Alternating Current

DPP-04

- 1. The current in series LCR circuit will be maximum when ω is
 - As large as possible (1)
 - Equal to natural frequency of LCR system
 - (3)
 - (4)
- 2. For the series LCR circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency

- $2500 \, rad s^{-1}$ and $5\sqrt{2}A$ (1)
- $2500 \, rad s^{-1}$ and 5 A
- $2500 \, rad s^{-1} \text{ and } \frac{5}{\sqrt{2}} A$
- $25 \, rad s^{-1}$ and $5\sqrt{2}A$ **(4)**
- **3.** The quality factor of LCR circuit having resistance (R) and inductance (L) at resonance frequency (ω) is given by
- (3)
- $\left(\frac{\omega L}{R}\right)^{\frac{1}{2}} \tag{4} \qquad \left(\frac{\omega L}{R}\right)^{2}$
- 4. At resonance, the value of the power factor in an LCR series circuit is
 - (1) Zero
- (2)
- (3)
- (4) Not defined
- 5. In LCR circuit the resonance frequency is 500 kHz. If the value of L is doubled and value of C is decreased to

times of its initial values, then the new resonating

frequency in kHz will be

- 250 (1)
- (2) 500
- (3)1000
- **(4)** 2000

- In series LCR circuit voltage leads the current when (Given that ω_0 = resonant angular frequency)
 - $\omega < \omega_0$ (1)
- (2) $\omega = \omega_0$
- $\omega > \omega_0$
- None of these (4)
- 7. A transmitter transmits at a wavelength of 300 m. A condenser of capacitance $2.4\mu F$ is being used. The value of the inductance for the resonant circuit is approximately.
 - (1) $10^{-4} H$
- (2) $10^{-6}H$
- $10^{-8} H$
- (4) $10^{-10}H$
- 8. A capacitor of capacitance $1\mu F$ is charged to a potential of 1 V. It is connected in parallel to an inductor of inductance $10^{-3}H$. The maximum current that will flow in the circuit has the value
 - $\sqrt{1000}mA$ (1)
- 1 mA
- (3) $1\mu A$
- **(4)** 1000 mA
- 9. For an LCR series circuit with an ac source of angular frequency ω ,
 - circuit will be capacitive if $\omega > \frac{1}{\sqrt{LC}}$
 - circuit will be inductive if $\omega = \frac{1}{\sqrt{IC}}$
 - power factor of circuit will be unity if (3) capacitive reactance equal inductive reactance
 - current will be leading voltage if $\omega > \frac{1}{\sqrt{IC}}$ (4)
- **10.** The value of current in two series LCR circuit at resonance is same. Then
 - Both circuits must be having same value of capacitance and inductance
 - (2) in both circuits ratio of L and C will be same
 - for both the circuits X_L/X_C must be same at the frequency
 - both circuits must have same impedance at all (4) frequencies

Answer Key

- 1. (4)
- 2. (1)
- 3. (1)
- 4. (2)
- **5.** (3)
- **6.** (3)
- 7. (3)
- 8. (1)
- 9. (3)
- 10. (3)