3 Chemical Bonding and Molecular Structure

TOPIC 1

Type of Bonds, Bond Parameter and Resonance

01 The correct sequence of bond enthalpy of 'C—X' bond is [NEET 2021] (a) $CH_3 - F < CH_3 - CI < CH_3 - Br < CH_3 - I$ (b) CH_3 — $F > CH_3$ — $CI > CH_3$ — $Br > CH_3$ —I(c) $CH_3 - F < CH_3 - CI > CH_3 - Br >$ CH_z— (d) CH_3 — $CI > CH_3$ — $F > CH_3$ —Br >Ans. (b) On moving down the group from F to I, the size of atom increases. Order of the size of halogen atoms is I > Br > CI > F. So, the bond length of C-X bond also increases from F to I and hence, the bond enthalpy decreases from F to I. Correct order of bond length of C-X

bond is H_3C —I > H_3C —Br > H_3C —Cl > H_3C —F. Correct order of bond enthalpy is H_3C —F > H_3C —Cl > CH_3 —Br > H_3C —I.

02 Which of the following molecules is non-polar in nature? [NEET 2021] (a)POCl₃ (b)CH₂O

Ans. (c)	
(c)SbCl ₅	(d)NO ₂
(a)FUCIz	(b)CH ₂ 0

(a)**POCI**₃ Hybridisation = $\frac{1}{2} \times 8 = 4(sp^3)$

Shape = Tetrahedral Dipole moment, $\mu \neq 0$ POCl₃ is polar in nature.

03 Which of the following set of molecules will have zero dipole moment ? [NEET (Sept.) 2020]

- (a) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
- (b) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene
- (c) Boron trifluoride, beryllium difluoride, carbon dioxide, 1, 4-dichlorobenzene

(d) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene

Ans. (c)

In option (c), for all molecules,
$$\label{eq:molecule} \begin{split} & [i, vi, iii, viii] \mu = 0. \end{split}$$
 The structure of all compounds are as follows :

(i) Boron trifluoride (BF₃)

$$\Rightarrow F \longleftrightarrow B \xrightarrow{F}_{F} \mu = 0$$

(ii) Hydrogen fluoride (HF)

$$\Rightarrow$$
 H \Longrightarrow F; $\mu \neq 0$
(iii) Carbon dioxide (CO₂)

 $\Rightarrow \overrightarrow{0 = 0}; \mu=0$

(iv) 1,3-dichloro benzene ($m-C_6H_4Cl_2$) $\Rightarrow \uparrow Cl_1$

(v) Nitrogen trifluoride (NF₃)

$$\Rightarrow \qquad \bigvee_{F}^{(i)} \stackrel{\uparrow}{\underset{F}{\stackrel{\downarrow}{\longrightarrow}}} ; \mu \neq 0$$

(vi) Beryllium difluoride (BeF₂) $\Rightarrow F \stackrel{\leftarrow}{\longrightarrow} B \stackrel{\rightarrow}{\longrightarrow} F ; \mu=0$

(vii) Water(H₂0)

$$\Rightarrow \qquad ()) \uparrow \\ H \qquad (), \mu \neq 0 \\$$

[:: μ = Dipole moment]

04 Which of the following is the correct order of dipole moment? [NEET (Odisha) 2019]

(a) $NH_3 < BF_3 < NF_3 < H_2O$ (b) $BF_3 < NF_3 < NH_3 < H_2O$ (c) $BF_3 < NH_3 < NF_3 < H_2O$ (d) $H_2 O < NF_3 < NH_3 < BF_3$

Ans. (b)

BF₃ has zero dipole moment as it is symmetrical in nature. H₀ has maximum dipole moment as it possess two lone pair of electrons. Between NH_3 and $NF_{3'}$ NH₃ has greater dipole moment though in NH_3 and NF_3 , both N possesses one lone pair of electrons.

This is beacuse in case of $NF_{3'}$ the net N-H bond dipole is in the same direction as the direction of dipole of lone pair. But in case of NF_{3} , the direction of net dipole moment of three -N-F bonds is opposite to that of the dipole moment of the lone pair. Thus, the correct of dipole moment is

05 Which one of the following pairs of species have the same bond order? [NEET 2017]

(a)CO, NO $(b)0_{2}, N0^{+}$ (c)CN⁻,CO $(d)N_2, O_2^-$ Ans. (c)

Key concept The species that have same number of electrons have same bond order.

Species	Number of electrons
CO	6 + 8 = 14
NO	7 + 8 = 15
02	8 + 8 = 16
NO ⁺	7 + 8 - 1 = 14
CN ⁻	6 + 7 + 1 = 14
0_{2}^{-}	8 + 8 + 1 = 17

Thus, both CN⁻ and CO have equal number of electrons. So, their bond order will be same.

06 Predict the correct order among the following. [NEET 2016, Phase I]

- (a) lone pair-lone pair > bond pair-bond pair > lone pair-bond pair
- (b) bond pair-bond pair > lone pair-bond pair > lone pair-lone pair
- (c) lone pair-bond pair > bond pair-bond pair > lone pair-lone pair
- (d) lone pair-lone pair > lone pair-bond pair > bond pair-bond pair

Ans. (d)

According to the postulate of VSEPR theory, a lone pair occupies more space than a bonding pair, since it lies closer to the central atom. This means that the repulsion between the different electron pairs follow the order.

lp-lp>lp-bp>bp-bp

07 Which of the following molecules has the maximum dipole moment?

	[CBSE AIPMT 2014]
a)CO ₂	(b)CH ₄
c)NH ₃	(d)NF ₃

Ans. (d)

 CO_2 and CH_4 have zero dipole moment as these are symmetrical in nature. Between NH_3 and NF_3 , NF_3 has greater dipole moment though in NH₃ and NF₃ both, N possesses one lone pair of electrons.

$$0 \stackrel{\longleftarrow}{=} 0 \stackrel{\longleftarrow}{=} 0 \qquad \begin{array}{c} \mu_{res} \uparrow \downarrow \mu_{1} \\ \mu_{1} \stackrel{\frown}{=} 0 \\ \mu_{1} \stackrel{\frown}{=} 0 \\ \mu_{1} \stackrel{\frown}{=} 0 \\ \mu_{1} \stackrel{\frown}{=} 0 \end{array}$$

$$\begin{array}{c} \therefore \ \mu_{res} = \mu_1 + \mu_2 + \mu_3 = -\mu_4 \\ \text{and} \ \mu_{net} = \ \mu_{res} + \mu \\ \therefore \ \mu_{net} = \mu_1 + \mu_2 + \mu_3 + \mu_4 \\ = -\mu_4 + \ \mu_4 = 0 \\ \text{net} = 0 \end{array}$$

 μ_{ℓ} μ H

Resultant of 3N—H bond lie in the same direction as μ_4 Hence, μ_{net} = μ_{res} + μ_4

Resultant of 3N-F bond lie opposite to μ_4

This is because in case of NH₃, the net N—Hbond dipole is in the same direction as the direction of dipole of lone pair but in case of NF_{3} , the direction of net bond dipole of three — N—F bonds is opposite than that of the dipole of the then lone pair.

08 Which one of the following molecules contain no π -bond?

11101000100	001100110 10	
		[NEET 2013]
(a)CO ₂	(b)H ₂ O	
(c)SO ₂	(d)NO ₂	1
Ans. (b)		

All the molecules have O-atom with lone pairs, but in H₂O the H-atom has no vacant orbital for π -bonding. That's why it does not have any π -bond.

In all other given molecules, the central atom because of the presence of vacant orbitals is capable to form π -bonds.

09 Which of the following is least likely to behave as Lewis base?

[CBSE	AIPMT	2011

(a)NH ₃	(b)BF ₃
(c)0H ⁻	(d)H ₂ O

Ans. (b)

BF₃ is an electron deficient species, thus behaves like a Lewis acid.

 \therefore Bond order = $\frac{N_b - N_a}{2}$

- **10** The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of NH_3 (1.5 D) is larger than that of NF_{3} (0.2 D). This [CBSE AIPMT 2006] is because
 - (a) in NH₃ as well as in NF₃, the atomic dipole and bond dipole are in the same direction
 - (b) in NH_{3} , the atomic dipole and bond dipole are in the same direction whereas in NF3 these are in opposite directions
 - (c) in NH_3 as well as NF_3 , the atomic dipole and bond dipole are in opposite directions

(d) in NH_3 the atomic dipole and bond dipole are in the opposite directions whereas in NF_3 these are in the same directions

Ans. (b)

F is more electronegative than N, therefore direction of bond is from N to F whereas N is more electronegative than H, the direction of the bond is from H to N. Thus whereas resultant moment of N-H bonds adds up to the bond moment of lone pair, that of 3N-F bonds partly cancel the resultant moment of lone pair. Hence, the net dipole moment of NF₃ is less than that of NH₃.

11 In which of the following molecules are all the bonds not equal? [CBSE AIPMT 2006]

	LCB2E A
(a)CIF ₃ (c)AIF ₃	(b)BF ₃ (d)NF ₃
0	0

Ans. (a)

and

In CIF_3 all bonds are not equal due to its trigonal-bipyramidal (sp^3d hybridisation) geometry

 BF_3 and AIF_3 show trigonal symmetric structure due to sp^2 hybridisation.

 $F \longrightarrow B \xrightarrow{F} F$ $F \longrightarrow Al \xrightarrow{F} F$

NF₃ shows pyramidal geometry due to sp³ hybridisation.

12 Which of the following would have a permanent dipole moment? [CBSE AIPMT 2005]

	[CBSE AIPMT
(a)BF ₃ (c)SF ₄	(b)SiF ₄ (d)XeF ₄

Ans. (c)

- \therefore SF₄ have $\mu > 0$
- : It has permanent dipole moment.

13 In BrF₃ molecule, the lone pairs

occupy equatorial positions to minimise [CBSE AIPMT 2004]

- (a) lone pair-bond pair repulsion
- (b) bond pair-bond pair repulsion
- (c) lone pair-lone pair repulsion and lone pair-bond pair repulsion
- (d) lone pair-lone pair repulsion **Ans.** (d)

In BrF_3 molecule, Br is sp^3d hybridised, but its geometry is T-shaped due to distortion of geometry from trigonal bipyramidal to T-shaped by the involvement of lone pair-lone pair repulsion.

Here, *lp* – *lp* repulsion = 0 *lp* – *bp* repulsion = 4 *bp* – *bp* repulsion = 2

14 $\ln NO_3^-$ ion number of bond pair and

lone pair of electrons on nitrogen atom are [CBSE AIPMT 2002] (a) 2, 2 (b) 3, 1 (c) 1, 3 (d) 4, 0

Ans. (d)

Nitrogen has four bond pair and zero lone pair of electrons, due to the presence of one coordination bond.

15 In which of the following, bond angle is maximum?
[CBSE AIPMT 2001]
(a) NH₃ (b) NH⁺₄ (c) PCl₃ (d) SCl₂

Ans. (b)

ln NH₄⁺ bond angle is maximum (nearer 109°) due to its tetrahedral geometry.

16 In PO₄³⁻ ion, the formal charge on each oxygen atom and P–O bond order respectively are
 [CBSE AIPMT 1998]

(a)-0.75, 0.6	(b)-0.75, 1.0
(c)-0.75,1.25	(d)-3, 1.25

Ans. (c)

P-0 bond order

- Total Number of bonds in all possible direction between two atoms
- Total number of resonating structures

$$=\frac{2+1+1+1}{4}=\frac{5}{4}=1.25$$

: Bond order = 1.25

Resonating structures are

Total charge on PO₄³⁻ ion is -3 = Total charge Total entity of 0-atom

So, the average formal charge on each 0-atom is $= -\frac{3}{7} = -0.75$

 Which one is not paramagnetic among the following? [at. no. of Be = 4, Ne = 10, As = 33, CI = 17]
 [CBSE AIPMT 1998]

	Fo- 0- 111 111 111 1
(a)CI ⁻	(b)Be
(c)Ne ²⁺	(d)As ⁺

Ans. (a)

Paramagnetic character is based upon presence of unpaired electron. $_{17} \text{Cl}^- = 1s^2, 2s^22p^6, 3s^23p_v^23p_v^23p_z^2$

 $\ln {\rm Cl}^-$ no unpaired electron, so it is in nature diamagnetic.

 $_{4}Be = 1s^{2}, 2s^{1}2p_{x}^{1}$ $_{10}Ne^{2+} = 1s^{2}, 2s^{2}2p_{x}^{2}2p_{y}^{1}2p_{z}^{1}$

$${}_{33}\mathsf{As}^* = 1s^2, 2s^22p^6, 3s^23p^63d^{10}, \\ 4s^24p_x^14p_y^14p_z^0$$

While all others have unpaired electron, so they are paramagnetic in nature.

18 The molecule which does not exhibit dipole moment is

	[CBSE AIPMT
(a)NH ₃	(b)CHCl ₃
(c)H ₂ 0	(d)CCl ₄

Ans. (d)

CCI, does not show dipole moment because it has tetrahedral symmetrical structure

19 For two ionic solids CaO and KI, identify the wrong statement among the following. [CBSE AIPMT 1997]

- (a) Lattice energy of CaO is much larger than that of KI
- (b) KI is soluble in benzene
- (c) KI has lower melting point
- (d) CaO has higher melting point

Ans. (b)

KI is ionic compound, so it is not soluble in non-polar solvent (i.e. dipole moment (μ) for benzene = 0).

20 Which one of the following has the highest dipole moment?

[CBSE AIPMT 1997]

(b)SbH_z

(d)NH₃

(a) AsH	3
(c)PH ₃	

Ans. (d)

In the given molecules nitrogen has greater electronegativity. So, it has greater dipole moment and correct order of dipole moment is

 $NH_3 > PH_3 > AsH_3 > SbH_3$

21 The BCl₃ is a planar molecule

whereas NCl₃ is pyramidal because [CBSE AIPMT 1995]

- (a) B CI bond is more polar than N CIbond
- (b) N CI bond is more covalent than B - Cl bond
- (c) nitrogen atom is smaller than boron atom
- (d) BCI₃ has no lone pair but NCI₃ has a lone pair of electrons

Ans. (d)

 BCI_3 have sp^2 hybridisation and no lone pair of electron on central atom but NCl₃ have sp^3 hybridisation and also contains one lone pair of electron on nitrogen, so BCl₃ is planar.

22 The weakest among the following types of bond is [CBSE AIPMT 1994]

a)ionic	(b) covalent
c) metallic	(d)H-bond

Ans. (d)

1997]

H-bond is weakest bond because its bond dissociation energy is very low as compared to other given bonds (10 kJ mol^{-1}).

23 Which of the following pairs will form the most stable ionic bond?

(a) Na and Cl (c) Li and F

Ans. (b)

The ionic bond between Mg and F is most stable because in these the electrostatic force of attraction is maximum. As Mg has high electropositive character and F has high electronegative character among all other options that are given in question.

24 Which of the following statements is not correct?

[CBSE AIPMT 1993, 1990]

- (a) Double bond is shorter than a single bond
- (b) Sigma bond is weaker than a π -bond (c) Double bond is stronger than a single
- bond
- (d) Covalent bond is stronger than hydrogen bond

Ans. (b)

Sigma bond is always stronger than π -bond because the extent of overlapping is maximum in sigma bond formation.

25 Which one of the following is the correct order of interactions? [CBSE AIPMT 1993]

- (a) Covalent < hydrogen bonding < van der Waals' < dipole-dipole
- (b) van der Waals' < hydrogen bonding < dipole-dipole < covalent
- (c) van der Waals' < dipole-dipole < hydrogen bonding < covalent
- (d) Dipole-dipole < van der Waals' < hydrogen bonding < covalent

Ans. (b)

The van der Waals' forces are weakest forces and covalent bond is strongest, so the order of interactions is van der Waals' < H-bonding < dipole-dipole < covalent.

26 Among the following which compound will show the highest lattice energy? [CBSE AIPMT 1993] (a) KF (b)NaF (d) RbF (c)CsF

Ans. (b)

NaF has high lattice energy because Na⁺ is smallest in size and lattice energy increases as the size of cation decreases. (In the given question anion is common in all compound)

27	Strongest hydrogen bonding is					
	shown by	[CBSE AIPMT 1992]				
	(a)H ₂ O	(b)NH ₃				
	(c)HF	(d)H ₂ S				

Ans. (c)

HF have strongest hydrogen bond because the electronegativity of F-atom is high and produce strong electrostatic force of attraction.

28 Which one of the following formulae does not correctly represent the bonding capacities of the atoms involved?

[CBSE AIPMT 1991]

have five valency which is not possible, so it does not correctly represent the bonding capacities of C atom.

29 Among LiCl, BeCl₂, BCl₃ and CCl₄, the covalent bond character follows the order

[CBSE AIPMT 1990]

(a)LiCl < BeCl₂ > BCl₃ > CCl₄ (b)LiCl < BeCl₂ < BCl₃ > CCl₄ (c)LiCl <BeCl₂ <BCl₃ <CCl₄ (d)LiCl > BeCl₂ > BCl₃ > CCl₄

Ans. (c)

The electronegativity increases from left to right in any period, so the electronegativity follows the order Li < Be < B < C

[CBSE AIPMT 1994]

(b) Mg and F (d) Na and F

and hence, the covalent character of chlorides of these elements increase from Li to C because size of cation left to right decreases and according to Fajans' rule covalent character increases.

30 H₂0 has a net dipole moment while

BeF₂ has zero dipole moment because

- [CBSE AIPMT 1989] (a) H₂O molecule is linear while BeF₂ is bent
- (b) BeF₂ molecule is linear while H₂O is bent
- (c) fluorine has more electronegativity than oxygen
- (d) beryllium has more electronegativity than oxygen

Ans. (b)

H₂O have bent structure in which the two 0–H bonds are oriented at an angle of 104.5°, so water have a net dipole moment whereas BeF₂ have linear geometry, so the dipole moment of one bond is cancelled by another bond, so it have zero dipole moment.

TOPIC 2

Hybridisation and VSEPR Theory

31 Match List-I with List-II.

Lis	t-l	List-II
A. PCI ₅	١.	Square pyramidal
B. SF ₆	.	Trigonal planar
C. BrF ₅	.	Octahedral
D. BF ₃	IV.	Trigonal bipyramidal

Choose the correct answer from the options given below [NEET 2021]

	А	В	С	D	А	В	С	D	
(a)	IV		Ι		(b) II		IV	I	
(c)		T	IV	11	(d) IV		П	I	

Ans. (a)

(A) PCI₅

P(Ground state) = $3s^2 3p^3$

Hybridisation of $P \rightarrow sp^3 d$ Structure of $PCl_5 \rightarrow Trigonal bipyramidal$ (B)SF₆

 $S(Ground state) = 3s^2 3p^4$

Hybridisation of $S \rightarrow sp^3 d^2$ Structure of $SF_6 \rightarrow Octahedral$

(C)BrF5

Br (Ground state) = $3s^2 3p^5$

Hybridisation of Br $\rightarrow sp^{3}d^{2}$ Structure of $BrF_{F} \rightarrow Square pyramidal$ (D)**BF**₃

B (Ground state) = $2s^2 2p^1$

B* (excited state)

Hybridisation of $B \rightarrow sp^2$ Structure of $BF_3 \rightarrow Trigonal planar$: Correct match is (A)-(IV); (B)-(III); (C)-(I); (D)-(II)

32 BF₃ is planar and electron deficient

compound. Hybridisation and number of electrons around the central atom, respectively are **INEET 2021**

	F
(a) sp ³ and 4	(b)sp ³ and 6
(c) <i>sp</i> ² and 6	(d) <i>sp</i> ² and 8

Ans. (c)

Hybridisation of a central atom can be calculate by using the formula : Hybridisation = $\frac{1}{2}$ [number of valence

electrons + Number of side atoms – Positive charge + Negative charge] Electronic configuration of B p^1

$$= 1s^2, 2s^2, 2$$

Number of valence electrons in B = 3electrons in last shell, n = 2Number of side atoms in $BF_3 = 3F$ -atoms.

So, hybridisation
$$=\frac{1}{2}(3+3) = \frac{1}{2} \times 6 = 3$$
.

Hybridisation of B in BF_3 is sp^2 . Number of electrons around central atom, B in BF_3 is equal to the number of electrons in three sigma bonds (B-F) i.e. = 3 B–F bonds × 2 electrons in one

 σ -bond.

= 6 electrons

33 Match the coordination number and type of hybridisation with distribution of hybrid orbitals in space based on valence bond theory. [NEET (Oct.) 2020]

	Coordination number and type of hybridisation		Distribution of hybrid orbitals in space
Α.	4, sp ³	١.	trigonal bipyramidal
Β.	4, dsp ²	.	octahedral
C.	5, sp ³ d	.	tetrahedral
D.	6, d ² sp ³	IV.	square planar

Select the correct option.

	А	В	С	D	А	В	С	D
(a)			IV	1	(b) III	IV	Ι	
(c)	IV	T	Ш		(d) III	Ι	IV	
Ar	ıs.	(b)						

or square planar \Rightarrow (IV)

35 Match the xenon compounds in Column I with its structure in Column II and assign the correct code : [NEET (National) 2019]

	Column I		Column II
Α.	XeF ₄	(i)	Pyramidal
Β.	XeF ₆	(ii)	Square planar
	-		

	Column I		Column II
C.	XeOF ₄	(iii)	Distorted octahedral
D.	XeO ₃	(iv)	Square pyramidal
Code	es		

	А	В	С	D	А	В	СD	
(a)	(ii)	(iii)	(iv)	(i)	(b)(iii)	(iii)	(i) (iv)	
(c)	(iii)	(iv)	(i)	(ii)	(d) (i)	(ii)	(iii) (iv)	

Ans. (a)

The given xenon compounds with its structures are as follows:

Hence, the correct match is $(A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (iv), (D) \rightarrow (i)$

36 Predict the correct order among

the following. [NEET 2016, Phase I]

- (a) lone pair-lone pair > bond pair-bond pair > lone pair-bond pair
- (b) bond pair-bond pair > lone pair-bond pair > lone pair-lone pair
- (c) lone pair-bond pair > bond pair-bond pair > lone pair-lone pair
- (d) lone pair-lone pair > lone pair-bond pair > bond pair-bond pair

Ans. (d)

According to the postulate of VSEPR theory, a lone pair occupies more space than a bonding pair, since it lies closer to the central atom. This means that the repulsion between the different electron pairs follow the order.

lp-lp>lp-bp>bp-bp

37 Consider the molecules CH₄, NH₃ and H₂O. Which of the given statements is false? [NEET 2016, Phase I]

(a) The H–O–H bond angle in
$$H_2O$$
 is larger than the H–C–H bond angle in CH_4

- (b) The H–O–H bond angle in $\rm H_{2}O$ is smaller than the H–N–H bond angle in $\rm NH_{3}$
- (c) The H–C–H bond angle in CH $_4$ is larger than the H–N–H bond angle in $\rm NH_3$
- (d) The H–C–H bond angle in CH₄, the H–N–H bond angle in NH₃ and the H–O–H bond angle in H₂O are all greater than 90°

Ans. (a)

As the number of lone pair of electrons on central element increases, repulsion between those lone pair of electrons increases and therefore, bond angle decreases.

Molecules Bond angle

 CH_4 (no lone pair of electrons) 109.5° NH_3 (one lone pair of electrons) 107.5° H_2 0 (two lone pair of electrons) 104.45°

38 The hybridisations of atomic orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ respectively are

[NEET 2016, Phase II]

(a) sp, sp^3 and sp^2 (b) sp^2 , sp^3 and sp(c) sp, sp^2 and sp^3 (d) sp^2 , sp and sp^3

Ans.	(C)
------	-----

lon	Structure	Hybridisation
NO ₂ ⁺	0=_N⊕0	sp
NO_3^-	0 ¯ N→0	sp ²
NH ₄ ⁺		sp ³

Thus, option (c) is correct.

40 Which of the following pairs of ions are isoelectronic and isostructural? [CBSE AIPMT 2015]

(a) CO_3^{2-} , SO_3^{2-} (c) SO₃²⁻, NO₃⁻

Number of electrons $CO_3^{2-} = 6 + 2 + 24 = 32$ $SO_3^{2-} = 16 + 2 + 24 = 42$ $CIO_{3}^{-} = 4 + 24 + 1 = 42$ $CO_3^{2-} = 6 + 24 + 2 = 32$ $NO_{3}^{-} = 7 + 2 + 24 = 33$ Hence, CIO_3^- and SO_3^{2-} are isoelectronic

and are pyramidal in shape.

41 Which one of the following species has plane triangular shape? AIPMT 2014]

	LCD2E AIM
a)N ₃	(b)NO ₃
$c)NO_2^-$	(d)CO ₂

Ans. (b)

Species with sp^2 hybridisation are planar triangular in shape. Among the given species NO_3^- is sp^2 hybridised with no lone pair of electrons on central atom, N. Whereas, N_3 , NO_2^- and CO_2 are sp hybridised with a linear shape.

42 Which of the following is a polar molecule? [NEET 2013] (a) BF_3 (b) SF_4 (c) SiF_4 (d) XeF_4

Ans. (b)

Symmetrical molecules are generally non-polar although they have polar bonds. This is because bond dipole of one bond is cancelled by that of the other. BF₃, SiF₄ and XeF₄ being symmetrical as non-polar. SF₄ is unsymmetrical because of the presence of a lone pair of electrons. Due to which it is a polar molecule.

43 Which of the following species contains three bond pairs and one lone pair around the central atom? [NEET 2013]

(a) H_2O (b) BF_3 (c) NH_2^- (d) PCI_3 Ans. (d) (a) $H_2O \Rightarrow H_2O \Rightarrow H_2O \to H_2O \to H_2O$

$$[bp = bond pair and lp = lone pair]$$

(b)
$$BF_3 \Rightarrow \overset{F}{\underset{(3 \ bp + 0 \ lp)}{F}}$$

(c) $NH_2^- \Rightarrow \begin{bmatrix} \ddots \\ H & H \end{bmatrix}^-$
(d) $PCl_3 \Rightarrow \overset{Cl}{\underset{Cl}{F}} \overset{Cl}{\underset{Cl}{Cl}}$

(3 bp + 1 lp)

Thus, in PCl₃, the central P-atom is surrounded by three bond pairs and one lone pair.

44 Considering the state of hybridisation of carbon atoms, find out the molecule among the following which is linear? [CBSE AIPMT 2011]

 $(a)CH_z-C \equiv C-CH_z$ $(b)CH_2 = CH - CH_2 - C \equiv CH$ $(c)CH_3 - CH_2 - CH_2 - CH_3$ $(d)CH_3 - CH = CH - CH_3$

Ans. (a)

 $H_3 \overset{\circ}{C} \longrightarrow \overset{\circ}{C} \Longrightarrow \overset{\circ}{C} \longrightarrow \overset{\circ}{C} H_3$ is linear because C_2 and C₃ are *sp* hybridised carbon atom.

45 Which of the two ions from the list given below, have the geometry that is explained by the same hybridisation of orbitals,

$$NO_{2}^{-}, NO_{3}^{-}, NH_{2}^{-}, NH_{4}^{+}, SCN^{-}?$$

[CBSE AIPMT 2011] (a)NH⁺₄ and NO⁻₂ (b) SCN⁻ and NH₂ $(c)NO_{2}^{-}$ and NH_{2}^{-} $(d)NO_{2}^{-}$ and NO_{3}^{-}

Ans. (d)

- $NO_2^- \longrightarrow sp^2$ $NO_3^- \longrightarrow sp^2$ $NH_2^+ \longrightarrow sp^3$ $NH_4^- \longrightarrow sp^3$ $SCN^+ \longrightarrow sp$ NO_2^- and NO_3^- both have the same hybridisation, i.e. sp^2 .
- **46** In which of the following pairs of molecules/ions, the central atoms have sp^2 hybridisation?

[CBSE AIPMT 2010]

 $(a)NO_{2}^{-}$ and NH_{3} $(b)BF_3$ and $NO_2^ (c)NH_2^-$ and H_2O $(d)BF_3$ and NH_2^-

Ans. (b)

Key Idea For sp² hybridisation, there must be 3σ -bonds or 2σ -bonds along with a lone pair of electrons. (i) $NO_2^- \Rightarrow 2\sigma + 1lp = 3$, i.e. sp^2

- hybridisation (ii) NH₃ \Rightarrow 3 σ + 1*lp* = 4, i.e. sp³ hybridisation
- iii) BF₃ \Rightarrow 3 σ + 0 lp = 3, i.e. sp² hybridisation
- (iv) $NH_2^- \Rightarrow 2\sigma + 2lp = 4$, i.e. sp^3 hybridisation
- (v) $H_2 O \Longrightarrow 2\sigma + 2lp = 4$, i.e. sp^3 hybridisation

Thus, among the given pairs, only BF₃ and NO_2^- have sp^2 hybridisation.

47 In which one of the following species the central atom has the type of hybridisation which is not the same as that present in the other three? [CBSE AIPMT 2010] (a)SF (b)13 (c) SbCl² (d)PCI₅

Ans. (c)

Key Idea Molecules having same hybridisation have same number of hybrid orbitals,

$$H = \frac{1}{2}[V + X - C + A]$$

where,

V = number of valence electrons of central atom X = number of monovalent atoms C = charge on cationA = charge on anion $SbCl_{r}^{2-} = sp^{3}d^{2}$, $PCl_{r} = sp^{3}d$ $SF_4 = sp^3d$, $I_3^- = sp^3d$

(b) CIO_{3}^{-}, CO_{3}^{2-}

(d) CIO₃, SO₃²

48 In which of the following molecules/ions BF_3 , NO_2^- , NH_2^- and H_2O , the central atom is sp² hybridised? [CBSE AIPMT 2009] $(a)NO_2^-$ and $NH_2^ (b)NH_2^-$ and H_2O $(c)NO_2^-$ and H_2O $(d)BF_3$ and NO_2^- Ans. (d) BF₃ $B \stackrel{\sigma}{\longrightarrow} F \Rightarrow 3\sigma$ -bonds, i.e. sp^2 hybridisation σ Ė Planar structure $NO_2^ 0 = N^{\Theta} = 0 \Rightarrow 2\sigma$ -bonds +1 lone pair of electrons, i.e. sp^2 hybridisation NH₂ $H^{\sigma} - N^{\sigma} + \Rightarrow 2\sigma$ -bonds +2 lone pairs, i.e.

sp³ hybridisation

 $H_2 0 = \sigma \sigma$ H H

⇒ 2σ -bonds +2 lone pairs, i.e. sp^3 hybridisation, Thus, in BF₃ and NO₂⁻, central atom is sp^2 hybridised, while NH₂, NH₃ and H₂O are sp^3 hybridised.

49 The angular shape of ozone molecule (O₃) consists of [CBSE AIPMT 2008]

(a) 1 sigma and 2 pi-bonds
(b) 2 sigma and 2 pi-bonds
(c) 1 sigma and 1 pi-bonds
(d) 2 sigma and 1 pi-bonds

Ans. (d)

In case of single bond, there is only one σ -bond, in case of double bond, there is one σ and one π -bonds while in case of triple bond, there is one σ and two π -bonds. Thus, angular shape of ozone (0₃) contains 2σ and 1π -bonds as shown below

••

2 sigma and one π -bonds.

(a) SF₄ and XeF₄ (b) SO₃⁻⁻ and NO₃⁻⁻ (c) BF₃ and NF₃ (d) BrO₃⁻⁻ and XeO₃

Ans. (d)

- (a) $SF_4 = irregular tetrahedral (sp³d, one lone pair)$
 - $XeF_4 = square planar (sp^3d^2, two lone pairs)$
- (b) SO₃²⁻ = pyramidal (sp³, one lone pair) NO₃⁻ = trigonal planar (sp²)
- (c) $BF_3 = trigonal planar(sp^2)$ $NF_3 = pyramidal(sp^3)$
 - $NF_3 = pyramidal(sp)$
- (d) $BrO_3^- = pyramidal(sp^3, one lone pair)$ XeO₃ = pyramidal(sp³, one lone pair)

51 Which of the following species has a linear shape? [CBSE AIPMT 2006]

- (a)NO₂⁻ (b)SO₂
- (c)N0⁺₂

Ans. (c)

 NO_2 has linear shape due to sp

 $(d)0_{3}$

While SO_2 , NO_2^- and O_3 have angular shape

52 Which of the following is not a correct statement?

[CBSE AIPMT 2006]

- (a) The electron deficient molecules can act as Lewis acids
- (b) The canonical structures have no real existence
- (c) Every AB₅ molecule does infact have square pyramid structure
- (d) Multiple bonds are always shorter than corresponding single bond

Ans. (c)

Generally, AB_5 molecules have trigonal bipyramidal structure due to sp^3d hybridisation but in some cases due to presence of lone pair of electrons, its geometry becomes distorted.

53 Which of the following is not isostructural with SiCl₄?

[CBSE AIPMT 2006] (a) SCI₄ (b) SO²⁻ (c) PO³⁻₄ (d) NH⁴₄

Ans. (a)

SCl₄ is not isostructural with SiCl₄ because it shows square planar structure due to involvement of repulsion between lone pair and bond pair of electrons.

 SO_4^{2-} shows tetrahedral structure due to sp^3 hybridisation.

- PO_4^{3-} shows tetrahedral structure due
- to sp³ hybridisation.

 NH_{4}^{+} shows tetrahedral structure due to sp^{3} hybridisation.

54 Which of the following molecules has trigonal planar geometry? [CBSE AIPMT 2005]

(a)IF ₃	
(c)NH ₃	

Ans. (d)

IF₃ has bent-T geometry

(b)PCl_z

(d)BF3

 $2lp + 3bp = sp^{3}d$ hybridisation PCl₃ has pyramidal geometry

 \bigcirc

 $1lp + 3bp = sp^3$ hybridisation NH_3 has trigonal pyramidal geometry

 $1/p + 3bp = sp^3$ hybridisation BF₃ has trigonal planar geometry

 $3bp \text{ only} = sp^2 (hydridisation)$

55 H_2O is dipolar, whereas BeF_2 is not.

It is because [CBSE AIPMT 2004]

- (a) the electronegativity of F is greater than that of O
- (b) H_2O involves hydrogen bonding whereas BeF_2 is a discrete molecule
- (c) H_2O is linear and BeF₂ is angular
- (d) $\rm H_2O\,is\,angular\,and\,BeF_2$ is linear

Ans. (d)

The structure of H₂O is angular or V-shape and has sp³-hybridisation and

104.5° bond angle. Thus, its dipole moment is positive or more than zero.

But in BeF2, structure is linear due to sp hybridisation ($\mu = 0$)

Thus, due to $\mu > 0$, H₂O is dipolar and due to $\mu = 0$, BeF₂ is non-polar.

56 In an octahedral structure, the pair of d orbitals involved in $d^2 s p^3$ -hybridisation is

[CBSE AIPMT 2004]

— F

(a)
$$d_{x^2-y^2}, d_{z^2}$$
 (b) $d_{xz}, d_{x^2-y^2}$
(c) d_{z^2}, d_{xz} (d) d_{xy}, d_{yz}

Ans. (a)

(a)d a a.d a

In the formation of $d^2 s p^3$ hybrid orbitals, two (n-1) d-orbitals of e_a set, i.e. $(n-1)d_{z^2}$ and $(n-1)d_{x^2-v^2}$ orbitals, one ns and three $np(np_x, np_y)$ and np_z .) orbitals combine together.

57 In a regular octahedral molecule, MX_{6} the number of X - M - Xbonds at 180° is [CBSE AIPMT 2004] $(a) = \overline{a}$ (-) 0

(a) J	(D) Z
(c)6	(d)4

Ans. (a)

In octahedral structure $MX_{\rm s}$, the six hybrid orbitals $(sp^{3}d^{2})$ are directed towards the cornes of a regular octahedral with an angle of 90°. According to following structure of MX_6 , the number of X - M - X bonds at 180° must be three.

58 Among the following, the pair in which the two species are not isostructural, is **[CBSE AIPMT 2004]** (a) SiF₄ and SF₄ $(b)IO_3^-$ and XeO_3^- (c)BH₄⁻ and NH₄⁺ $(d)PF_{6}^{-}$ and SF_{6}

Ans. (a)

SiF₄ and SF₄ are not isostructural because SiF₄ is tetrahedral due to sp^3 hybridisation of Si.

 $_{14}$ Si = 1s², 2s², 2p⁶, 3s²3p² (in ground state) $_{14}$ Si = 1s², 2s²2p⁶, 3s¹3p³ (in excited state)

hybridisation

Hence, four equivalent sp^3 hybrid orbitals are obtained and they are overlapped by four p-orbitals of four fluorine atoms on their axis. Thus, it shows following structure :

While SF₄ is not tetrahedral but it is arranged in trigonal bipyramidal geometry (has see saw shape) because in it S is $sp^{3}d$ hybrid.

> $_{16}S = 1s^2, 2s^22p^6, 3s^23p_x^23p_y^13p_z^1$ (in around state)

$$= 1s^2, 2s^22p^6, 3s^23p_x^1 3p_y^1 3p_z^{1}, 3d_{xy}^{1}$$

sp³d hybridisation (in first excitation state)

or

Hence, five $sp^{3}d$ hybrid orbitals are obtained. One orbital is already paired and rest four are overlapped with four p-orbitals of four fluorine atoms on their axis in trigonal bipyramidal form.

This structure is distorted from trigonal bipyramidal to tetrahedral due to involvement of repulsion between lone pair and bond pair.

59 Which of the following has $p\pi - d\pi$ bonding? [CBSE AIPMT 2002] (a)NO₃ $(b) SO_3^{2}$ $(c)B0^{\frac{3}{7}}$ $(d)CO_{2}^{2}$ Ans. (b)

 $\ln SO_3^{2-}$, S is sp^3 hybridised, so

$$O = \frac{\pi}{\sigma} S = \frac{\sigma}{\sigma} O^{-}$$

 $_{16}S = 1s^2, 2s^22p^6, 3s^23p_x^13p_y^13p_z^1$ (Sulphur atom in excited state) sp³hybridisation

 $3d_{xv}^1$

In 'S' the three *p*-orbitals forms σ -bonds with three oxygen atoms and unhybridised d-orbital is involved in π -bond formation.

 $O_8 = 1s^2$, $2s^22p_x^22p_y^12p_z^1$ In oxygen two unpaired p-orbitals are present, one is involved in σ -bond formation while other is used in π -bond

formation. Thus in SO_3^{2-} , p and d-orbitals are involved for $p\pi$ - $d\pi$ bonding.

60 Which of the following two are isostructural? [CBSE AIPMT 2001]

(b)NH₃, and BF₃ (a) XeF₂, and IF₂⁻ $(c)CO_{3}^{2-}$, and SO_{3}^{2-}

(d)PCl_e, and ICl_e

Ans. (a)

Compounds having same structure and same hybridisation are known as isostructural species. e.q. XeF₂ and IF₂ are $sp^{3}d$ hybridised and both have linear shape.

> F-I-F F—Xe—F

61 Which one of the following is planar? [CBSE AIPMT 2000] (a)XeF4

(b)XeO4 (c)XeO₃F $(d) XeO_3F_2$ Ans. (a)

Structure of XeF₄ is as follows

It involves sp^3d^2 hybridisation in Xe-atom. The molecules has square planar structure. Xe and four F-atoms are coplanar. The lone pairs are present on axial positions, minimise electron pair repulsion.

62 The type of hybridisation of boron in diborane is [CBSE AIPMT 1999] (a) *sp* hybridisation

(b) sp^2 hybridisation (c) sp^3 hybridisation (d) sp^3d^2 hybridisation

Ans. (c)

Each boron atom in diborane (B_2H_6) is sp^3 hybridised. In the structure of diborane four H-atoms, two on the left and two on the right, known as terminal hydrogens, are in different environments from the other two hydrogen atoms which are known as bridging atoms. The two boron atoms and the four terminal hydrogen atoms lie in the same plane while the two boron atoms, one above and the other below, lie in a plane perpendicular to this plane.

63 AsF₅ molecule is trigonal

bipyramidal. The hybrid orbitals used by As-atoms for bonding are [CBSE AIPMT 1997]

(a) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$ (b) d_{xy}, s, p_x, p_y, p_z

(c) s, p_x, p_y, p_z, d_{xy} (d) $d_{x^2 - y^2}, s, p_x, p_y, p_z$ **Ans.** (c)

 $As = 1s^{2}, 2s^{2}, 2p^{6}, 3s^{1}3p_{x}^{1} 3p_{y}^{1} 3p_{z}^{1} 3d^{1}$

 $sp^{3}d$ hybridisation Due to this hybridisation, geometry of the AsF₅ molecule is trigonal bipyramidal and the hybrid orbitals used by As-atom are s, p_x , p_y , p_z and d_{xy} .

64 Which of the following does not have a tetrahedral structure?

[CBSE AIPMT 1994]

(a)BH₄⁻ (b)BH₃ (c)NH₄⁺ (d)H₂O Ans. (b)

 ${\rm BH}_3$ have ${\rm sp}^2$ hybridisation, so it have trigonal planar structure, not tetrahedral structure.

65 Among the following orbital bonds, the angle is minimum between **[CBSE AIPMT 1994]**

(a) sp³ bonds

(b) p_x and p_y -orbitals

(c) H - O - H in water (d) *sp* bonds

Ans. (b)

When p_x and p_y form bond, then the bond angle is minimum and it is only 90°.

NOTE

Bond angle in sp^3 bonds, H-O-H in water and in sp bonds are 109°28, 180° and 180° respectively.

66 When the hybridisation state of carbon atom changes from sp³ to sp² and finally to sp, the angle between the hybridised orbitals
 [CBSE AIPMT 1993]

(a) decreases gradually
(b) decreases considerably
(c) is not affected
(d) increases progressively

Ans. (d)

In sp^3 hybridisation bond angle is 109°28′. In sp^2 hybridisation bond angle is 120°. In sp hybridisation bond angle is 180°.

67 Which structure is linear? [CBSE AIPMT 1992]

a)SO ₂			
$c)CO_{3}^{2}$	-		
-			

(b)CO₂ (d)SO₄²⁻

Ans. (b)

Out of SO_2 , CO_3^{2-} , SO_4^{2-} and CO_2 , CO_2 have sp hybridisation, thus have linear geometry.

68 An sp³ hybrid orbital contains [CBSE AIPMT 1991]

(a) $\frac{1}{4}$ s-character

- (b) s-character
- c) s-character
- d) s-character

Ans. (a)

In sp^3 hybrid orbital one part, out of four orbital is s-orbital, so it have 25% or $\frac{1}{4}$

s-character.

69 In which one of the following molecules, the central atom said to adopt sp^2 hybridisation?

	CR2E VIDWL 198
(a)BeF ₂	(b)BF ₃
(c)C ₂ H ₂	(d)NH ₃

Ans. (b)

- $$\begin{split} & \text{BeF}_2 \text{sp hybridisation} \\ & \text{BF}_3 \text{sp}^2 \text{ hybridisation} \\ & \text{C}_2\text{H}_2 \text{sp hybridisation} \end{split}$$
- $\rm NH_3 sp^3$ hybridisation

Ans. (a)

H₂S have sp³ hybridisation while remaining all have sp hybridisation, so H₂S have bent structure and other have linear geometry.

71 Equilateral shape has

- [CBSE AIPMT 1988]
- (a) sp hybridisation (b) sp^2 hybridisation (c) sp^3 hybridisation (d) dsp^2 hybridisation

Ans. (a)

Equilateral or triangular planar geometry is formed by sp^2 hybridisation.

orbital

72 The angle between the overlapping of one *s*-orbital and one *p*-orbital is [CBSE AIPMT 1988]

(a)180° (c)109°28**'**

(b)120° (d)120° 60'

Ans. (a)

When s-orbital and p-orbital overlap each other, then the bond angle formed is 180° as given below

TOPIC 3

Molecular Orbital Theory, Hydrogen and Metallic Bonding

 $\begin{array}{c|c} \textbf{73} & \text{Identify a molecule which does not} \\ & \text{exist.} & \textbf{[NEET (Sep.) 2020]} \\ & (a) \text{Li}_2 & (b) \text{C}_2 & (c) \text{O}_2 & (d) \text{He}_2 \\ & \textbf{Ans. (d)} \end{array}$

If bond order of a molecules becomes zero, the molecule will not exist. Bond order

Number of bonding electrons – _____Number of antibonding electrons

$$= \frac{N_b - N_a}{2}$$

$$\text{Li}_2(6e^-) \Rightarrow \sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2; B0 = \frac{4-2}{2} = 1$$

$$\text{C}_2(12e^-) \Rightarrow \sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^2 \sigma_{2s}^{*2} \pi_{2p_x} = \pi_{2p_y}^2$$

$$B0 = \frac{8-4}{2} = 2$$

$$\text{O}_2(16e^-) \Rightarrow \sigma_{1s}^2 \sigma_{1s}^{*2} \sigma_{2s}^{*2} \sigma_{2s}^{*2} \sigma_{2p_x}^{*2} = \pi_{2p_y}^2$$

$$= \pi_{2p_y}^2 \pi_{2p_x}^2 = \pi_{2p_y}^2$$

$$B0 = \frac{10-6}{2} = 2$$

$$\text{He}_2(4e^-) = \sigma_{1s}^2 \sigma_{1s}^{*2}; B0 = \frac{2-2}{2} = 0$$

So, He₂ does not exist.

74 The potential energy (y) curve for H_2 formation as a function of internuclear distance (x) of the H-atoms is shown below.

[NEET (Oct.) 2020]

From the information mentioned in the above curve, bond energy (BE) of H_2 molecule is (b - a) or |b - a|.

75 Which of the following diatomic molecular species has only

 π -bonds according to molecular orbital theory?**[NEET (National) 2019]**

(a)N ₂	(b)C ₂
(c)Be ₂	(d)0 ₂

Ans. (b)

The molecular orbital configuration of $\mathbf{C}_{\!\!2}$ is

$$\begin{split} & \mathbb{C}_2(Z=12) = \boldsymbol{\sigma} \, \mathrm{ls}^2, \, \boldsymbol{\sigma}^* \, \mathrm{ls}^2, \, \boldsymbol{\sigma} 2 s^2, \, \boldsymbol{\sigma}^* 2 s^2, \\ & \pi 2 p_x^2 = \pi 2 p_y^2. \\ & \text{Double bond in } \mathbb{C}_2 \text{ consists of both} \\ & \pi\text{-bonds because of the presence of last} \\ & (\text{valence) four electrons in two} \\ & \pi\text{-molecular orbitals.} \end{split}$$

The configuration of $\rm N_2$, $\rm Be_2$ and $\rm O_2$ are as follows:

$$\begin{split} N_2(Z = 14) - \sigma 1s^2, \, \sigma^* 1s^2, \, \sigma 2s^2, \, \sigma^* 2s^2, \\ \pi 2p_x^2 = \pi 2p_y^2, \, \sigma 2p_z^2 (1\sigma \text{ and } 2\pi \text{-bonds}) \end{split}$$

 $Be_2(Z = 8) - \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2 (\sigma bonds only)$

 $\begin{array}{l} {\sf O}_2(Z=16)-\sigma\,1s^2,\,\sigma^*\,1s^2,\,\sigma\,2\,s^2,\,\sigma^*\,2\,s^2,\\ \sigma^*\,2p_{z'}^2,\,\pi\,2p_{x}^2=\pi\,2p_{y'}^2,\,\pi^*\,2p_{x}^1=\pi^*\,2p_{z}^1(\sigma,\,\pi\\ {\rm and}\,1\pi^*\,{\rm bond})\\ {\sf Hence,\,option\,(b)\,is\,correct.} \end{array}$

Ans. (d)

Key Idea If all the electron in a molecule are paired, the molecule is diamagnetic and if there are unpaired electrons in a molecule, it is paramagnetic. Molecular orbital configuration of given molecules are as follows:

- (a) $N_2(Z = 14) \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma 2p_z^2$ It is a diamagnetic molecule due to absence of unpaired electron.
- (b) $H_2(Z=2)-1\sigma^2$
- It is a diamagnetic molecule. (c) Li_2 (Z = 6) $-\sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$

 $\begin{array}{c} (C) \ \Box_{1_{2}} (Z=6) - \sigma \ \text{is} \ , \sigma^{-1} \ \text{is} \ , \sigma^{2} \ \text{s} \\ \text{It is a diamagnetic molecule.} \end{array}$

(d) $O_2(Z = 16) - \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma^2 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\pi^* 2p_x^1 = \pi^* 2p_y^1$ It is a paramagnetic molecule due to presence of unpaired electrons in each orbital of degenerate levels. Thus, option (d) is correct. 77 Consider the following species CN⁺, CN⁻, NO and CN
Which one of these will have the highest bond order? [NEET 2018]
(a) CN⁺
(b) CN⁻
(c) NO
(d) CN

Ans. (b)

The formula of bond order is given as B.O.

No. of electrons	No. of electrons
_ in bonding	in antibonding
_	2

Energy level pattern for molecular orbitals of different molecules depends upon their central atom. **N0 :** Central atom is N

(Total number of electrons = 15) 1^{2} *1 2^{2} 0^{2} *0 2^{2}

$$(\pi 2p_x^2 \approx \pi 2p_y^2), \sigma 2p_z^2, (\pi 2p_x^{*1} \approx \pi 2p_y^{*0}), \sigma 2p_z^2, (\pi 2p_x^{*1} \approx \pi 2p_y^{*0}), \sigma 2p_z^{*1}, \sigma 2p_z^{*0}, \sigma 2p_z$$

CN⁻ : Central atom is C

[Total number of electrons= 14] $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, (\pi 2px^2)$

 $=\pi 2py^2 \sigma 2p_z^2$)

 $\approx \pi 2 p_v^2$), $\sigma 2 p_z^1$

B.O. =
$$\frac{10-4}{2} = 3$$

CN : Central atom is C

[Total number of electrons = 13] σ 1s², σ^* 1s², σ 2s², σ^* 2s², $(\pi 2p_x^2)$

$$B.0 = \frac{9-4}{2} = 2.5$$

CN⁺ : Central atom is C

[Total number of electrons = 12]

$$\sigma$$
1s², σ ^{*}1s², σ 2s², σ *2s², $(\pi 2p_x^2 \approx \pi 2p_y^2)$
B.0 = $\frac{8-4}{2}$ =2

Therefore, option (b) is correct.

78 Which one of the following compounds shows the presence of intramolecular hydrogen bond? [NEET 2016, Phase II]

(a) H₂O₂

- (b) HCN
- (c) Cellulose
- (d) Concentrated acetic acid

Ans. (c)

Intermolecular hydrogen bonding is present in concentrated acetic acid, $\rm H_2O_2$ and HCN while cellulose has intramolecular hydrogen bonding as shown below :

Concentrated Acetic Acid

$$H - C \equiv N - H - C \equiv N$$

Cellulose In above molecules, dotted lines represent hydrogen bonding.

79 Which of the following pairs of ions is isoelectronic and isostructural? [NEET 2016, Phase II] (a) CO_3^{2-} , NO_3^{--} (b) CIO_3^{-} , CO_3^{2--} (c) SO_3^{2-} , NO_3^{---} (d) CIO_3^{--} , SO_3^{2----}

	0	0	
Ans.	(a)	and	(d)

Hence both options (a) and (d) are correct.

80 Which of the following options represents the correct bond order? [CBSE AIPMT 2015]

(a) $O_2^- > O_2 > O_2^+$ (b) $O_2^- < O_2 < O_2^+$ (c) $O_2^- > O_2 < O_2^+$ (d) $O_2^- < O_2 > O_2^+$

Ans. (b)

Bond order of O₂ $0_{2}^{-} = \sigma 1s^{2}, \sigma^{*} 1s^{2}, \sigma 2s^{2}, \sigma^{*} 2s^{2}$ $\sigma 2p_z^2(\pi 2p_x^2 = \pi 2p_v^2)(\pi^* 2p_x^1 = \pi^* 2p_v^1)$ Bond order number of electrons in BMO – number of elections ABMO 2 $=\frac{10-7}{2}=\frac{3}{2}=1.5$ $O_{2}^{+} = \sigma 1s^{2}, \sigma^{*} 1s^{2}, \sigma 2s^{2}, \sigma^{*} 2s^{2}, \sigma 2p_{2}^{2}$ $(\pi 2p_x^2 = \pi 2p_y^2)(\pi^* 2p_x^1 = \pi^* 2p_y^0)$ $BO = \frac{10-5}{2} = \frac{5}{2} = 2.5$ $O_2 = \sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2 \sigma 2p_z^2$ $(\pi 2p_x^2 = \pi 2p_y^2) (\pi^2 2p_x^1 = \pi^2 2p_y^1)$ $BO = \frac{10-6}{2} = \frac{4}{2} = 2$ So, the correct sequence is $O_{2}^{-} < O_{2} < O_{2}^{+}$

 81
 Which of the following is paramagnetic?
 [NEET 2013]

 (a) CO
 (b) O_2^

 (c) CN^ (d) NO^+

Ans. (b)

Paramagnetic species contains unpaired electrons in their molecular orbital electronic configuration. Molecular orbital configuration of the given species is as

CO(6 + 8 = 14)

$$\sigma$$
 1s², $\overset{*}{\sigma}$ 1s², σ 2s², $\overset{*}{\sigma}$ 2s², π 2p_x²

 $\approx \pi 2 \rho_y^2, \, \sigma 2 \rho_z^2 \label{eq:alpha}$ (All the electrons are paired so, it is

diamagnetic). $O_{2}^{-}(8+8+1=17)$

$$\sigma_{1s^{2}}, \sigma_{1s^{2}}, \sigma_{2s^{2}}, \sigma_{2$$

 $\approx \pi 2 p_v^2$, $\frac{*}{\pi} 2 p_x^2 \approx \frac{*}{\pi} 2 p_v^1$

(It contains one unpaired electron so, it is paramagnetic.) $CN^{-}(6+7+1=14)=$ same as CO $N0^{+}(7+8-1=14)=$ same as CO Thus, among the given species only O_2^{-} is paramagnetic.

82 Bond order of 1.5 is shown by [NEET 2013] (a)0⁺₂ (b)0⁻₂

$2^{-10^{2}}$	(4)0
C/O ₂	(u)0 ₂
Ans. (b)	

Molecular orbital configuration of O_2^+ (8+8-1=15)

 $= \sigma 1s^2$, $\overset{*}{\sigma} 1s^2$, $\sigma 2s^2$, $\overset{*}{\sigma} 2s^2$, $\sigma 2p_{z'}^2$

$$\pi 2p_x^2 \approx \pi 2p_y^2, \ \pi 2p_x^1 \approx \pi 2p_y^0$$

Bond order (BO) = $\frac{N_b - N_a}{2}$

(where, N_b = number of electrons in bonding molecular orbital, N_a = number of electrons in antibonding molecular orbital) $\therefore B0 = \frac{10-5}{2} = 2.5$

Similarly,
(b)
$$O_2^{-}(8 + 8 + 1 = 17)$$

so, $BO = \frac{N_b - N_a}{2} = \frac{10 - 7}{2} = 1.5$
(c) $O_2^{2-}(8 + 8 + 2 = 18)$
 $BO = \frac{N_b - N_a}{2} = \frac{10 - 8}{2} = 1$
(d) $O_2(8 + 8 = 16)$
 $BO = \frac{10 - 6}{2} = 2$

Thus, O_2^- shows the bond order 1.5.

83	The pair of species with the same		
	bond order is	[NEET 2013]	
	(a)0 ²⁻ , B ₂	(b)0 ⁺ ₂ , N0 ⁺	
	(c) NO, CO	$(d)N_{2}, O_{2}$	

Ans. (a)

According to molecular orbital theory, $O_2^{2-}(8+8+2=18)$

$$= \boldsymbol{\sigma} 1 s^2, \, \boldsymbol{\sigma} 1 s^2, \, \boldsymbol{\sigma} 2 s^2, \, \boldsymbol{\sigma} 2 s^2, \, \boldsymbol{\sigma} 2 p_z^2, \, \boldsymbol{\pi} 2 p_z^2$$

 $\approx \pi 2 p_v^2$, $\pi^2 2 p_x^2 \approx \pi^2 2 p_v^2$

Bond order (BO) =
$$\frac{N_b - N_a}{2} = \frac{10 - 8}{2} = 1$$

 $B_{2}(5+5=10) = \sigma 1s^{2}, \ \overset{*}{\sigma} 1s^{2}, \ \sigma 2s^{2}, \ \overset{*}{\sigma} 2s^{2},$

$$\pi 2p_x^1 \approx \pi 2p_y^1$$
B0 = $\frac{6-4}{2}$ = 1

Thus, O_2^{2-} and B_2 have the same bond order.

NOTE

BO of 0^+_2 = 2.5 , NO^+ = 3 , NO = 2 .5 , CO = 3 , $N_2 = 3 \, \text{and} \, 0_2 = 2$

84 Which of the following has the minimum bond length?

[CBSE AIPMT 2011] (a) 0_2^- (b) $0_2^{2^-}$ (c) 0_2 (d) 0_2^+ Ans. (d)

Bond order of
$$O_2^+ = \frac{10-5}{2} = 2.5$$

Bond order of $O_2^- = \frac{10-7}{2} = 1.5$ Bond order of $O_2^{2^-} = \frac{10-8}{2} = 1$ Bond order of $O_2 = \frac{10-6}{2} = 2$ \therefore Maximum bond order = minimum bond length. \therefore Bond length is minimum for O_2^+ **85** Which one of the following species does not exist under normal conditions? **[CBSE AIPMT 2010]**

(a)Be₂⁺

 $(c)B_{2}$

Ans. (b) Key Idea Molecules with zero bond order, do not exist. According to molecular orbital theory, (a) Be_2^+ (4+4-1=7)

(b)Be₂

(d)Li₂

 $= \sigma 1s^{2}, \sigma 1s^{2}, \sigma 2s^{2}, \sigma 2s^{1}$ Bond order (BO) $= \frac{4-3}{2} = 0.5$ (b) Be₂ (4+4=8) $= \sigma 1s^{2}, \sigma 1s^{2}, \sigma 2s^{2}, \sigma 2s^{2}$ BO $= \frac{4-4}{2} = 0$ (c) B₂(5+5=10) $= \sigma 1s^{2}, \sigma 1s^{2}, \sigma 2s^{2}, \sigma 2s^{2}, \pi 2p_{x}^{1} \approx \pi 2p_{y}^{1}$ Bond order (BO) $= \frac{6-4}{2} = 1$

(d) Li₂ (3 + 3 = 6) = $\sigma 1s^2$, $\dot{\sigma} 1s^2$, $\sigma 2s^2$ BO = $\frac{4-2}{2} = 1$

Thus, \mbox{Be}_2 does not exist under normal conditions.

86 What is the dominant intermolecular force on bond that must be overcome in converting liquid CH₃OH to a gas?

[CBSE AIPMT 2009]

(a) Hydrogen bonding(b) Dipole-dipole interaction(c) Covalent bonds(d) London or dispersion force

Ans. (a)

In between CH₃OH molecules intermolecular H-bonding exist. $\delta^+ \delta^- \delta^+ \delta^- \delta^+ \delta^-$

$$H = O - H =$$

Hence, it is the intermolecular H-bonding that must be overcome in converting liquid CH_3OH to gas.

87 According to molecular orbital theory which of the following lists rank the nitrogen species in terms of increasing bond order? [CBSE AIPMT 2009]

(a) $N_2^- < N_2 < N_2^{2-}$ (c) $N_2 < N_2^{2-} < N_2^{-}$

Ans. (b)

According to the molecular orbital theory (MOT),

$$N_{2}(7 + 7 = 14) = \sigma 1s^{2}, \ \dot{\sigma} 1s^{2}, \ \sigma 2s^{2}, \dot{\sigma} 2s^{2}, \ \pi 2p_{y}^{2} \approx 2p_{y}^{2}, \ \sigma 2p_{z}^{2}$$

(b) $N_2^{2-} < N_2^{-} < N_2$ (d) $N_2^{-} < N_2^{2-} < N_2$

$$\sigma \angle s^-$$
, $\pi \angle p_x^- \approx \angle p_y^-$,

Bond order = $\frac{10-4}{2} = 3$

$$N_2^-(7+7+1=15)$$

$$= \sigma 1s^2, \sigma 1s^2, \sigma 2s^2, \sigma 2s^2, \sigma 2s^2,$$

$$\sigma 2p_z^2, \ \pi 2p_x^2 \approx 2p_y^2, \ \pi 2p_x^2$$
$$B0 = \frac{10-5}{2} = 2.5$$
$$N_2^{2-}(7+7+2=16)$$

 $= \sigma 1s^2, \, \overset{\circ}{\sigma} 1s^2, \, \sigma 2s^2, \, \overset{\circ}{\sigma} 2s^2,$ $\sigma 2p_z^2, \, \pi 2p_x^2 \approx \pi 2p_y^2, \, \overset{\circ}{\pi} 2p_x^1 \approx \overset{\circ}{\pi} 2p_y^1$

$$BO = \frac{10-6}{2} = 2$$

Hence, the increasing order of bond order is,

 $N_2^{2-} < N_2^- < N_2$

88 Four diatomic species are listed below in different sequences. Which of these presents the correct order of their increasing bond order? **[CBSE AIPMT 2008]** (a) $0_2^- < NO < C_2^{2^-} < He_2^+$ (b) $NO < C_2^{2^-} < He_2^+$ (c) $C_2^{2^-} < He_2^+ < NO < 0_2^-$ (d) $He_2^+ < 0_2^- < NO < C_2^{2^-}$

Ans. (d)

The molecular orbital configuration of $O_2^-(8+8+1=17) = \sigma 1s^2, \ \sigma 1s^2, \ \sigma 2s^2, \ \sigma 2s^2$

$$B0 = \frac{10-5}{2} = 2.5$$

$$C_2^{2-}(6+6+2=14) = \sigma 1s^2, \ \sigma 1s^2, \\ \sigma 2s^2, \ \sigma 2s^2, \ \pi 2p_y^2 \approx \pi 2p_z^2, \ \sigma 2p_x^2$$

$$B0 = \frac{10-4}{2} = 3$$

$$He_2^+(2+2-1=3) = \sigma 1s^2, \ \sigma 1s^1$$

$$B0 = \frac{2-1}{2} = \frac{1}{2} = 0.5$$

Hence, order of increasing bond order is $He_2^+ < O_2^- < NO < C_2^{2^-}$

89 The correct order of C–O bond length among CO, CO₃^{2–},CO₂ is [CBSE AIPMT 2007]

 $\begin{array}{l} (a) CO_2 < CO_3^{2-} < CO \\ (b) CO < CO_3^{2-} < CO_2 \\ (c) CO_3^{2-} < CO_2 < CO \\ (d) CO < CO_2 < CO_3^{2-} \end{array}$

Ans. (d)

A bond length is the average distance between the centres of nuclei of two bonded atoms. A multiple bond (double or triple bonds) is always shorter than the corresponding single bond. The C-atom in CO_3^{2-} is sp^2 hybridised as shown:

The C-atom in CO_2 is sp hybridised with bond distance carbon-oxygen is 122 pm.

$$0 = C = 0 \longleftrightarrow ^{+} 0 = C = \bar{0} \longleftrightarrow$$

Ō—C≡Ŏ

The C-atom in CO is sp hybridised with C-O bond distance is 110 pm. $C=0^+$ So, the correct order is

 $CO < CO_2 < CO_3^{2-}$

- **90** The number of unpaired electrons in a paramagnetic diatomic molecule of an element with atomic number 16 is
 - (a) 2 (b) 3 (c) 4 (d) 1

Ans. (a)

Suppose the diatomic molecule is X. Then, molecular orbital electronic configuration of

$$_{16} X = \boldsymbol{\sigma} 1 s^2, \, \boldsymbol{\sigma} 1 s^2, \, \boldsymbol{\sigma} 2 s^2, \, \boldsymbol{\sigma} 2 s^2, \, \boldsymbol{\sigma} 2 p_z^2, \, \boldsymbol{\pi} 2 p_z^2$$

 $\approx \pi 2 p_v^2 , \pi^2 2 p_v^1 \approx \pi^2 2 p_v^1$

Due to presence of two unpaired electrons, it shows paramagnetic character.

91 Main axis of a diatomic molecule is z molecular orbital, p_x and p_y overlaps to form which of the following orbitals?

[CBSE AIPMT 2001]

(a) π -molecular orbital (b) σ -molecular orbital $(c)\delta$ -molecular orbital (d) No bond will form

Ans. (a)

For π -overlap the lobes of the atomic orbitals are perpendicular to the line joining the nuclei.

92 In X - H - - Y, X and Y both are electronegative elements, then [CBSE AIPMT 2001]

- (a) electron density on X will increase and on H will decrease
- (b) in both electron density will increase
- (c) in both electron density will decrease
- (d) on X electron density will decrease and on H increase

Ans. (a)

 $\ln X - H - Y$, X and Y both are electronegative elements, then electron density on X will increase and on H will decrease.

93 A compound contains atoms of three elements A, B and C. If the oxidation number of A is +2, B is +5and that of C is -2, the possible formula of the compound is

[CBSE AIPMT 2000]

(a) $A_2(BC_3)_2$ (b) $A_3(BC_4)_2$ $(c) A_3(B_4C)_2$ $(d)ABC_{2}$

Ans. (b)

 $\ln A_3(BC_4)_2$ 3 × oxidation number of A + 2 [oxidation number of B + 4 × oxidatio oxidation number of C = 0 $3 \times (+2) + 2 [5 + 4 \times (-2)] = 0$ 6 + 2[-3] = 0

94 Among the following group which represents the collection of isoelectronic species? [CBSE AIPMT 2000]

(a)NO, CN⁻, N₂, O₂⁻ (b)NO⁺, C₂²⁻, O₂⁻, CO (c)N₂, C²⁻, CO, NO (d)CO, NO⁺, CN⁻, C²₂

Ans. (d)

Species having equal number of electrons are known as isoelectronic species.

Number of electrons,

 $\ln CO = 6 + 8 = 14$

 $\ln NO^{+} = 7 + 8 - 1 = 14$

 $\ln CN^{-} = 6 + 7 + 1 = 14$

$$\ln C_{2}^{2-} = 12 + 2 = 14$$

Hence, all have 14 electrons, so they are isoelectronic species.

95 Which one of the following is not

parama	gnetic?	[CBSE AIPN	IT 2000]
(a) NO		(b)N ₂ +	
(c)CO		$(d)O_2^{-}$	

Ans. (c)

Paramagnetic character is shown by those atoms or molecules which have unpaired electrons.

In the given compounds CO is not paramagnetic since, it does not have unpaired electrons. The configuration of CO molecule is

 $CO(14) = \sigma 1s^2$, $\overset{*}{\sigma} 1s^2$, $\sigma 2s^2$, $\overset{*}{\sigma} 2s^2$, $\sigma 2p_x^2$,

 $\pi 2p_v^2 \approx \pi 2p_z^2$

96 The relationship between the dissociation energy of N₂ and N₂⁺ is [CBSE AIPMT 2000]

- (a) dissociation energy of N_2^+ > dissociation energy of N_2
- (b) dissociation energy of $N_2 =$
- dissociation energy of N₂⁺ (c) dissociation energy of N_2 > dissociation energy of N_2^+
- dissociation energy of N₂ can either (d) be lower or higher than the dissociation energy of N₂⁺

Ans. (c)

The dissociation energy will be more when the bond order will be greater and bond order ∝ dissociation energy Molecular orbital configuration of $N_{2}(14) = \sigma 1s^{2}, \overset{*}{\sigma} 1s^{2}, \sigma 1s^{2}, \overset{*}{\sigma} 2s^{2}, \pi 2p_{v}^{2}$

 $\approx \pi 2 p_z^2$, $\sigma 2 p_x^2$

So, bond order of

$$N_2 = \frac{N_b - N_a}{2} = \frac{10 - 4}{2} = 3$$

and bond order of $N_2^+ = \frac{9 - 4}{2} = 2.5$

As the bond order of N_2 is greater than N_2^+ so, the dissociation energy of N_2 will be greater than N_2^+ .

97 Which one of the following molecules will form a linear polymeric structure due to hydrogen bonding? [CBSE AIPMT 2000]

(a)NH₃ (c)HCI

Ans. (d)

HF molecules have linear polymeric structure due to hydrogen bonding. H—F---H—F---H—F ↑ H-bond

(b)H₂O

(d)HF

98 The number of antibonding electron pairs in O_2^{2-} molecular ion on the basis of molecular orbital theory is (at. no. of 0 is 8) [CBSE AIPMT 1998]

(a)5 (b)2 (c)4 (d)6

Ans. (c)

Total number of electrons in

 $0_2^{2-} = 19 + 2 = 18$ According to MOT, the configuration of 0_{2}^{2-} is

$$\sigma$$
 1s², $\overset{*}{\sigma}$ 1s², σ 2 s², $\overset{*}{\sigma}$ 2 s², σ 2p²_x, π 2p²_y \approx

$\pi 2p_{z}^2 \pi 2p_{y}^2 \approx \pi 2p_{z}^2$

So, the number of antibonding electron pairs = 4

99 The high density of water compared to ice is due to [CBSE AIPMT 1997]

- (a) hydrogen bonding interactions (b) dipole-dipole interactions
- (c) dipole-induced dipole interactions
- (d) induced dipole-induced dipole
- interactions

Ans. (a)

Due to polar nature, water molecules show intermolecular hydrogen bonding as

whereas the ice has open structure with large number of vacant spaces. So, density of ice is lower than water.

100 N_2 and O_2 are converted into

monoanions N_2^- and O_2^- respectively. Which of the following statements is wrong?

[CBSE AIPMT 1997]

(a) In N₂, the N–N bond weakens
(b) In O₂⁻, O–O bond length increases
(c) In O₂⁻, bond order decreases
(d) N₂⁻, becomes diamagnetic

Ans. (d)

 $\ln N_2^-$ total electrons = 14 + 1 = 15Electronic configuration of N_2^- is

$$\sigma$$
1s², $\overset{*}{\sigma}$ 1s², σ 2s², $\overset{*}{\sigma}$ 2s², σ 2p²_x,

$$\pi 2p_y^2 \approx \pi 2p_z^2, \ \pi 2p_y^2$$

Due to presence of one unpaired electron, it shows paramagnetic character.

101 The ion that is isoelectronic with

CO is	[CBSE AIPMT 1997]
(a)0 ₂ (c)0 ₂ ⁺	(b)N ₂ ⁺ (d)CN ⁻

Ans. (d)

Isoelectronic species are having same number of electrons.

Number of electrons in CO = 6 + 8 = 14Number of electrons in $O_2^- = 16 + 1 = 17$ Number of electrons in $N_2^+ = 14 - 1 = 13$ Number of electrons in $O_2^+ = 16 - 1 = 15$ Number of electrons in $CN^- = 6 + 7 + 1 = 14$ Hence, CO isoelectronic with CN^- ion.

102 The correct order of N - 0 bond

lengths in NO, NO_2^- , NO_3^- and N_2O_4 is **[CBSE AIPMT 1996]** (a) $N_2O_4 > NO_2^- > NO_3^- > NO$

(b) $NO > NO_3^- > N_2O_4 > NO_2^-$ (c) $NO_3^- > NO_2^- > N_2O_4 > NO_4^-$ (d) $NO > N_2O_4 > NO_2^- > NO_3^-$

Ans. (c)

As the bond order increases, bond length decreases and bond order is highest for N0, i.e. 2.5 and least for $N0_3^-$, i.e. 1.33. So, the order of bond length is

 $NO_{3}^{-} > NO_{2}^{-} > N_{2}O_{4} > NO_{2.5}^{-}$

103 The ground state electronic configuration of valence shell electrons in nitrogen molecule (N₂) is written as $KK,\sigma 2s^2,\sigma^* 2s^2,\sigma 2p_x^2,\pi 2p_y^2 \approx \pi 2p_z^2$ Bond order in nitrogen molecule is

> (a)0 (b)1 (c)0 (d)3

Ans. (d)

The MO configuration of N₂ is KK, $\sigma 2 s^2$, * $\sigma 2 s^2$, $\sigma 2 p_x^2$, $\pi 2 p_y^2 \approx \pi 2 p_z^2$ Bond order of

$$N_{2} = \frac{1}{2} [N_{b} - N_{a}]$$
$$= \frac{1}{2} [8 - 2]$$
$$= \frac{6}{2} = 3$$

104 The correct order of the 0 - 0bond length in 0_2 , H_20_2 and 0_3 is [CBSE AIPMT 1995]

(a) $O_2 > O_3 > H_2O_2$ (b) $O_3 > H_2O_2 > O_2$ (c) $O_2 > H_2O_2 > O_3$ (d) $H_2O_2 > O_3 > O_2$ **Ans.** (d)

no hond longt

The bond length of 0–0 in H_2O_2 is 147.5 pm, in O_3 is 128 pm and in O_2 it is 121 pm, so the correct order is $O_2 < O_3 < H_2O_2$.

105 Which of the following species is paramagnetic? [CBSE AIPMT 1995]

paramaynetic:	LCDOE
(a)02 ⁻	(b)NO
(c)CO	(d)CN ⁻

Ans. (b)

The molecular orbital configuration of NO is

 $KK(\sigma 2s)^2(\overset{\circ}{\sigma} 2s)^2(\sigma 2p_x)^2(\pi 2p_y)^2$

 $(\pi 2p_z)^2(\pi 2p_y)^1$

So, NO is paramagnetic because it contains one unpaired electron.

106 The boiling point of *p*-nitrophenol is higher than that of *o*-nitrophenol because **[CBSE AIPMT 1994]**

- (a) NO₂ group at *p*-position behave in a different way from that at *o*-position
- (b) intramolecular hydrogen bonding exists in *p*-nitrophenol
- (c) there is intermolecular hydrogen bonding in *p*-nitrophenol

(d) *p*-nitrophenol has a higher molecular weight than *o*-nitrophenol

Ans. (c)

The boiling point of *p*-nitrophenol is higher than that of *o*-nitrophenol because *p*-nitrophenol have intermolecular hydrogen bonding whereas *o*-nitrophenol have intramolecular H-bonding as given below

o-nitrophenol

107 Linus Pauling received the Nobel Prize for his work on

[CBSE AIPMT 1994]

(a) atomic structure(b) photosynthesis(c) chemical bonds(d) thermodynamics

Ans. (c)

Linus Pauling contributed to chemical bonding, so, he received the Nobel Prize for his work in chemical bonding.

108 Mark the incorrect statement in the following. **[CBSE AIPMT 1994]**

- (a) The bond order in the species O_2,O_2^+ and O_2^- decreases as $O_2^+ > O_2 > O_2^-$
- (b) The bond energy in a diatomic molecule always increases when an electron is lost
- (c) Electrons in antibonding MO contribute to repulsion between two atoms
- (d) With increase in bond order, bond length decreases and bond strength increases

Ans. (b)

When a diatomic molecule lost electron, then its bond order may increase or decrease, so its bond energy may decrease or increase.

109 The dielectric constant of H₂O is

80. The electrostatic force of attraction between Na⁺ and Cl⁻ will be **[CBSE AIPMT 1994]**

- (a) reduced to $\frac{1}{40}$ in water than in air (b) reduced to $\frac{1}{80}$ in water than in air
- (c) will be increased to 80 in water than in air
- (d) will remain unchanged

Ans. (b)

Water is a polar solvent and have dielectric constant 80. As NaCl is a polar compound and like dissolves like so, forces of attraction between $\ensuremath{\mathsf{Na}^{+}}\xspace$ and Cl^- ion will reduce to $\frac{1}{80}$ in water.

110 Linear combination of two hybridised orbitals belonging to the two atoms, each having one electron leads to a

[CBSE AIPMT 1990]

(a) sigma bond (b) double bond (c) coordinate bond (d) pi-bond

Ans. (a)

When two hybridised orbitals of two atoms undergoes linear combination, they form sigma bond.

111 Which one shows maximum hydrogen bonding?

> (a)H₂O (c)H₂S

[CBSE AIPMT 1990] (b)H₂Se (d)HF

Ans. (d)

Hydrogen bonding ∝ electronegativity 1

Size of atom to which H is covalently bonded Since, F is most electronegative and has smaller size, HF shows maximum strength of hydrogen bond.

112 Which of the following does not apply to metallic bond?

[CBSE AIPMT 1989]

(a) Overlapping valence orbitals (b) Mobile valence electrons (c) Delocalised electrons (d) Highly directed bonds

Ans. (d)

Metallic bond have force of attraction on all sides between the mobile electrons and the positive kernels. Metals having free electrons as a mobile electrons. So, the metallic bond does not have directional property.