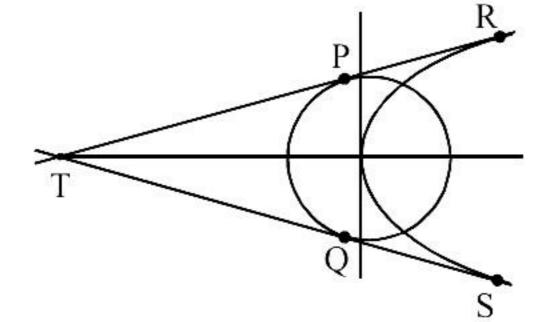
- Distance between A & B = 4
- 10. **Ans.** (**A**, **D**)

$$\because \angle POQ = \frac{\pi}{2} \qquad \Rightarrow \qquad t_1 t_2 = -4$$

$$\therefore \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ \frac{t_1^2}{2} & t_1 & 1 \\ \frac{t_2^2}{2} & t_2 & 1 \end{vmatrix} = 3\sqrt{2}$$

$$\Rightarrow \left| \frac{t_1^2 t_2 - t_1 t_2^2}{2} \right| = 6\sqrt{2}$$

$$\Rightarrow$$
 $|t_1 - t_2| = 3\sqrt{2}$


$$\Rightarrow t_1 + \frac{4}{t_1} = 3\sqrt{2} \qquad (\because t_1 > 0)$$

We get $t_1 = 2\sqrt{2}$, $\sqrt{2}$

$$P(4, 2\sqrt{2})$$
 or $(1, \sqrt{2})$

11. Ans. (D)

Sol.

$$y = mx + \frac{2}{m}$$

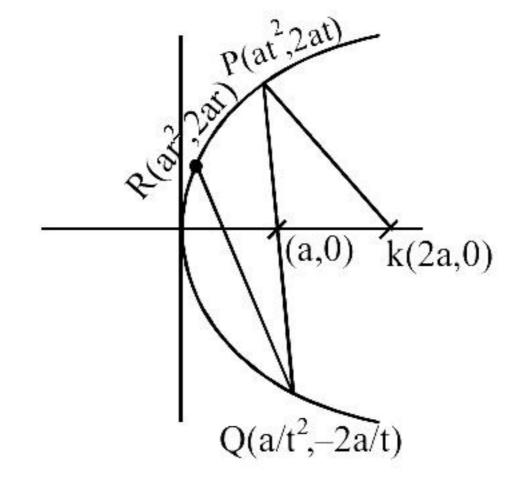
$$\frac{\left|0 - 0 + \frac{2}{m}\right|}{\sqrt{1 + m^2}} = \sqrt{2} \implies 2 = m^2(1 + m^2)$$

$$\Rightarrow$$
 m = ± 1

$$TP:-x+y=2$$

So
$$P(-1, 1) & Q(-1, -1)$$

&
$$R\left(\frac{2}{m}, \frac{4}{m}\right) \equiv R(2,4) \& S(2,-4)$$


So
$$\Delta = \frac{1}{2}10.3 = 15$$

So
$$P(-1, 1) & Q(-1, -1)$$

&
$$R\left(\frac{2}{m}, \frac{4}{m}\right) \equiv R(2,4) \& S(2,-4)$$

So
$$\Delta = \frac{1}{2}10.3 = 15$$

12. Ans. (D)

∵ PQ is a focal chord

$$\therefore$$
 co-ordinates of point Q are $=$ $\left(\frac{a}{t^2}, -\frac{2a}{t}\right)$

$$m_{QR} = \frac{2a\left(r + \frac{1}{t}\right)}{a\left(r^2 - \frac{1}{t^2}\right)} = \frac{2}{\left(r - \frac{1}{t}\right)}$$

$$m_{PK} = \frac{2at - 0}{a(t^2 - 2)} = \frac{2t}{t^2 - 2}$$

Given $m_{QR} = m_{PK}$

$$\Rightarrow \frac{2}{r - \frac{1}{t}} = \frac{2t}{t^2 - 2} \Rightarrow r = \frac{t^2 - 2}{t} + \frac{1}{t}$$

$$\Rightarrow r = t - \frac{2}{t} + \frac{1}{t} \Rightarrow r = \frac{t^2 - 1}{t}$$

13. Ans. (B)

Sol. Equation of tangent at point P is

$$ty = x + at^2 \qquad(i)$$

Equation of normal at point S is

$$\frac{1}{t}x + y = \frac{2a}{t} + \frac{a}{t^3}$$

$$\Rightarrow t^2x + t^3y = 2at^2 + a \qquad \dots (ii)$$

Multiply equation (i) by t² and then subtract from equation (ii),

we get,

$$2t^3y = 2at^2 + at^4 + a$$

$$\Rightarrow 2t^3y = a(1 + t^4 + 2t^2)$$

$$\Rightarrow y = \frac{a(1+t^2)^2}{2t^3}$$