NEET UG (2024) Chemistry Quiz-15

SECTION-A

- **51.** An element having electronic configuration $1s^2$ $2s^2 2p^6 3s^2 3p^1$ is:
 - (1) An inert gas

.

- (2) A transition element
- (3) An inner transition element
- (4) A representative element
- **52.** Which of the following has largest size?
 - (1) Na (2) Na^+
 - (3) Mg (4) Mg^{2+}

53.	The octet rule is observed in:		
	(1) PCl_5	(2) CO ₂	
	(3) BCl ₃	(4) SF ₆	

- **54.** The element with the highest first ionization potential is:
 - (1) Boron
 - (2) Carbon
 - (3) Nitrogen
 - (4) Oxygen

- **55.** Considering the elements B, Al, Mg and K, the correct order of their metallic character is:
 - $(1) \quad \mathbf{B} > \mathbf{Al} > \mathbf{Mg} > \mathbf{K}$
 - (2) Al > Mg > B > K
 - $(3) \quad Mg > Al > K > B$
 - $(4) \quad K > Mg > Al > B$
- **56.** Which of the following is the correct order of gradually decreasing basic nature of oxides?
 - (1) $Al_2O_3 > MgO > Cl_2O_7 > SO_3$
 - $(2) \quad MgO > Al_2O_3 > SO_3 > Cl_2O_7$
 - $(3) \quad Cl_2O_7 > SO_3 > Al_2O_3 > MgO$
 - $(4) \quad SO_3 > Cl_2O_7 > MgO > Al_2O_3$
- **57.** In which of the following the energy change corresponds to first ionization enthalpy?
 - (1) $X(g) \rightarrow X^+(g) + e^-$
 - (2) $2X(g) \rightarrow 2X^+(g) + 2e^-$
 - (3) $X(s) \rightarrow X^+(g) + e^-$
 - (4) $X(aq) \rightarrow X^+(aq) + e^-$
- **58.** Element X is strongly electropositive and Y is strongly electronegative. Both are univalent. Then the formula of the compound formed would be:
 - (1) $X^+ Y^-$ (2) X Y(3) $X^- Y^+$ (4) $X \to Y$
- **59.** If atomic number of an element is 33, then it will be placed in periodic table in the:

_	-		
(1)	1 st group	(2) 3^{rd}	group

- (3) 15^{th} group (4) 17^{th} group
- **60.** In which molecules/ion co-ordinate bond is present.

(1)	NH_4^+	(2)	BF_3
(3)	PCl ₅	(4)	H_2O

- **61.** What is the name and symbol of the element with atomic number 112?
 - (1) Ununbium, Uub
 - (2) Unnilbium, Unb
 - (3) Ununnilium, Uun
 - (4) Ununtrium, Uut
- **62.** The radii of the F, F^- , O and O^{2-} is the order:

(1) $O^{2-} > O > F^{-} > F$

- (2) $F^- > O^{2-} > F > O$
- (3) $O^{2-} > F^{-} > F > O$
- (4) $O^{2-} > F^{-} > O > F$
- **63.** The valence electron are involved in formation of covalent bonds is/are called:
 - (1) Non-bonding electrons
 - (2) Lone pairs
 - (3) Unshared pairs
 - (4) None of these

- 64. Statement I: The first ionization enthalpy of aluminium is smaller than that of magnesium.Statement II: Ionic radius of aluminium is smaller than that of magnesium.
 - (1) Both statement I and statement II are true but statement II is not the correct explanation of statement I
 - (2) Statement I is true but statement II is false
 - (3) Statement I is false but statement II is true
 - (4) Both statement I and statement II are true and statement II is the correct explanation of statement I
- **65.** The correct order of electron gain enthalpy is:
 - (1) O > S > Se > Te
 - (2) Te > Se > S > O
 - (3) S > O > Se > Te
 - $(4) \quad S > Se > Te > O$
- **66.** Which among the following is an electron deficient compound?
 - (1) NH_3 (2) CO_2
 - (3) BH_3 (4) CH_4
- 67. How many groups and periods respectively are found in mendeleev's periodic table?
 (1) 7, 8
 (2) 18, 7
 (3) 8, 7
 (4) 7, 18
- **68.** Which of the following is not a representative element?
 - (1) Z = 37 (2) Z = 31(3) Z = 54 (4) Z = 24
- 69. The formal charge on oxygen atom in N₂O molecule is: $N \equiv N \ddot{O}$: (1) 0 (2) +1

(3)	-1		(4)	-2

70. Which of the following is an exothermic process?

- (1) $O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$
- (2) $N(g) + e^- \rightarrow N^-(g)$
- (3) $Na(g) + e^- \rightarrow Na^-(g)$
- (4) $\operatorname{Na}(g) \to \operatorname{Na}^+(g) + e^-$
- 71. Match the following:

	Column – I				Column – II
	(Element)			(P	eriodic properties)
((A)	F		(P)	Maximum ionization
					energy
((B)	Cl		(Q)	Maximum
					electronegativity
((C)	Fe		(R)	Maximum electron
					affinity
((D)	He		(S)	Variable oxidation
					state
	A		В	С	D
((1) C)	Р	S	R
((2) C)	R	S	Р
((3) R	2	Р	S	Q
((4) R	2	S	P, S	Q, R

72. Which one of the following element will never obey octet rule?

(1)	Na	(2)	F
(3)	S	(4)	Η

- 73. The correct order of the shielding effect of s, p, d and f orbitals is:
 - (1) s > p > d > f(2) s f $(3) \quad s$ (4) s > p < d < f
- 74. The correct order of increasing atomic radii of the following elements is:

(1) S < O < Se < C (2) O < C < S < Se

- (3) O < S < Se < C (4) C < O < S < Se
- 75. Which of the following is neither hypervalent nor hypovalent?
 - (1) PCl₅ (2) BF₃
 - (3) SF₆ (4) CH₄
- 76. In the modern periodic table, a period indicates the value of:
 - (1) Atomic number
 - (2) Atomic mass
 - (3) Principal quantum number
 - (4) Azimuthal quantum number
- 77. Match list-I with list-II and choose the correct option:

	1				
		List-I			List-II
		(Atomic No	.)		(IUPAC name)
	(a)	108		(i)	Unnilseptium
	(b)	114		(ii)	Ununhexium
	(c)	107		(iii)	Unniloctium
	(d)	116		(iv)	Ununquadium
	8	a b	C	:	d
((1) (iv) (iii)	(ii)	(i)
((2) (i) (ii)	(iii)	(iv)
((3) (iii) (iv)	(ii)	(i)
((4) (iii) (iv)	(i)	(ii)

- 78. What are the exceptions of the octet rule?
 - (1) The incomplete octet of central atom
 - (2) An odd number of electrons on central atom
 - (3) Expanded octet of the central atom
 - (4) All of these
- 79. The element which has highest second ionization energy is:

(1)	Na	(2)	Mg
(3)	Ca	(4)	Ar

- 80. Which of the following represents the correct sequence of increasing basic nature of the given oxides?
 - (1) $Na_2O < K_2O < MgO < Al_2O_3$
 - (2) $K_2O < Na_2O < Al_2O_3 < MgO$
 - (3) $Al_2O_3 < MgO < Na_2O < K_2O$
 - (4) $MgO < K_2O < Al_2O_3 < Na_2O$

- 81. Lewis-dot structure of carbon dioxide which has the formula CO₂ is:
 - (1) $: \ddot{O} = C = \ddot{O}:$
 - (2) $: \ddot{O} C \ddot{O}:$
 - (3) $:\ddot{C} = O \ddot{O}:$
 - (4) $:\ddot{O} \ddot{C} \ddot{O}:$
- 82. Which of the following shows diagonal relationship?
 - (1) Boron and Silicon
 - (2) Boron and Aluminium
 - (3) Boron and Gallium
 - (4) Boron and Carbon
- Statement I: Newland's law of octaves is valid 83. only up to mass number 20.

Statement II: Li, Na, K forms a Dobereiner's triad.

- (1) Both statement I and statement II are true but statement II is not the correct explanation of statement I
- (2) Statement I is true but statement II is false
- (3) Statement I is false but statement II is true
- (4) Both statement I and statement II are true and statement II is the correct explanation of statement I
- 84. Calculate the formal charge on the nitrogen atom in NH⁺

III I	11 4		
(1)	1	(2)	-1
(3)	0.25	(4)	-0.25

85. Which pair of atomic numbers represents s-block elements?

(1)	7, 15	(2)	6, 12
(3)	9, 17	(4)	4, 12

SECTION-B

- 86. The element that shows anomalous behaviour in group 13 is:
 - (1) Boron (2) Aluminium
 - (3) Gallium (4) Thallium
- 87. Which of the following oxides is most basic?
 - (1) Na_2O (2) Al_2O_3
 - (3) SiO₂ (4) SO₂
- 88. The periodic repetition of the properties of the elements is due to:
 - (1) Recurrence of similar valence shell electronic configuration
 - (2) Recurrence of same types of oxides formed
 - (3) The same number of isotopic forms
 - (4) Both (1) and (2)

- **89.** When we move from left to right in a period, the electropositive character:
 - (1) Increases
 - (2) Decreases
 - (3) No change
 - (4) First increases, then decreases
- **90.** Which of the following species show deviation from the octet's rule?
 - (1) $AlCl_3$ (2) SF_6
 - (3) NO (4) All of the above
- **91.** The correct order of first ionisation enthalpy is:
 - (1) Al < Mg < S < P
 - (2) Mg < Al < P < S
 - (3) Mg < S < Al < P
 - $(4) \quad Mg < Al < S < P$
- **92.** Total number of elements present in the 5th period of the modern periodic table is:
 - (1) 2 (2) 8 (2) 10
 - (3) 18 (4) 32
- 93. The formal charges on the atoms underlined are $C_6H_5 - \underline{C} \equiv \underline{N} - \underline{O}$
 - (1) C = 0, N = -1, O = +1
 - (2) C = -1, N = +1, O = -1
 - (3) C = 0, N = +1, O = -1(4) C = +1, N = 0, O = -1
- **94.** Which of the following group of the modern periodic table contains halogen?
 - (1) Group 1 (2) Group 2
 - (3) Group 17 (4) None of the above

95. The correct order of the decreasing ionic radii among the following isoelectronic species is:
(1) K⁺ > Ca²⁺ > Cl⁻ > S²⁻

- (1) K > Ca > Cl > S(2) $Ca^{2+} > K^+ > S^{2-} > Cl^-$
- (2) $Ca^{-} > K^{-} > Ca^{2+} > K^{+}$ (3) $Cl^{-} > S^{2-} > Ca^{2+} > K^{+}$
- (4) $S^{2-}>Cl^->K^+>Ca^{2+}$
- **96.** Identify the element having zero valency.
 - (1) Chlorine (2) Helium
 - (3) Sodium (4) Oxygen
- **97.** Which of the following element has zero electron affinity?
 - (1) He (2) F (3) Cl (4) Br
- **98.** Increase in atomic size down the group is due to _____.
 - (1) Increase in number of orbit
 - (2) Increase in number of protons and neutrons
 - (3) Increase in number of protons
 - (4) Increase in number of protons, neutrons and electrons

99. The correct order of electronegativity is:

- (1) Cl > F > O > Br (2) F > O > Cl > Br
- $(3) \quad F > Cl > Br > O \quad (4) \quad O > F > Cl > Br$
- 100. When two atoms combine to form a molecule,
 - (1) Energy is released.
 - (2) Energy is absorbed.
 - (3) Energy is neither released nor absorbed.
 - (4) Energy is either released or absorbed.

Solution

51. (4)

 $1s^2 2s^2 2p^6 3s^2 3p^1$ is p-block element. p-block elements are also called as representative element.

(NCERT – Class 11th, Page 84)

52. (1)

Size of sodium is greater than magneisum. Size of magnesium is greater than size of Mg^{2+} . (NCERT – Class 11th, Page 85 – 87)

53. (2)

Octect rule states that each and every compound is stable if they have group of 8 electrons have noble gas configuration, i.e.,

$$CO_2, \ \overrightarrow{O} = C = \overrightarrow{O} \text{ or } (\overrightarrow{O}, \overrightarrow{O}, \overrightarrow$$

54. (3) $_{7}N = 1s^{2}2s^{2}2p^{3}$.

> During first ionization of nitrogen electron is removed from 2p-subshell which is half filled and more stable. So, first I.P. of nitrogen is highest.

(NCERT – Class 11th, Page 87 – 89)

55. (4)

Metallic character decreases along a period and increases down the group. K > Mg > Al > B(NCERT – Class 11th, Page 91) 56. (2) Decreasing basic nature of oxides will be $MgO > Al_2O_3 > SO_3 > Cl_2O_7$ (NCERT – Class 11th, Page 94 – 95)

57. (1)

The energy change for the process $X(g) \rightarrow X^+(g) + e^-$, corresponds to first ionisation enthalpy. (NCERT – Class 11th, Page 87 – 89)

58. (1) Formula of the compound will be X^+Y^- .

(NCERT – Class 11th, Page 106)

59. (3)

Z = 33[Ar] $3d^{10}4s^24p^3$ Block $\rightarrow p$ Group $\rightarrow 15$ (10 + valence electrons)
Period $\rightarrow 4$ (NCERT - Class 11th, Page 84 - 85)

60. (1)

61. (1)

Z = 112, Ununbium (Uub) (NCERT – Class 11th, Page 78 – 81)

62. (4)

Atomic/Ionic size $\propto \frac{1}{Z_{eff}}$ $\underbrace{O^{2^-} > F^-}_{Isoelectronic} > O > F$ (NCERT – Class 11th, Page 85 – 87)

63. (4)

The valence electrons are involved in formation of covalent bonds is/are called bond pair electrons (bonding electrons). (NCERT – Class 11th, Page 102)

64. (1)

Statement I: The first ionization enthalpy of aluminium is smaller than that of magnesium. (**True**)

Al (Z=13): $1s^2 2s^2 2p^6 3s^2 3p^1$

 $Mg(Z=12):1s^22s^22p^63s^2$

Statement II: Ionic radius of aluminium is smaller than that of magnesium. (**True**)

Ionic radius $\propto \frac{1}{+ \text{ ve charge}}$

Thu ionic size order is $Al^{3+} < Mg^{2+}$

Thus, both statement I and statement II are true but statement II is not the correct explanation of statement I.

(NCERT – Class 11th, Page 87 – 89)

65. (4)

Electron gain enthalpy follows the order S > Se > Te > O(For 'O' electron gain enthalpy is least because addition of e^- in all 2^{nd} shell is difficult due to more inter electron repulsions) (NCERT – Class 11th, Page 89 – 90)

66. (**3**)

 BH_3 has 6 electrons in the valence shell of B atom. As it has incomplete octet, so this is an electron deficient molecule (NCERT – Class 11th, Page 105 – 106)

67. (**3**)

There are seven periods and eight groups in Mendeleev's periodic table.

(NCERT – Class 11th, Page 76)

68. (4)

Z = 24, represents chromium element, which is a transition element (d-block), not a representative element (s and p-block element). (NCERT – Class 11th, Page 84)

69. (**3**)

Formal charge = Valence electrons

- Non-bonding electrons

 $-\frac{1}{2}$ Bonding electrons

Valence electrons = 6 Lone pair = three (six electrons) Total number of bonding electrons = 2

Formal charge = $6 - 6 - \frac{1}{2} \times 2 = -1$ (NCERT - Class 11th, Page 104 - 105)

70. (**3**)

 $Na(g) + e^- \rightarrow Na^-(g)$, Exothermic process (NCERT – Class 11th, Page 87 – 90)

71. (2)

F = Maximum electronegativity

- Cl = Maximum electron affinity
- Fe = Variable oxidation state

He = Maximum ionization energy

(NCERT – Class 11th, Page 87 – 93)

- (4) Hydrogen will never obey octet rule. (NCERT – Class 11th, Page 105 – 106)
- **73.** (1)

The screening effect of electrons of different orbitals follows the order s > p > d > f. (NCERT – Class 11th, Page 88 – 89)

74. (2)

Moving from left to right, the atomic radius decreases.

So, the radius of O < Radius of C Moving from top to bottom, the atomic radius increases. Hence, the correct order of increasing atomic radius is O < C < S < Se(NCERT – Class 11th, Page 85 – 87)

75. (4)

CH₄ is neither hypervalent nor hypovalent. (NCERT – Class 11th, Page 105 – 106)

76. (3)

In the modern periodic table, each period begins with the filling of a new shell. Therefore, a period indicates the value of principal quantum number (n).

(NCERT – Class 11th, Page 81 – 82)

77. (4)

108 = Unniloctium 114 = Ununquadium 107 = Unnilseptium 116 = Ununhexium (NCERT - Class 11th, Page 78 - 81)

78. (4)

According to octet rule, the central atom must have 8 electrons but in some compounds the number of electrons is more than 8, or less than 8 or an odd number of electrons is left on the central atom e.g., PF_5 , BCl_3 , NO.

(NCERT – Class 11th, Page 105 – 106)

79. (1)

Na has the highest second ionization energy. (NCERT – Class 11th, Page 87 – 89)

80. (3)

The basic strength of oxides increases down the group and decreases across a period from left to right. Among the given element, K is most metallic and Al is least metallic.

So, the correct order of basic nature of oxides metals is:

$$\label{eq:al2} \begin{split} Al_2O_3 < MgO < Na_2O < K_2O \\ (NCERT - Class \ 11^{th}, Page \ 94 - 95) \end{split}$$

81. (1)

$$C: +2 : \overleftrightarrow{O}: \rightarrow (\overleftrightarrow{O}: :)C: :)\overleftrightarrow{O}: \text{ or } O=C=O$$

Valencies of C and O are 4 and 2 respectively. (NCERT – Class 11th, Page 102 – 106)

82. (1)

Boron and silicon will show diagonal relationship.

(NCERT – Class 11th, Page 93)

83. (3)

Newland's law of octaves is valid only up to mass number 40. Li, Na, K forms a Dobereiner's triad. (True) Statement I is false but statement II is true. (NCERT – Class 11th, Page 74 – 75)

84. (1)

Formal charge $(FC) = V - L - \frac{B}{2}$

Where,

- V = Total number of valence electrons in the atom.
- L = Total number of non bonding (lone pair) electrons in the atom.
- B = Total number of bonding (shared) electrons in that particular atom.

$$\begin{bmatrix} H \\ | \\ H - N - H \\ | \\ H \end{bmatrix}^{+}$$

For the given structure, we have V = 5; L = 0; B = 8

 \therefore Formal charge on the nitrogen atom in NH₄⁺ (ammonium) ion is:

$$FC = 5 - 0 - \frac{1}{2} \times (8)$$

 \therefore FC=1

The formal charge on nitrogen in case of NH₄⁺ (ammonium) ion is +1. (NCERT – Class 11th, Page 104 – 105)

85. (4)

Be(Z=4) and Mg(Z=12) are s-block elements. (NCERT - Class 11th, Page 82 - 84)

86. (1)

Boron show anomalous behaviour in group 13. (NCERT – Class 11th, Page 93)

- 87. (1) Na₂O will be most basic because Na is most electropositive among Na, Al, Si, S. (NCERT – Class 11th, Page 94 – 95)
- **88.** (1)

The repeating of similar electronic configuration of their atoms in the outermost energy shell after a regular interval is the reason for periodicity in element properties.

(NCERT – Class 11th, Page 81 – 85)

89. (2)

As the tendency to lose electrons decreases as we move from left to right in a period, the electropositive character decreases.

(NCERT – Class 11th, Page 91)

90. (4)

All three molecules, $AlCl_3$, SF_6 , and NO, deviate from the octet rule, as the central atom in them does not contain exactly 8 electrons. Thus, this is an example of an expanded octet.

The central atom in $AlCl_3$ has 6 valence electrons.

The central atom in SF_6 has 12 valence electrons.

The central atom in NO has 7 valence electrons. (NCERT – Class 11th, Page 102 – 106)

91. (1)

 $\Delta_{i}H \propto Z_{eff}$

 $\Delta_i H \propto \text{ Stability of electronic configuration from}$ which electron is to be removed.

 $P : [Ne] 3s^2 3p^3 \rightarrow (Stable half-filled subshell,$

e⁻ removal is difficult)

Al : $[Ne]3s^23p^1$

Mg: [Ne]3s² (e⁻ removal is difficult from more penetrating 3s subshell)

$$\begin{split} &S: [Ne] 3s^2 3p^4 \ (high \ Z_{eff}) \\ &\Delta_i H_1 \Longrightarrow Al < Mg < S < P \\ &(\text{NCERT} - \text{Class } 11^{\text{th}}, \text{Page } 87 - 89) \end{split}$$

92. (3)

The 5th period of the periodic table contains 18 elements.

(NCERT – Class 11th, Page 81 – 85)

93. (3)

For nitrogen, formal charge $=5-\frac{1}{2}(8)=+1$ For oxygen, formal charge $=6-6-\frac{1}{2}(2)=-1$ (NCERT – Class 11th, Page 105 – 106)

94. (3)

Group 17 of the modem periodic table contains halogens. (NCERT – Class 11th, Page 84)

95. (4)

For isoelectronic species,

size
$$\propto \frac{1}{\text{number of protons}}$$

(NCERT – Class 11th, Page 85 – 87)

96. (2)

Helium has a zero valency. (NCERT – Class 11th, Page 101 – 102)

97. (1)

Helium has zero electron affinity. (NCERT – Class 11th, Page 89 – 90)

98. (1)

On moving down the group number of shells are added.
∴ size increases.
(NCERT - Class 11th, Page 85 - 87)

99. (2)

F is the most electronegative element followed by O. (NCERT – Class 11th, Page 90 – 91)

100. (1)

When two atoms combine to form a molecule, energy is released.

(NCERT – Class 11th, Page 101 – 102)