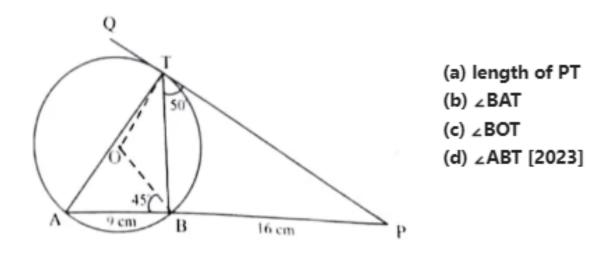
Circles

1. In the given figure, O is the centre of the circle. PQ is a tangent to the circle at T. Chord AB produced meets the tangent at P. AB = 9 cm, BP = 16 cm, \angle PTB = 50°, \angle OBA = 45°. Find:



Answer: (a) 20cm (b) 50° (c) 100° (d) 85°

Step-by-step Explanation:

(a) We know, $PT^2 = AP \times BP$ (When tangent and chord intersect externally, the product of the lengths of the segments of chord is equal to the square of the length of the tangent.)

 $PT^2 = (16+9) \times 16$ $PT^2 = 25 \times 16$ $PT = \sqrt{25 \times 16}$

PT=20 cm

(b) $\angle BAT = \angle BTP = 50^{\circ}$ (angle in the alternate segment)

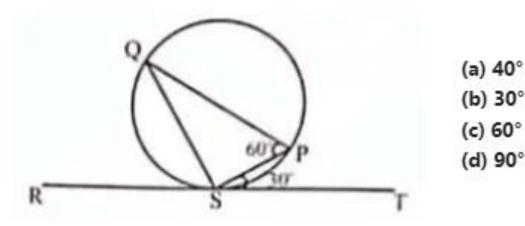
(c) $\angle BOT = 2 \angle BAT = 100^{\circ}$ (Angle subtended by an arc at the center of a circle is double the angle subtended by it on remaining part of the circle.)

(d) In $\triangle BOT$, OB = OT (radii of a circle)

 $\therefore \angle OBT = \angle BTO = 180^{\circ} \cdot 100^{\circ} / 2 = 40^{\circ}$

 $\therefore \angle ABT = 45^\circ + 40^\circ = 85^\circ$

2. In the given diagram RT is a tangent touching the circle at S. If \angle PST= 50° and \angle SPQ = 60° then \angle PSQ is equal to:



(b) 30° (c) 60°

(d) 90° [2023]

Answer: (d)

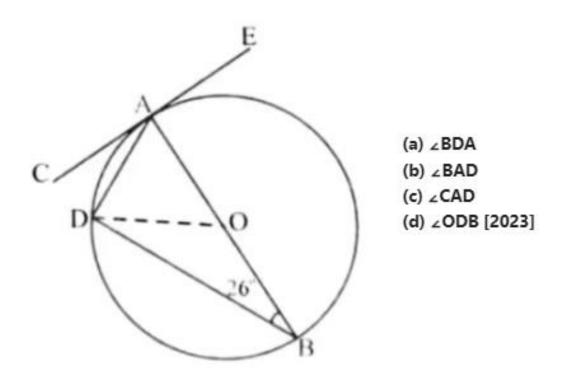
Step-by-step Explanation:

 $\angle PQS = \angle PST = 30^{\circ}$

In $\triangle PQS$, $\angle PQS + \angle PSQ + \angle QPS = 180^{\circ}$

 $\angle PSQ = 180^{\circ} - (60 + 30)^{\circ} = 90^{\circ}$

3. In the given figure O, is the centre of the circle. CE is a tangent to the circle at A. If $\angle ABD=26^{\circ}$, then find



Answer: (a) 90° (b) 64° (c) 26° (d) 26°

Step-by-step Explanation:

(a) $\angle BDA = 90^{\circ}$ (angle in a semicircle is right angle.)

(b) $\angle BAD = 180^{\circ} - (90+26)^{\circ}$ (sum of angles of a triangle is 180°

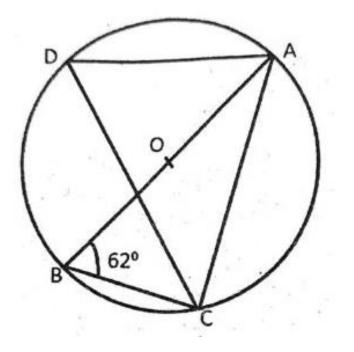
$$= 64^{\circ}$$

(c) \angle CAD= 26° (angles in the alternate segments are equal.)

(d) $\angle DOB = 2 \angle BAD = 2 \times 64 = 128^{\circ}$ (angle subtended by an arc at the center of a circle is double the angle subtended by it on any part on the remaining circle.)

 \therefore ∠ODB= 180° – (26+128)° =26° (sum of the angles of a triangle is 180°.)

4. In the given figure A, B, C and D are points on the circle with centre O. Given $\angle ABC = 62^{\circ}$



Find: (a) ∠ADC (b) ∠CAB [2022 Semester-2]

Solution: (a) 62° (b) 28°

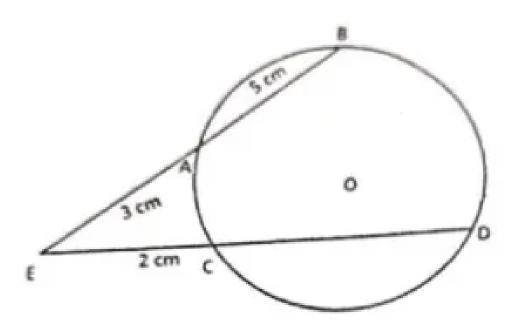
Step-by-step Explanation:

(a) $\angle ADC = \angle ABC = 62^{\circ}$ (Angles in the same segment are equal.)

(b) $\angle ACB = 90^{\circ}$ (angle in a semicircle is right angle.)

 \therefore ∠CAB= 180°- (62°+90°) =28° (sum of angles in a triangle is 180°.)

5. Two chords AB and CD of a circle intersect externally at E. If EC = 2 cm, EA = 3 cm and AB = 5 cm, Find the length of CD. [2022 Semester-2]

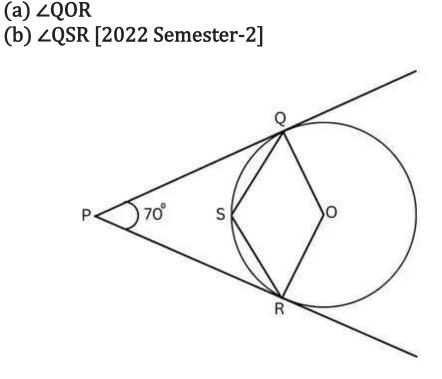


Answer: 10 cm

Step-by-step Explanation:

We know, $AE \times BE = CE \times DE$ (when two chords intersect internally or externally, the products of the lengths of the segments of the chords are equal.)

 $3 \times (3+5) = 2 \times (2+CD)$ 24/2 = 2 + CD10 = CDCD = 10 cm 6. In the given figure O is the centre of the circle. PQ and PR are tangents and $\angle QPR = 70^{\circ}$. Calculate



Answer: (a) 110° (b) 125°

Step-by-step Explanation:

(a) $\angle PQO = \angle PRO = 90^{\circ}$ (tangent and the radius of a circle through the point of contact are perpendicular to each other.)

In Quadrilateral PQOR,

 $\angle RPQ + \angle PQO + \angle QOR + \angle PRO = 360^{\circ}$

 $70^{\circ} + 90^{\circ} + \angle QOR + 90^{\circ} = 360^{\circ}$

 $\angle QOR = 360^\circ - 250^\circ = 110^\circ$

(b) reflex $\angle QOR = 360^{\circ} - 110^{\circ} = 250^{\circ}$

 \angle QSR = 125° (angle subtended by an arc at the center of a circle is double the angle subtended by it on any part on the remaining circle.)

7. ABCD is a cyclic quadrilateral. If $\angle BAD = (2x + 5)^{\circ}$ and $\angle BCD = (x + 10)^{\circ}$ then x is equal to: (a) 65° (b) 45° (c) 55° (d) 5° [2022 Semester-2]

Answer: (c)

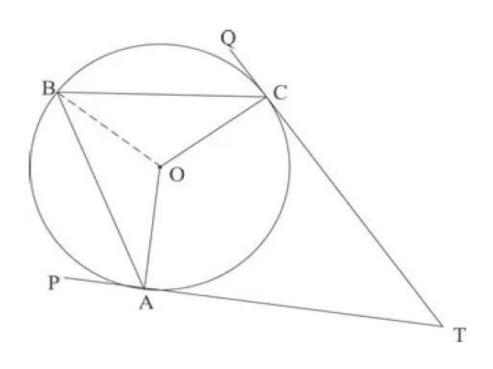
Step-by-step Explanation:

We know, by theorem, opposite angles of a cyclic quadrilateral are supplementary.

 $\therefore \angle BAD + \angle BCD = 180^{\circ}$ $(2x + 5)^{\circ} + (x + 10)^{\circ} = 180^{\circ}$ 3x + 15 = 180 3x = 165 $x = 55^{\circ}$

8. In the given figure TP and TQ are two tangents to the circle with centre O, touching at A and C, respectively. If $\angle BCQ = 55^{\circ}$ and $\angle BAP = 60^{\circ}$, find:

(i) ∠OBA and ∠OBC
(ii) ∠AOC
(iii) ∠ATC [2020]



Answer: (i) 30°, 35° (ii) 130° (iii) 50°

Step-by-step Explanation:

(i) PAT and QCT are tangents to the circle.

 $\therefore \angle QCO = \angle PAO = 90^{\circ}$ (tangent and the radius of a circle through the point of contact are perpendicular to each other.)

Now, $\angle BCQ = 55^{\circ}$.

 $\therefore \angle BCO = 90 - 55 = 35^{\circ}$

In \triangle BOC, OB = OC (radii)

 $\therefore \angle OBC = \angle OCB = 35^{\circ}$

Similarly,

 $\angle BAO = 90 - 60 = 30^{\circ}$

In $\triangle OAB$, OA = OB (radii)

 $\therefore \angle OBA = \angle BAO = 30^{\circ}$

(ii) $\angle ABC = \angle OBA + \angle OBC = 30 + 35 = 65^{\circ}$

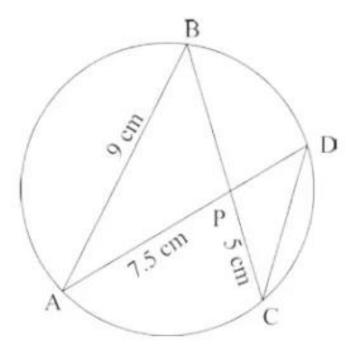
Hence, $\angle AOC = 2 \angle ABC = 130^{\circ}$ (angle subtended by an arc at the center is double the angle subtended by it on the remaining part on the circle.)

(iii) $\angle ATC = 360^{\circ} - (\angle TAO + \angle AOC + \angle TCO)$ (sum of angles of a quadrilateral is 360°.)

 $\therefore \angle ATC = 360^{\circ} - (90 + 130 + 90)^{\circ} = 360^{\circ} - 310^{\circ} = 50^{\circ}$

9. In the given figure AB = 9 cm, PA = 7.5 cm and PC = 5 cm. Chords AD and BC intersect at P.

(i) Prove that ΔPAB ~ ΔPCD
(ii) Find the length of the CD.
(iii) Find area of ΔPAB : area of ΔPCD [2020]



Answer: (ii) 6 cm (iii) 9 : 4

Step-by-step Explanation:

(i) Chords AD and BC intersect internally. Therefore according to the theorem, the product of the lengths of their segments are equal.

 $\therefore AP \times PD = BP \times PC$

or, AP/PC = BP/PD

Now, In ΔPAB and ΔPCD

 $\angle APB = \angle CPD$ (vertically opposite angles)

AP/PC = BP/PD (proved above)

 $\therefore \Delta PAB \sim \Delta PCD$ (S-A-S condition of similarity)

(ii) As $\triangle PAB \sim \triangle PCD$

$$\therefore$$
 AP/PC = BP/PD = AB/CD

AP/PC = AB/CD

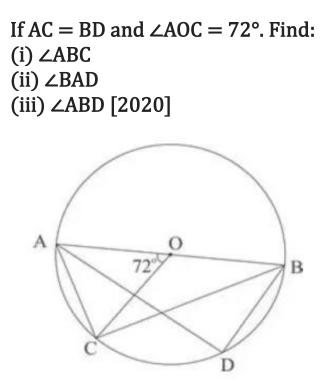
7.5/5 = 9/CD

CD = 9/1.5 = 6 cm

(iii) Area of $\triangle PAB$: Area of $\triangle PCD = (PA/PC)^2$ (ratio of areas of similar triangles is equal to the square of the ratio of their corresponding sides.)

Area of $\triangle PAB$: Area of $\triangle PCD = (7.5/5)^2 = 9:4$

10. In the figure given below, O is the centre of the circle and AB is a diameter.



Answer: (i) 36° (ii) 36° (iii) 54°

Step-by-step Explanation:

(i) $\angle ABC = 1/2 \angle AOC = 36^{\circ}$ (angle subtended by an arc at the center is double the angle subtended by it on the remaining part on the circle.)

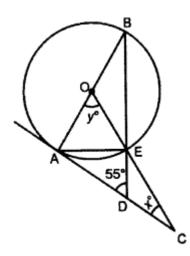
(ii) $\angle BAD = \angle ABC = 36^{\circ}$ (equal chords subtend equal angles.)

(iii) $\angle ADB = 90^{\circ}$ (angle in a semicircle is right angle.)

 \therefore ∠ABD= 180°- (∠BAD + ∠ADB) (sum of angles of a triangle is 180°.)

or, $\angle ABD = 180^{\circ} - 126^{\circ} = 54^{\circ}$

11. In the given figure, AC is a tangent to the circle with center 0. If $\angle ADB = 55^{\circ}$, find x and y. Give reasons for your answers. [3] [2019]



Answer: $x = 20^{\circ}$, $y = 70^{\circ}$

Step-by-step Explanation:

 $\angle AEB = 90^{\circ}$ (angle in a semicircle is right angle.)

 $\therefore \angle AED = 90^{\circ}$ (linear pair)

 $\angle DAE = 180^{\circ} - (90^{\circ} + 55^{\circ}) = 35^{\circ}$

 $\therefore \angle ABE = 35^{\circ}$ (angles in the alternate segments are equal.)

 $\therefore \angle AOE = y^{\circ} = 70^{\circ}$ (angle subtended by an arc at the center is double the angle subtended by it on the remaining part on the circle.)

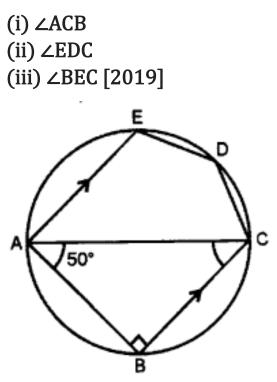
 $\angle OEB = \angle OBE = 35^{\circ}$ (isosceles triangle property)

Hence, $\angle DEC = \angle OEB = 35^{\circ}$

∠EDC= 180 – 55=125° (linear pair)

Hence, $x^\circ = 180^\circ - (125 + 35)^\circ = 20^\circ$

12. In the given figure, ABCDE is a pentagon inscribed in a circle such that AC is a diameter and side BC || AE. If Δ BAC = 50°, find giving reasons : [4]



Answer: (i) 40° (ii) 140° (iii) 50°

Step-by-step Explanation:

(i) $\angle ABC = 90^{\circ}$ (angle in a semicircle is right angle.)

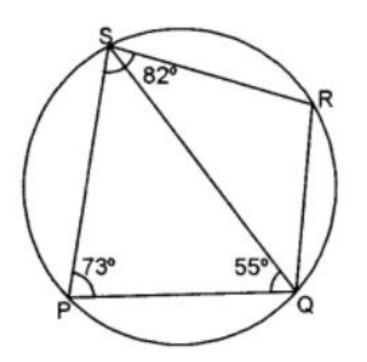
Hence, $\angle ACB = 180^{\circ} - (90+50)^{\circ} = 40^{\circ}$

(ii) $\angle CAE = \angle ACB = 40^{\circ}$

Hence, \angle EDC= 180° – 40°= 140° (opposite angles of a cyclic quadrilateral are supplementary.)

(iii) $\angle BEC = \angle BAC = 50^{\circ}$ (angles in the same segment are equal.)

13. PQRS is a cyclic quadrilateral. Given $\angle QPS = 73^\circ$, $\angle PQS = 55^\circ$ and $\angle PSR = 82^\circ$, calculate: [4]



(i) ∠QRS
 (ii) ∠RQS
 (iii) ∠PRQ [2018]

Answer: (i) 107° (ii) 43° (iii) 52°

Step-by-step Explanation:

(i) $\angle QRS = 180^{\circ} - 73^{\circ} = 107^{\circ}$ (opposite angles of a cyclic quadrilateral are supplementary.)

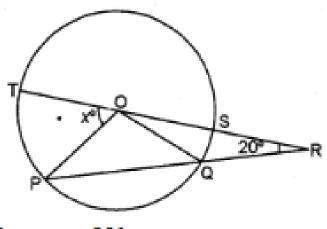
(ii) $\angle PSQ = 180^{\circ} - (73 + 55)^{\circ} = 52^{\circ}$

 $\therefore \angle RSQ = 82 - 52 = 30^{\circ}$

Hence, $\angle RQS = 180^{\circ} - (107 + 30)^{\circ} = 43^{\circ}$

(iii) $\angle PRQ = \angle PSQ = 52^{\circ}$ (angles in the same segment are equal.)

14. In the figure given below 'O' is the center of the circle. If QR = OP and $\angle ORP = 20^{\circ}$. Find the value of 'x ' giving reasons. [3] [2018]



Answer: 60°

Step-by-step Explanation:

OP=QR (given) and OP= OQ (radii)

Hence, OQ = QR

- $\therefore \angle QOR = \angle ORQ = 20^{\circ}$
- $\therefore \angle OQR = 180^{\circ} 40^{\circ} = 140^{\circ}$ (angle sum property of triangle)

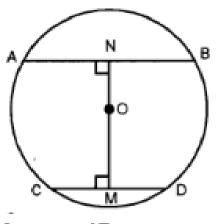
$$\therefore \angle OQP = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

$$\therefore \angle OPQ = 40^{\circ}$$

$$\therefore \angle POQ = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

 \therefore x°= 180°- (100 +20)° = 60° (angles in a straight line)

15. AB and CD are two parallel chords of a circle such that AB = 24 cm and CD = 10 cm. If the radius of the circle is 13 cm, find the distance between the two chords. [3] [2017]



Step-by-step Explanation:

Join OB and OD,

NB= 1/2 AB= 12 cm and MD= 1/2 CD= 5 cm (perpendicular drawn from the center of a circle to the chord bisects it.)

In Δ ONB, By pythagoras theorem,

 $ON = \sqrt{OB^2 - NB^2}$

 $ON = \sqrt{169} - 144 = 5 \text{ cm}$

In Δ OMD, By pythagoras theorem,

 $OM = \sqrt{OD^2 - MD^2}$

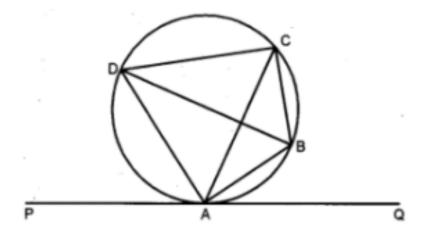
 $ON = \sqrt{169 - 25} = 12 \text{ cm}$

 \therefore MN= 5 + 12= 17 cm

16. In the given figure PQ is a tangent to the circle at A. AB and AD are bisectors of \angle CAQ and \angle PAC. If \angle BAQ = 30° prove that :

(i) BD is a diameter of the circle.

(ii) ABC is an isosceles triangle. [2017]



Step-by-step Explanation:

(i) Given that AB and AD are bisectors of \angle CAQ and \angle PAC.

Let $\angle CAB = \angle BAQ = x^{\circ}$ and $\angle CAD = \angle DAP = y^{\circ}$.

 $\therefore \angle BAQ + \angle CAB + \angle CAD + \angle DAP = (2x + 2y)^{\circ}$

 $(2x + 2y)^\circ = 180^\circ$ (angles in a straight line.)

 $2(x+y) = 180^{\circ}$

 $x + y = 90^{\circ}$

or, $\angle BAD = 90^{\circ}$

Hence, BD is the diameter of the circle. (angle in a semicircle is right angle.)

(ii) $\angle ACB = \angle BAQ = x^{\circ}$ (angles in the alternate segments are equal.)

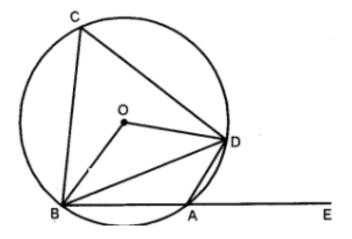
 $\angle CAB = x^{\circ}$

 $\therefore AB = BC$

Hence, ABC is an isosceles triangle.

17. In the figure given, O is the center of the circle. $\angle DAE = 70^{\circ}$. Find giving suitable reasons, the measure of: [4]

(i) ∠BCD
(ii) ∠BOD
(iii) ∠OBD [2017]



Answer: (i) 70° (ii) 140° (iii) 20°

Step-by-step Explanation:

(i) $\angle BCD = \angle DAE = 70^{\circ}$ (exterior angle of a cyclic quadrilateral is equal to opposite interior angle.)

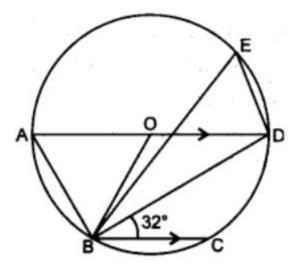
(ii) $\angle BOD = 2 \angle BCD = 140^{\circ}$ (angle subtended by an arc at the center is double the angle subtended by it on the remaining part on the circle.)

(iii) In $\triangle BOD$, OB = OD (radii)

 $\therefore \angle OBD = \angle ODB = 180 - \angle BOD / 2 = 20^{\circ}$

18. In the given figure below, AD is a diameter. O is the centre of the circle. AD is parallel to BC and \angle CBD = 32°.

Find : (i) ∠OBD (ii) ∠AOB (iii) ∠BED [4] [2016]



Answer: (i) 32° (ii) 64° (iii) 58°

Step-by-step Explanation:

(i) Since AD is parallel to BC,

 $\angle ODB = \angle CBD = 32^{\circ}$ (alternate interior angles)

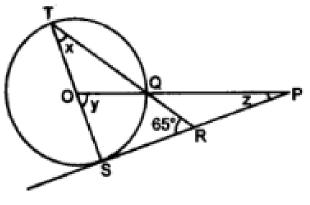
 $\angle OBD = \angle ODB = 32^{\circ}$ (property of isosceles triangle.)

(ii) $\angle AOB = 2 \angle ODB = 64^{\circ}$ (angle subtended by an arc at the center is double the angle subtended by it on the remaining part on the circle.)

(iii) $\angle BOD = 180^{\circ} - \angle AOB = 180^{\circ} - 64^{\circ} = 116^{\circ}$

Hence, $\angle BED = 116/2 = 58^{\circ}$ (angle subtended by an arc at the center is double the angle subtended by it on the remaining part on the circle.)

19. In the figure given below, O is the centre of the circle and SP is a tangent. If \angle SRT = 65°, find the value of x, y and z. [4] [2015]



Answer: x=25°, y= 50°, z= 40°

Step-by-step Explanation:

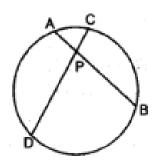
 $\angle RST = 90^{\circ}$ (tangent and the radius of a circle through the point of contact are perpendicular to each other.)

Hence, $\angle RTS = x = 180^{\circ} - (65 + 90)^{\circ} = 25^{\circ}$

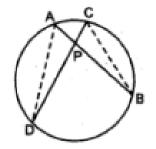
 $y = \angle SOQ = 2 \angle RST = 50^{\circ}$ (angle subtended by an arc at the center is double the angle subtended by it on the remaining part on the circle.)

 $z = \angle OPS = 180^{\circ} - (90 + 50)^{\circ} = 40^{\circ}$

20. AB and CD are two chords of a circle intersecting at P. Prove that $AP \times PB = CP \times PD$. [3] [2015]



Step-by-step Explanation:



Let us join AD and BC.

Let us join AD and BC.

Now, In \triangle APD and \triangle CPB,

 $\angle A = \angle C$ (angles in the same segment are equal.)

 $\angle APD = \angle BPC$ (vertically opposite angles)

 $\therefore \Delta APD \sim \Delta CPB$ (A-A condition of similarity)

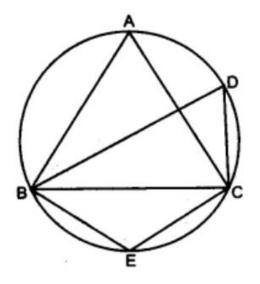
 $\therefore AP/CP = PD/PB$

or, $AP \times PB = CP \times PD$

Proved.

21. In the figure, $\angle DBC = 58^{\circ}$. BD is a diameter of the circle. Calculate: [3]

(i) ∠BDC
(ii) ∠BEC
(iii) ∠BAC [2014]



Answer: (i) 32° (ii) 148° (iii) 32°

Step-by-step Explanation:

(i) $\angle BCD = 90^{\circ}$ (angle in a semicircle is right angle.)

$$\therefore \angle BDC = 180^{\circ} - (\angle BCD + \angle DBC)$$

$$=180^{\circ} - (90 + 58)^{\circ}$$

= 180° - 148° = 32°

(ii) $\angle BEC = 180^\circ - \angle BDC = 180^\circ - 32^\circ = 148^\circ$ (opposite angles of a cyclic quadrilateral are supplementary.)

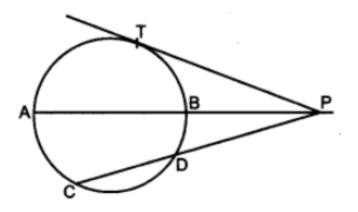
(iii) $\angle BAC = \angle BDC = 32^{\circ}$ (angles in the same segment are equal.)

22. In the figure given below, diameter AB and CD of a circle meet at P. PT is a tangent to the circle at T. CD=7.8 cm, PD=5 cm, PB=4 cm.

Find:

(i) AB.

(ii) the length of tangent PT. [3][2014]



Answer: (i) 12 cm (ii) 8 cm

Step-by-step Explanation:

(i) We know, When two chords intersect internally or externally, the product of the lengths of the segments of the chords are equal.

 $\therefore AP \times PB = CP \times PD$ or, (AB +4) × 4 = (7.8 + 5) × 5

or, $AB + 4 = 12.8 \times 5/4$

or, AB = 16 - 4 = 12 cm

(ii) We know, When a tangent and a chord of a circle intersect externally, the product of the lengths of the segments of the chord is equal to the square of the length of the tangent.

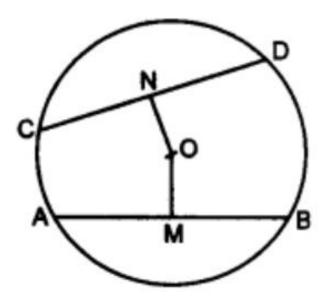
 $\therefore PT^{2} = AP \times PB$ or, $PT^{2} = 16 \times 4$ or, $PT = \sqrt{64}$ PT = 8

23. In the figure given below, O is the centre of the circle. AB and CD are two chords of the circle. OM is perpendicular to AB and ON is perpendicular to CD. AB = 24 cm, OM = 5 cm, ON = 12 cm.

Find the :

(i) radius of the circle.

(ii) length of chord CD. [3] [2014]



Answer: (i) 13 cm (ii) 10 cm

Step-by-step Explanation:

Let us join CO and AO.

(i) In Δ AMO, AM = 24/2 = 12 cm. (Perpendicular drawn from the centre of a circle to the chord bisects it.)

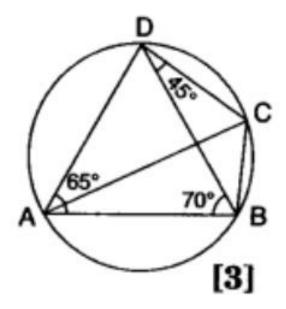
 \therefore by pythagoras theorem,

AO =
$$\sqrt{AM^2 + OM^2}$$

AO = $\sqrt{12^2 + 5^2}$
AO = $\sqrt{169} = 13 \text{ cm}$
 \therefore radius = 13 cm
(ii) In Δ CNO,
CN = $\sqrt{CO^2 - ON^2}$
CN = $\sqrt{13^2 - 12^2}$
CN = $\sqrt{25} = 5 \text{ cm}$
 \therefore CD = 2 CN = 10 cm
24. In the given figure,
∠BAD = 65°,
∠ABD = 70°,
∠BDC = 45°

i.)Prove that AC is a diameter of the circle.

ii.)Find ∠ACB. [2013]



Answer: (ii) 45°

Step-by-step Explanation:

(i) In Δ ADB,

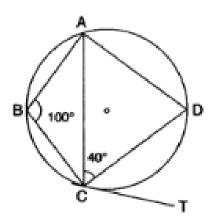
 $\angle ADB = 180^{\circ} - (65 + 70)^{\circ} = 45^{\circ}$

 $\therefore \angle ADC = (45 + 45)^\circ = 90^\circ$

Hence, AC is the diameter of the circle. (angle in a semicircle is a right angle.)

(ii) $\angle ACB = \angle ADB = 45^{\circ}$

25. In the given circle with centre O, $\angle ABC = 100^\circ$, $\angle ACD = 40^\circ$ and CT is a tangent to the circle at C. Find $\angle ADC$ and $\angle DCT$. [2013]



Answer: $\angle ADC = 80^{\circ}$ and $\angle DCT = 60^{\circ}$

Step-by-step Explanation:

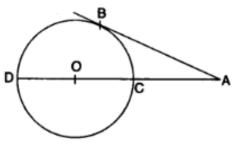
 $\angle ADC = 180^{\circ} - \angle ABC$ (opposite angles of a cyclic quadrilateral are supplementary.)

 $\angle ADC = (180-100)^{\circ} = 80^{\circ}$

 $\angle DAC = 180^{\circ} - (40 + 80)^{\circ} = 60^{\circ}$

 $\therefore \angle DCT = \angle DAC = 60^{\circ}$ (angles in the alternate segment are equal.)

26. In the given figure O is the centre of the circle and AB is a tangent at B. If AB = 15 cm and AC = 7.5 cm. Calculate the radius of the circle. [3] [2012]



Answer: 11.25 cm

Step-by-step Explanation:

We know, When a tangent and a chord of a circle intersect externally, the product of the lengths of the segments of the chord is equal to the square of the length of the tangent.

 $\therefore AB^2 = AC \times AD$

or, $15^2 = 7.5 \times (CD + 7.5)$

or, CD + 7.5 = 225/7.5

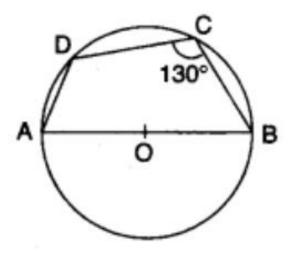
or, CD = 30 - 7.5 = 22.5 cm

CD is the diameter of the circle.

 \therefore radius= 22.5/2= 11.25 cm

27. In the given figure AB is the diameter of a circle with centre O. $\angle BCD = 130^{\circ}$. Find:

(i) ∠DAB
(ii) ∠DBA. [3] [2012]



Answer: (i) $\angle DAB=50^{\circ}$ (ii) $\angle DBA=40^{\circ}$

Step-by-step Explanation:

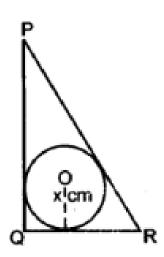
(i) $\angle DAB = 180^{\circ} - 130^{\circ} = 50^{\circ}$ (opposite angles of a cyclic quadrilateral are supplementary.)

(i) $\angle ADB = 90^{\circ}$ (angle in a semicircle is right angle.)

 \therefore In \triangle ADB,

∠DBA= 180°- (90+50)°=40°

28. In triangle PQR, PQ = 24 cm, QR = 7 cm and \angle PQR = 90°. Find the radius of the inscribed circle. [2012]



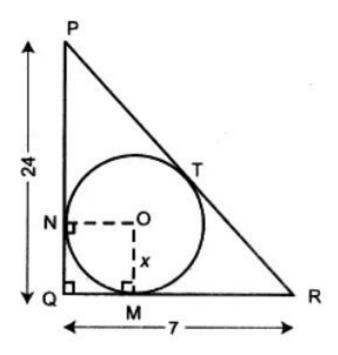
Answer: 3cm

Step-by-step Explantion:

 $PR^2 = QR^2 + PQ^2$

 $PR^2 = 7^2 + 24^2$

 $PR = \sqrt{625} = 25 \text{ cm}$



ON and OM are joined.

We know, tangent to a circle and radius through the point of contact are perpendicular to each other.

 $\therefore \angle ONQ = 90^{\circ} \text{ and } \angle OMQ = 90^{\circ}$

QM = QN (tangents drwan from an external point to a circle are equal in length.)

 \therefore OMQN is a square with each side x cm.

 \therefore MR= TR=(7-x) cm, PN=PT= (24-x) cm

Now, PR = PT + TR

(24-x) + (7-x) = 25

or, 31 - 2x = 25

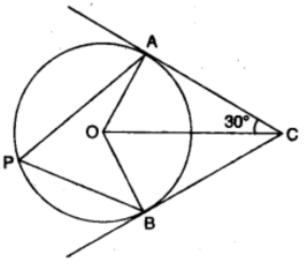
or, 2x = 6

or, x = 3 cm

Hence, radius= 3cm

29. In the given figure O is the centre of the circle. Tangents at A and B meet at C. If $\angle AOC = 30^{\circ}$, find

(i) ∠BCO
(ii) ∠AOB
(iii) ∠APB [3] [2011]



Answer: (i) 30° (ii) 120° (iii) 60°

Step-by-step Explanation:

(i) $\angle BCO = \angle ACO = 30^{\circ}$ (two tangents drawn from an external point to a circle are equally inclined to the line segment joining the centre to that point.)

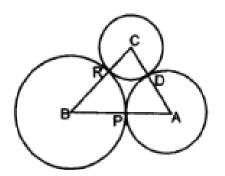
(ii) $\angle OAC = \angle OBC = 90^{\circ}$ (tangent to a circle and radius through the point of contact are perpendicular to each other.)

 $\therefore \angle AOB = 360^{\circ} - (90 + 30 + 30 + 90)^{\circ} = 120^{\circ}$

(iii) $\angle APB = 1/2$ of $\angle AOB = 1/2$ of $120^\circ = 60^\circ$

30. ABC is a triangle with AB = 10 cm, BC = 8 cm and AC = 6 cm (not drawn to scale). Three circles are drawn touching each other

with the vertices as their centres. Find the radii of the three circles. [3][2011]



Answer: 6 cm, 2 cm, 4 cm

Step-by-step Explanation:

Let the radii of the three circles be r_1 , r_2 , and r_3 respectively.

so,
$$BC = r_1 + r_2 = 8 \dots (1)$$

 $AC = r_2 + r_3 = 6 \dots (2)$

 $AB = r_1 + r_3 = 10 \dots (3)$

Adding (1), (2) and (3) we get,

 $2(r_1 + r_2 + r_3) = 24$

 $r_1 + r_2 + r_3 = 12 \dots (4)$

subtracting (1) from (4), we get,

$$(r_1 + r_2 + r_3) - (r_1 + r_2) = 12 - 8$$

 $r_3 = 4 \text{ cm}$

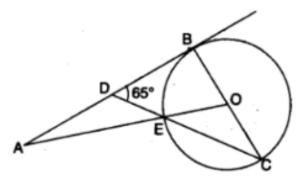
Similarly, subtracting (2) from (4), we get,

 $r_1 = 6 \text{ cm and}$

subtracting (3) from (4), we get,

 $r_2 = 2 \text{ cm}$

31. In the following figure O is the centre of the circle and AB is a tangent to it at point B. \angle BDC = 65°. Find \angle BAO. [3] [2010]



Answer: 40°

Step-by-step Explanation:

In \triangle CBD, \angle ABO= 90° (tangent to a circle and radius through the point of contact are perpendicular to each other.)

 $\therefore \angle BCD = 180^{\circ} - (65 + 90)^{\circ} = 25^{\circ}$

 $\therefore \angle BOA = 2 \angle BCD = 50^{\circ}$ (angle subtended by an arc at the centre of a circle is double the angle subtended by it on the remaining part of the circle.)

In $\triangle AOB$, $\angle BAO = 180^{\circ} - (90 + 50)^{\circ} = 40^{\circ}$