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CHAPTER HIGHLIGHTS

Chapter 1

Limit oF a Function
Let y = f(x) be a function of x and let ‘a’ be any real number.

We must fi rst understand what a ‘limit’ is. A limit is 
the value, function approaches, as the variable within that 
function (usually ‘x’) gets nearer and nearer to a particu-
lar value. In other words, when x is very close to a certain 
number, what is f(x) very close to?

Meaning of ‘x → a’
Let x be a variable and ‘a’ be a constant. If x assumes values 
nearer and nearer to ‘a’, then we say that ‘x tends to a’ or ‘x 
approaches a’ and is written as ‘x → a’. By x → a, we mean 
that x ≠ a and x may approach ‘a’ from left or right, which 
is explained in the example given below.

Let us look at an example of a limit: What is the limit of 
the function f (x) = x3 as x approaches 2? The expression ‘the 

limit as x approaches to 2’ is written as: lim
x→2

 Let us check 

out some values of lim
x→2

as x increases and gets closer to 2, 

without even exactly getting there.

When x = 1.9, f (x) = 6.859
When x = 1.99, f (x) = 7.88
When x = 1.999, f (x) = 7.988
When x = 1.9999, f (x) = 7.9988

As x increases and approaches 2, f (x) gets closer and closer 
to 8 and since x tends to 2 from left this is called ‘left-hand 
limit’ and is written as lim .

x→ −2

Now, let us see what happens when x is greater than 2.

When x = 2.1, f (x) = 9.261
When x = 2.01, f (x) = 8.12
When x = 2.001, f (x) = 8.01
When x = 2.0001, f (x) = 8.001

As x decreases and approaches 2, f (x) still approaches 8. 
This is called ‘right-hand limit’ and is written as lim

x→ +2

x          2 2          x
→ ←

We get the same answer while fi nding both, left and right 
hand limits. Hence we write that lim .

x
x

→
=

2

3 8

Meaning of the Symbol: limx a→ f(x) = l
Let f (x) be a function of x where x takes values closer and 
closer to ‘a’ (≠ a), then f (x) will assume values nearer and 
nearer to l. Hence we say, f (x) tends to the limit ‘l’ as x tends 
to a.

The following are some of the simple algebraic rules of 
limits.

 1. lim ( ) lim ( )
x a x a

kf x k f x
→ →

=

 2. lim[ ( ) ( )] lim ( ) lim ( )
x a x a x a

f x g x f x g x
→ → →

± = ±

 3. lim[ ( ) ( )] lim ( ) lim ( )
x a x a x a

f x g x f x g x
→ → →

⋅ = ⋅

 4. lim
( )

( ) lim ( )
( lim ( ) )

x a
x a

x a

f x

g x

x a

g x
g x

→
→

→
=

→
≠ 0

Calculus
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2.4 | Part II ■ Engineering Mathematics

 1.  If the left hand limit of a function is not equal to the 
right hand limit of the function, then the limit does 
not exist.

 2.  A limit equal to infinity is not the same as a limit that 
does not exist.

NOTES

Continuous Functions
Let f: A → B be any given function and let c ∈ A. We say f is 
continuous at c, if given ∈ > 0, there exists d > 0 such that 
|f (x) - f (c)|< ∈ whenever |x - c| < d

In words, this means that, if x is very close to c in domain, 
then f (x) is very close to f (c) in range.

Equivalently f is continuous at c. If lim ( ) ( )
x c

f x f c
→

=
We observe

 1. c ∈ A, i.e., f (c) must exist

 2. lim ( )
x c

f x
→  exists

 3. f c f x
x c

( ) lim ( ) and
→

are equal.

If any of these three conditions fail, then f is discontinuous 
at x = c.

Algebra of Continuous Functions
If f, g be two continuous functions at c, then f + g, f - g, fg 
are also continuous at x = c.

To solve a problem of continuous functions at a point a, 
you can take the following approach.

 1. Find the value f (x) at x = a. If a is in the domain of f, f 
(a) must exist. If a is not in the domain, then f (a) does 
not exist. In such a case, f is not continuous at x = a.

 2. Find lim ( ).
x a

f x
→

 For this you have to first find lim
x→∞

f x l f x l
x a

( ) ( ) lim ( ) ( ).= =
→ +1 2say  and say  If l l1 2≠ ⋅ then 

lim ( )
x a

f x
→

does not exist and so f is not continuous at x 

= a. If l1 = l2, then lim ( )
x a

f x
→

 exists.

 3. If lim ( )
x a

f x
→

 exists and also f (a) exists.

Then verify whether lim ( ) ( ).
x a

f x f a
→

=

If lim ( ) ( ).
x a

f x f a
→

=  Then f is continuous, otherwise it is 

not continuous at x = a.
Problems on continuous functions can be grouped into 

the following categories.

 1. Using ∈, d notation.
 2. Using existence of right and left hand limits.
 3. To find the value of the unknown in f (x) when f is given 

to be continuous at a point.
 4. To find f (a) when f is given to be continuous at x = a.

For functions that are continuous on (a, b) the following 
holds:

  f is bounded and attains its bounds at least once on [a, 
b], i.e., for some c, d ∈[a, b],

  M = supremum of f = f(c) and m = Infimum of f = f (d)

(c, M )

(d, m )

a

y

d c c1 b
x

(c1, M )

The converse may not be true as f x
x

x
( )

;

;
=

< ≤
− < ≤




1 0 1

1 1 2

 

 
is 

bounded on [1, 2] but it is not continuous at x = 1.

NOTE

Intermediate-value Theorem
If f is continuous on [a, b] and f (a) ≠ f (b) then f takes every 
value between f (a) and f (b).

Equivalently, if f is continuous on [a, b] and f (a) < k < f 
(b) or f (b) < k < f (a), then there exists c ∈ (a, b) such that 
f(c) = k.

Equivalently, If f (a) and f (b) are of opposite signs then 
there exists c ∈ (a, b) such that f(c) = 0.

b x

y

ca0

f (a) < 0 and f (b) > 0, clearly f (c) = 0.

 1.  If f (x) is continuous in [a, b] then f takes all values 
between m and M at least once as x moves from a to b, 
where M = Supremum of f on [a, b] and m =  infimum 
of f on [a, b].

 2.  If f (x) is continuous in [a, b], then | f | is also continu-
ous on [a, b], where | f | (x) = | f (x)| x ∈ [a, b]. 

 3.  Converse may not be true

NOTES

For instance, f x
x

x
( )

;

;
=

< ≤
− < ≤




1 0 3

1 3 5

 

 

is not continuous at x = 3, but | f |(x) = 1x ∈ [0, 5], being a 
constant function is continuous [0, 5].

Inverse-function Theorem
If f is a continuous one-to-one function on [a, b] then f -1 is 
also continuous on [a, b].
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Uniform Continuity A function f defined on an interval I 
is said to be uniformly continuous on I if given ∈ > 0 there 
exists a d > 0 such that if x, y are in I and |x - y| < d then 
| f (x) – f (y) | < ∈.

Continuity on [a, b] implies uniform continuity whereas 
continuity on (a, b) does not mean uniform continuity.

NOTE

Types of Discontinuity If f is a function defined on an inter-
val I, it is said to have 

(TD1) a removable discontinuity at p ∈ I, if lim ( )
x p

f x
→

 
exists, but is not equal to f (p).

(TD2) a discontinuity of first kind from the left at p if

lim ( )
x p

f x
→ −  exists but is not equal to f (p).

(TD3) a discontinuity of first kind from the right at p if 

lim ( )
x p

f x
→ +

 exists but is not equal to f (p). 

(TD4) a discontinuity of first kind at p if lim
x→∞

f x f x
x p

( ) lim ( ) and 
→ +

 exists but they are unequal.

(TD5) a discontinuity of second kind from the left at 
p if lim ( )

x p
f x

→ −
 does not exist.

(TD6) a discontinuity of second kind from the right at 

p if lim ( )
x p

f x
→ +  does not exist.

(TD7) a discontinuity of second kind at p if neither 

lim ( ) lim ( )
x p x p

f x f x
→ →− +

 nor  exist.

Examples for each type are presented in the following 
table:

Type Example Point of Discontinuity

TD1
)

2 1
( ,  

1
(1) 3

x
f x x

x
f

−
= ≠

−
=

x = i

TD2 f(x) = x + 3 for 0 < x < 1
f(x) = 5 for x ≥ 1

x = 1

TD3 f(x) = x + 3, for x > 2
f(x) = 8 for x ≤ 2

x = 2

TD4 3 2

( ) 7; 2

3; 2

x x

f x x

x x

+ >
= =
 − <

; x = 2

TD5 f(x) = tan x for x < p/2
f(x) = 1, for x ≥p/2 2

x
π

=

TD6 f(x) = 1, for x ≤ p/2
f(x) = tan x for x > p/2 2

x
π

=

TD7 f(x) = 1/x at x ≠ 0 f(0)  
= 3 at x = 0

x = 0

 1.  Every differentiable function is continuous, but the 
converse is not true.

   The example of a function which is continuous but 
not differentiable at a point f (x) = | x - 3| for x ∈ R is 
continuous at x = 3, but it is not differentiable at x = 3.

 2.  The function may have a derivative at a point, but the 
derivative may not be continuous.

  For example the function 

  f x
x

x
x

x

( )
sin ;

;

=
≠

=







3 1
0

0 0

 has the derivative function 

as 

 

′ =
− ≠

=






f x

x
x

x
x

x

x

( )
sin cos ;

;

3
1 1

0

0 0

2

 

 However lim ( )
x

f x
→

′
0

 doesn’t exist.

NOTES

SOLVED EXAMPLES

Example 1
Discuss the continuity of the function at x = 1 where f (x) is 
defined by

f x
x

x
x( ) =

−
< ≤

3 2
0 1for 

          
=

−
−

>
sin( )

( )

x

x
x

1

1
1for 

Solution
Consider the left and right handed limits

lim lim
x x

f x
x

x→ →−
=

−
=

1 1

3 2
1( )

lim lim
x x

f x
x

x→ →+
=

−
−1 1

1

1
( )

sin( )

              
=

−
−

=
− →
lim  and 

( )

sin( )

( )
( )

x

x

x
f

1 0

1

1
1 1

              
=

−
=

3 1 2

1
1

( )

∴ = =
→ →− +
lim lim
x x

f x f x f
1 1

1( ) ( ) ( )

\ f is continuous at x = 1.

Example 2

If f x
x x

x

( )
( )

(sin ) log( )
=

−
+

2 1

2 1

2

for x ≠ 0 and f (x) = log 2 for x = 

0, discuss the continuity at x = 0.
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Solution

lim lim
x x

x

f x
x x→ →

=
−

+0 0

2 1

2 1
( )

( )

(sin ) log( )

               =

−









+→
lim
x

x

x

x

x

x

x

0

2
2 1

2

2
2

1sin
( )

log( )

               

=

−















 +

→
lim

sin
log( )

x

x

x

x

x

x
x

0

2

1

2 1

2
2

2
1

               

=

−















 +




→

→ →

1

2

2 1

2

2
1

0

2

0 0

1

lim

lim lim

x

x

x x
x

x

x

x
x

sin
log ( )






               
=

1

2
2 2(log ) .

But given f (x) = 2 log 2 at x = 0

\ lim
x

f x f
→

≠
0

0( ) ( )

\ f (x) is not continuous at x = 0.

Example 3
Find the value of k if

f x
x x x

x
x( ) ,=

− + +
+

≠ −
2 5 4 11

1
1

3 2

 for 

And f (–1) = k is continuous at x = –1.

Solution
Given f (x) is continuous at x = – 1 

⇒ = − =
→−
lim

x
f x f k

1
1( ) ( ) .

⇒
− + +

+










→− →−
lim lim

x x
f x

x x x

x1 1

3 22 5 4 11

1
( )

                       
=

+ − +
+→−

lim
x

x x x

x1

21 2 7 11

1

( )( )

                        = 2(– 1)2 – 7 (– 1) + 11 
                        = 2 + 7 + 11 = 20

\k = 20

Example 4

If f x
x

x
a x a b( )

| |
, ,=

−
−

+ < = +
4

4
4 for  for 

x
x

x
b x= =

−
−

+ >4
4

4
4,

| |
,  for 

And f (x) is continuous at x = 4, then find the values of a 
and b.

Solution

lim lim
x x

f x
x

x
a

→ →− −
=

−
−

+
4 4

4

4
( )

| |

                
=

−
− −

+ = − +
→ −
lim

x

x

x
a a

4

4

4
1

( )

( )

  
lim lim

x x
f x

x

x
b

→ →+ +
=

−
−

+
4 4

4

4
( )

| |

                  
=

−
−

+ = +
→ +
lim

( )x

x

x
b b

4

4

4
1

Since given f (x) is continuous at x = 4

lim lim
x x

f x f f x
→ →− +

= =
4 4

4( ) ( ) ( )

⇒ –1 + a = a + b = 1 + b ⇒ a = 1, b = – 1

Example 5
Examine the continuity of the given function at origin 
where,

f x
xe

e

x

x

x

x
( )

,

,

=
+

≠

=











1

1

1

0

0 0

Solution

lim ( ) lim
x x

x

x

f x
xe

e
→ →− −

=

+

=
0 0

1

1

1

0

lim ( ) lim
x x x

f x
x

e→ + → −
=

+
=

+0 0 1 1
0

/

Then,

lim ( ) lim ( )
x x

f x f x
→ →− +

= =
0 0

lim ( )
x

f x
→

=
0

0

Thus the function is continuous at the origin.

Derivatives
In this section we will look at the simplistic form of the 
definition of a derivative, the derivatives of certain standard 
functions and application of derivatives.

For a function f (x), the ratio [ ( ) ( )]f a h f a

h

+ −  is the rate 

of change of f (x) in the interval [a, (a + h)].
The limit of this ratio as h tends to zero is called the 

derivative of f (x). This is represented as f ′(x), i.e.,

lim
( ) ( )

( )
h

f a h f a

h
f x

→

+ −
= ′

0

Chapter 01.indd   6 5/31/2017   12:36:16 PM



Chapter 1 ■ Calculus | 2.7

The derivative f ′(x) is also represented as d f x

dx

{ ( )} or
d

dx
f x{ ( )}

Hence, if y = f (x), i.e., y is a function of x, then 
dy

dx
 is the 

derivative of y with respect to x.

 1.  dy

dx
 is the rate of change of y with respect to x.

 2.  If the function y can be represented as a general curve, 
and a tangent is drawn at any point where the tangent 
makes an angle θ with the horizontal (as shown in the 

figure), then 
dy

dx
= tan ,θ  In other words, derivative of 

a function at a given point is the slope of the curve at 
that point, i.e., tans of the angle, the tangent drawn 
to the curve at that point, makes with the horizontal.

NOTES

θ

X

Y

O

y = f (x )

Standard Results
If f (x) and g(x) are two functions of x and k is a constant, 
then 

 1. d

dx
c( ) = 0 (c is a constant)

 2. 
d

dx
k f x k

d

dx
f x⋅ =( ) ( ) (k is a constant)

 3. 
d

dx
f x g x( ( ) ( ))±

  = ±
d

dx
f x

d

dx
g x( ) ( )

Product Rule

 4. d

dx
f x g x f x g x f x g x{ ( ) ( )} ( ) ( ) ( ) ( )⋅ = ′ ⋅ + ⋅ ′

Quotient Rule

 5. d

dx

f x

g x

g x f x f x g x

g x

( )

( )

( ) ( ) ( ) ( )

( ( ))








=

⋅ ′ − ⋅ ′
2

Chain Rule
 6. If y = f (u) and u = g(x) be two functions, then 

dy

dx

dy

du

du

dx
= 





×








Derivatives of Some Important Functions

 1. (a) 
d
dx  (xn) = n · xn-1

 (b) 
d

dx x

n

xn n

1
1






=
−
+

 (c) 
d

dx
x

x
x( ) ;= ≠

1

2
0 

 2. 
d
dx  [axn + b] = an · xn-1

 3. 
d
dx  [ax + b]n = n a (ax + b) n-1

 4. 
d
dx  [eax] = a · eax

 5. 
d
dx  [log x] = 

1
x ; x > 0

 6. 
d
dx  [ax] = ax log a; a > 0

 7. (a) 
d
dx  [sin x] = cos x

 (b) 
d
dx  [cos x] = –sin x

 (c) 
d
dx  [tan x] = sec2 x

 (d) 
d
dx  [cot x] = –cosec2 x

 (e) 
d
dx  [sec x] = sec x · tan x

 (f) 
d
dx  [cosec x] = –cosec x · cot x

Inverse Rule
If y = f (x) and its inverse x = f–1(y) is also defined, then

dy

dx dx

dy

=
1

.

Second Derivative
If y = f (x), then the derivative of derivative of y is called as 

second derivative of y and is represented by d y

dx

2

2
.

d y

dx
f x

d

dx

dy

dx

dy

dx

2

2
= ′′ = 






( )  where is the first derivative of y.

 8.  (a) 
d

dx
x

x
sin− =

−
1

2

1

1

 (b) 
d

dx
x

x x
cos

| |
ec− =

−

−
1

2

1

1

 (c) 
d

dx
x

x
cos− =

−

−
1

2

1

1

 (d) 
d

dx
x

x x
sec− =

−
1

2

1

1| |
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 (e) 
d

dx
x

x
tan− =

+
1

2

1

1

  (f) d

dx
x

x
cot− =

−
+

1

2

1

1

 9.  (a) d

dx
x xsinh cosh=

  (b) 
d

dx
x xcosh sinh=

  (c) d

dx
x xtanh sech= 2

    (d) 
d

dx
x xcoth = −cosech2

   (e) 
d

dx
x x xsech sech tanh= −

  (f) 
d

dx
x x xcosech cosech= − coth

 10. (a) 
d

dx
x

x
sinh− =

+
1

2

1

1

  (b) d
dx

x
x

cosh− =
−

1

2

1

1

     (c) d

dx
x

x
tanh− =

−
1

2

1

1

    (d) d

dx
x

x
coth− =

−
−

1
2

1

1

   (e) d
dx

x
x x

sech− =
−

−
1

2

1

1

     (f) 
d
dx

x
x x

cosech− =
−

+
1

2

1

1

Successive Differentiation
If f is differentiable function of x and the derivative f ′ is also 
a differentiable function of x, then f ″ is called the second 
derivative of f. Similarly 3rd, 4th ... nth derivative of f may 
be defined and are denoted by f″′,  f ″′′, ... f n or y3, y4 … yn.

 11. The nth derivatives of some special functions:

 (a) 
d

dx
x n

n

n
n =  !

 (b) 
d

dx
x

m

m n
x

n

n
m m n=

−
−!

( )
 s(m being a positive 

integer more than n)

 (c) 
d

dx

n

n eax = an eax

 (d) 
d

dx x a

n

x a
x a

n

n

n

n

1 1
1−







 =

−
+

≠ −
+

( ) !

( )
;

 (e) 
d

dx
x a

n

x a

n

n

n

log( )
( ) ( )!

( )
;+ =

− −
+

−1 11

 (x + a) > 0

 (f) 
d

dx

n

n  sin (ax + b) = an sin
n

ax b
π
2
+ +






  

 (g) 
d

dx

n

n cos (ax + b) = an cos 
n

ax b
π
2
+ +






   

 (h) 
d

dx

n

n  (eax sin bx)

  = ( )a b n2 2 2+ / eax sin 

bx + n tan-1 

b

a





 (i) d

dx

n

n
(eax cos bx)

  = (a2 + b2)n/2 eax cos 


bx + n tan-1 

b

a





 (j) 
d

dx x a

n

a

n

n

n

n

1 1
2 2 2+







 =

−
+

( )
sinn+1θ sin (n + 1)θ 

where θ = tan-1 x

a









 (k) 
d

dx

n

n  (tan-1x) = (-1)n-1 (n - 1)! sinnθ ⋅ sin nθ 

where θ = cot-1x.

Application of Derivatives
Errors in Measurement
Problems relating to errors in measurement can be solved 
using the concept of derivatives. For example, if we know 
the error in measurement of the radius of a sphere, we can 
find out the consequent error in the measurement of the 
volume of the sphere. Without going into further details 
of theory, we can say dx = error in measurement of x and 
dy = consequent error in measurement of y, Where y = 

f (x). Hence, we can rewrite 
dy

dx
f x= ′( )  as dy = f ′(x) · dx. 

Thus, if we know the function y = f (x) and dx, error in 
measurement of x, we can find out dy, the error in meas-
urement of y.

 1.  An error is taken to be positive when the measured 
value is greater than the actual value and negative 
when it is less.

 2.  Percentage error in y is given by 
dy

y









×100.

NOTES

Rate of Change
While defining the derivative, we have seen that derivative 
is the ‘rate of change’. This can be applied to motion of bod-
ies to determine their velocity and acceleration.

Velocity If we have s, the distance covered by a body ex-
pressed as a function of t, i.e., s = f (t), then rate of change 

of s is called velocity (v). v
ds

dt
f t= = ′( ).
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Acceleration Rate of change of velocity is defined as 
 acceleration. Since v = f ′(t) itself is a function of t, we can 
write v = f ′(t).

a
dv

dt

d s

dt
= =

2

2
,  i.e., acceleration is the second derivative 

of the function s = f (t).

Maxima and Minima
A function takes a maximum value or a minimum value 
when the slope of the tangent of the curve at that point is 
zero, i.e., when the first derivative of the function is zero. If 
y = f (x), then y is maximum or minimum at the point x = x1 

if 
dy

dx x x







 =

= 1

0.

Thus we can find the value of x1 by equating 
dy

dx
= 0.

As mentioned above that y can have a maximum or a 
minimum value at x = x1. Whether y is a maximum value or 
minimum is governed by the sign of the second derivative. 
The function y has a minimum value if the second deriva-
tive is positive. In other words, y is maximum at x = x1 if 

d y

dx

2

2
0<  at x = x1 

. y is minimum at x = x1 if 
d y

dx

2

2
0>  at x = 

x1. 
dy

dx x x







 =

= 1

0.  in both the cases discussed above.

The above discussion can be summerized as follows:

 1. If f ′(c) = 0 and f  ′′(c) is negative, then f(x) is maximum 
for x = c

 2. If f ′(c) = 0 and f  ′′(c) is positive, then f(x) is minimum 
for x = c

 3. If f ′(c) = f ′′(c) = … = f r-1(c) = 0 and f r(c) ≠ 0, then
  (a)  If r is even, then f (x) is maximum or minimum 

for x = c according as f r(c) is negative or positive.

  (b)  If r is odd, then there is neither maximum nor a 
minimum for f (x) at x = c.

Mean Value Theorems
Rolle’s Theorem Let f be a function defined on [a, b] such 
that 

 1. f is continuous on [a, b]; 

 2. f is differentiable on (a, b) and 

 3. f (a) = f (b), then there exists c ∈ (a, b) such that f ′(c) 
= 0

Lagrange’s Mean Value Theorem Let f be a function de-
fined on [a, b] such that 

 1. f is continuous on [a, b], 
 2. f is differentiable on (a, b) then there exists c ∈ (a, b) 

such that ′ =
−
−

f c
f b f a

b a
( )

( ) ( )
.

Another Form If f is defined on [a, a + h] such that 

 1. f is continuous on [a, a + h].

 2. f is differentiable on (a, a + h) then there exists atleast 
one θ ∈ (0, 1) such that f (a + h) = f (a) + hf ′(a + θh).

Meaning of the sign of the derivative

SIGN OF f ′(x) on [a, b] Meaning

f ′(x) ≥ 0 f is non-decreasing

f ′(x) > 0 f is increasing

f ′(x) < 0 f is non-increasing

f ′(x) < 0 f is decreasing

f ′(x) = 0 f is constant

Example: The function f, defined on R by f (x) = x3 – 15x2 + 
75x – 125 is non-decreasing in every interval as f ′(x) = 3(x2 
- 10x + 15) = 3(x - 5)2 ≥ 0

Thus f is non-decreasing on R.

Cauchy’s Mean Value Theorem Let f and g be two func-
tions defined on [a, b] such that 

 1. f and g are continuous on [a, b]

 2. f and g are differentiable on (a, b)

 3. g′(x) ≠ 0 for any x ∈ (a, b) then there exists at least 
one real number c ∈ (a, b) such that

f b f a

g b g a

f c

g c

( ) ( )

( ) ( )

( )

( )
.

−
−

=
′
′

Taylor’s Theorem
Let f be a real-valued function defined on [a, a + h] such 
that

 1. f n-1 is continuous on [a, a + h] 
 2. f n-1 is derivable on (a, a + h), then there exists a 

number θ ∈ (0, 1) such that 

f a h f a hf a
h

f a( ) ( ) ( )
!

( )+ = + ′ + ′′ +
2

2
�

+
−

+
−

−h

n
f a R

n
n

n

1
1

1( )
( ) .

Where

R
h f a h

nn

n n

=
+( )

!

θ

(Lagranges’ form of remainder)

R
h f a h

nn

n n n

=
− +

−

−( ) ( )

( )!

1

1

1θ θ

(Cauchy’s form of remainder)
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Maclaurin’s Theorem Let f ⋅ [0, x] → R such that 

 1. f n-1 is continuous on [0, x],
 2. f n-1 is derivable on (0, x)

Then there exists a real number θ ∈(0, 1) such that 

f x f xf
x

n
f( ) ( ) ( )

!
( )= + ′ + ′′ +0 0 0

2

�

+
−

+
−

−x

n
f R

n
n

n

1
1

1
0

( )!
( ) .( )

Where

R
x

n
f xn

n
n=

!
( )θ

(Lagranges form of remainder)

R
x f x

nn

n n n

=
−

−

−( ) ( )

( )!

1

1

1θ θ

(Cauchy’s form of remainder)

Maclaurin’s Series Let f (x) be a function which posses de-
rivatives of all orders in the interval [0, x], then 

f x f xf
x

f
x

n
f

n
n( ) ( ) ( )

!
( )

( )
( )( )= + ′ + ′′ + +

−

−
−0 0

2
0

1
0

2 1
1�

            + +
x

n
f

n
n

!
( )0 �  is known as 

Maclaurin’s infinite series.

Series expansions of some standard functions

 1. e x
x x x

n
x

n

= + + + + + +1
2 3

2 3

! ! !
� �

 2. sin
! !

( )

( )!
x x

x x x

n

n n

= − + − +
−

+
+

+3 5 2 1

3 5

1

2 1
� �

 3. cos
! !

( )

( )!
x

x x x

n

n n

= − + − +
−

+1
2 4

1

2

2 4 2

� �

 4. sinh
! ! ( )!

x x
x x x

n

n

= + + + +
+

+
+3 5 2 1

3 5 2 1
� �

 5. cosh
! ! ( )!

x
x x x

n

n

= + + + + +1
2 4 2

2 4 2

� �

 6. log( )
( )

1
2 3 4

12 3 4 1

+ = − + − − +
− −

x x
x x x x

n

n n

�

 7. (1 + x)-1 = 1 - x + x2 - x3 + …

 8. (1 - x)-1 = 1 + x + x2 + x3 + …

 9. (1 + x)-2 = 1 - 2x + 3x2 - 4x3 + …

 10. ( )1 1
2

1 3

2 3

1 3 5

2 4 6

1

2 2 3− = + +
⋅
⋅

+
⋅ ⋅
⋅ ⋅

⋅ +
−

x
x

x x �

 11. tan−
−

−= − + − +
−
−

+1
3 5 1

2 1

3 5

1

2 1
x x

x x

n
x

n
n� �

( )

( )

 12. sin− = + ⋅ +
⋅
⋅
⋅ +1

3 51

2 3

1 3

2 4 5
x x

x x
�

Example 6
For the function f (x) = x(x2 − 1) test for the applicability of 
Rolle’s theorem in the interval [−1, 1] and hence find c such 
that −1 < c < 1.

Solution
Given f (x) = x(x2 – 1)

 1. f is continuous in [−1, 1]

 2. f is differentiable in (−1, 1)
 3. f (−1) = f (1) = 0

\  f (x) satisfies the hypothesis of Rolle’s theorems 
\ We can find a number c such that f ′(c) = 0, i.e., f ′(x) = 
3x2 − 1

′ = ⇒ − = ⇒ = ±f c c c( ) 0 3 1 0
1

3
2

                                  ⇒ =c
1

3

Example 7
If f (x) = 2x2 + 3x + 4, then find the value of θ in the mean 
value theorem.

Solution
f (a) = 2a2 + 3a + 4

f (a + h) = 2(a2 + 2ah + h2) + 3a + 3h + 4
f (a + h) − f (a) = 4ah + 2h2 + 3h = 2(2ah + h2) + 3h

f a h f a

h
a h

( ) ( )
( )

+ −
= + +2 2 3

                                                = +





 +4

2
3a

h  (1)

Now f ′ (x) = 4x + 3, f 1 (a + θh) 
= 4a + 4hθ + 3 (2)

Comparing Eqs. (1) and (2) we have 4
2

3a
h

+





 +

= + + ⇒ + = +4 4 3
2

a h a h a
h

θ θ

⇒ =θ
1

2

Partial Differentiation
Let u be a function of two variables x and y. Let us assume 
the functional relation as u = f (x, y). Here x alone or y alone 
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or both x and y simultaneously may be varied and in each 
case a change in the value of u will result. Generally the 
change in the value of u will be different in each of these 
three cases. Since x and y are independent, x may be sup-
posed to vary when y remains constant or the reverse.

The derivative of u wrt x when x varies and y remains 
constant is called the partial derivative of u wrt x and is 

denoted by ∂
∂
u

x
 

∂
∂

=
∂
∂

∂
∂









∂
∂ ∂

=
∂
∂

∂
∂











2

2

2u

x x

u

x

u

x y x

u

y
, . 

Total Differential Co-efficient
If u be a continuous function of x and y and if x and y receive 
small increments Δx and Δy, u will receive, in turn, a small 
increment Δu. This Δu is called total increment of u.

Δu = f (x + Δx, y + Δy) - f (x, y)
In the differential form, this can be written as

du
u

x
dx

u

y
dy=

∂
∂

+
∂
∂

.

du is called the total differential of u. If u = f (x, y, z) then 

du

dt

u

x

dx

dt

u

y

dy

dt

u

z

dz

dt
=
∂
∂
⋅ +

∂
∂
⋅ + ⋅

∂
∂
⋅

Implicit Function
If the relation between x and y be given in the form f (x, y) = 
c where c is a constant, then the total differential co-efficient 
wrt x is zero.

Homogeneous Functions
Let us consider the function f (x, y) = a0x

n + a1x
n-1y + 

a2x
n-2y2 + … + any

n. In this expression the sum of the indi-
ces of the variable x and y in each term is n. Such an expres-
sion is called a homogeneous function of degree n.

Euler′s Theorem
If f (x, y) is a homogeneous function of degree n, then 

x
f

x
y

f

y
nf

∂
∂

+
∂
∂

= .

This is known as Euler’s theorem on homogeneous 
function.

Maxima and Minima for Function 
of Two Variables
A function f (x, y) is said to have a local maximum at a point 
(a, b), if f (a + h, b + k) ≤ f (a, b) for all small values of h and 
k, i.e., f (x, y) has a local maximum at (a, b), if f (a, b) has a 
highest value in a neighbourhood of (a, b).

Similarly, f (x, y) is said to have a local minimum at a 
point (a, b), if f (x, y) has least value at (a, b) in a neighbour-
hood of (a, b).

Procedure to Obtain Maxima and Minima
Let f (x, y) be a function of two variables for which we need 
to find maxima and minima.

 1. Find f
f

x
f

f

yx y=
∂
∂

=
∂
∂

 and 

 2. Take fx = 0 and fy = 0 and solve them as simultaneous 
equations to get pairs of values for x and y, which are 
called stationary points.

 3. Find r f
f

x
s f

f

x y
xx xy= =

∂
∂

= =
∂
∂ ∂

2

2

2

, and

  t f
f

yyy= =
∂
∂

2

2
and find rt – s2.

 4. At a stationary point, say (a, b)

  (a)  If rt – s2 > 0, then (a, b) is called an extreme point 
of f (x, y) at which f (x, y) has either maximum or 
minimum which can be found as follows.

  Case 1: If r < 0, then f (x, y) has a local maximum at 
a, b)

  Case 2: If r > 0, then f (x, y) has a local minimum 
at (a, b).

  (b)  If rt – s2 < 0, then (a, b) is called as saddle point 
of f (x, y) where f (x, y) has neither maximum nor 
minimum at (a, b).

Example 8
Find the stationary points of the function f (x, y) = x2y + 3xy 
– 7 and classify them into extreme and saddle points.

Solution
Given f (x, y) = x2y + 3xy – 7

\ f
f

x
xy y f

f

y
x xx y=

∂
∂

= + =
∂
∂

= +2 3 32 and 

Now fx = 0 ⇒ 2xy + 3y = 0 and fy = 0 

⇒ x2 + 3x = 0

⇒ = =
−

+ = = −y x x x x x0
3

2
3 0 3 and   and ; ( )

But for x f y= ≠
3

2
0,  

\ The stationary points of f (x, y) are (0, 0) and (-3, 0)

Now r = fxx = 2y; s = fxy = 2x + 3 and t = fyy = 0

And rt – s2 = 2y × 0 – (2x + 3)2 = -(2x + 3)2

\ rt – s2 < 0 at (0, 0) as well as (-3, 0)
Hence the two stationary points (0, 0) and (-3, 0) are saddle 
points where f (x, y) has neither maximum nor minimum.
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Example 9
Find the maximum value of the function f (x, y, z) = z – 2x2 
– 3y2 where 3xy – z + 7 = 0.

Solution
Given f (x, y, z) = z – 2x2 – 3y2   (1)

Where 3xy – z + 7 = 0   (2)

⇒ z = 3xy + 7   (3)

Substituting the value of z in (1), we have f = 3xy + 7 – 2x2 
– 3y2

∴ =
∂
∂

= − =
∂
∂

= −f
f

x
y x f

f

y
x yx y3 4 3 6 and 

fx= 0 ⇒ 3y – 4x = 0 and fy = 0 ⇒ 3x – 6y = 0

fx = 0 and fy = 0 only when x = 0 and y = 0

\ The stationary point is (0, 0)

Now r = fxx = 
∂
∂

= − = =
∂
∂ ∂

=
2

2

2

4 3
f

x
s f

f

x yxy;   and

t f
f

yyy= =
∂
∂

= −
2

2
6

\ rt – s2 = (-4) (-6) – 32 = 24 – 9 = 15 > 0 and r = -4 < 0

\ f has a maximum value at (0, 0)

For x = 0, y = 0, from (3), z = 3 × 0 × 0 + 7 ⇒ z = 7

\ The maximum value exists for f (x, y, z) at (0, 0, 7) and 
that maximum value is f (x, y, z) at (0, 0, 7) = 7 – 2 × 02 – 3 × 
02 = 7.

Indefinite Integrals
If f (x) and g(x) are two functions of x such that g′(x) = f (x), 
then the integral of f (x) is g(x). Further, g(x) is called the 
antiderivative of f (x).

The process of computing an integral of a function is 
called Integration and the function to be integrated is called 
integrand.

An integral of a function is not unique. If g(x) is any one 
integral of f (x), then g(x) + c is also its integral, where C is 
any constant termed as constant of integration.

Some Standard Formulae

 1. x dx
x

n
c nn

n

=
+

+ ≠ −
+

∫
1

1
1( )

 2. ( )
( )

( )
( )ax b dx

ax b

n a
c nn

n

+ =
+
+

+ ≠ −
+

∫
1

1
1

 3. 1

x
dx x c= +∫ log

 4. 1

ax b
dx

ax b

a
c

+
=

+
+∫

log ( )

 5. a dx
a

a
cx

x

= +∫ log

 6. e dx e cx x= +∫
 7. sin cosx dx x c = − +∫
 8. cos sinx dx x c = +∫
 9. sec tan2 x dx x c = +∫
 10. cosec  2 x dx x c= − +∫ cot

 11. sec  x x dx x ctan sec= +∫
 12. cosec  cosecx x dx x ccot = +∫
 13. tan  secx dx x c= +∫ log( )

 14. cot  sinx dx x c= +∫ log( )

 15. sec  secx dx x x c= + +∫ log( tan )

               = +




+log tan

π
4 2

x
c

 16. cosec  cosecx dx x x c= + +∫ log( cot )

                   
= +log tan

x
c

2

 17. 1

1 2

1 1

−
= + − +− −∫

x
dx x c x csin cosor

 18. 1

1 2

1 1

+
= + − +− −∫ x

dx x c x ctan cotor

 19. 
1

12

1 1

x x
dx x c x c

−
= + − +∫ − −sec cosor ec

 20. sinh coshx dx x c = +∫
 21. cosh sinhx dx x c = +∫
 22. sech tanh2 x dx x c = +∫
 23. cosech  2 x dx x c= − +∫ coth

 24. sech tanh sechx x dx x c= − +∫
 25. sech cothx x dx x c= − +∫ cosech

 26. Kf x dx K f x dx c( ) ( )= +∫ ∫
 27. ( ( ) ( )) ( ) ( )f x g x dx f x dx g x dx c± = ± +∫ ∫ ∫
 28. 

′
= +∫

f x

f x
dx f x c

( )

( )
log[ ( )]

 29. f x f x dx
f x

n
cn

n

( ) ( )
[ ( )]

⋅ ′ =
+

+
+

∫
1

1
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 30. 
dx

a x

x

a
c

2 2

1

−
= +−∫ sin

 31. 
dx

a x
h

x

a
c

2 2

1

+
= +∫ −sin  or

  log | |x a x c+ + +2 2

 32. 
dx

x a
h

x

a
c

2 2

1

−
= +∫ −cos or

  log | |x x a c+ + +2 2

 33. 
1 1

2 2

1

x a
dx

a

x

a
c

+
= 






 +∫ −tan

 34. 
1 1

22 2x a
dx

a

x a

x a
c

−
=

−
+

+∫ log

 35. 
1 1

22 2a x
dx

a

a x

a x
c

−
=

+
−

+∫ log

 36. a x dx
x a x a x

a
c2 2

2 2 2
1

2 2
− =

+
+ +∫ −sin

 37. a x dx
x a x a

h
x

a
c2 2

2 2 2
1

2 2
+ =

−
+ +∫ −sin

 38. x a dx
x x a a

h
x

a
c2 2

2 2 2
1

2 2
− =

−
− +∫ −cos

 39. ∫ = − = 





 +log (log ) logx dx x x x

x

e
c1

 40. e f x f x dx e f x cx x[ ( ) ( )] ( )+ ′ = +∫

Definite Integrals
The difference in the values of an integral of a function f (x) 
for two assigned values say a, b of the independent variable 
x, is called the Definite Integral of f (x) over the interval [a, 

b] and is denoted by ∫
b

a f x dx( ) .
The number ‘a’ is called the lower limit and the number 

‘b’ is the upper limit of integration.

Fundamental Theorem of Integral
Calculus
If f (x) is a function of x continuous in [a, b], then 

f x dx g b g a g x
a

b
( ) ( ) ( ) ( )= −∫  where  is a function such that 

d

dx
g x f x( ) ( ).=

Properties of definite integrals
 1. If f (x) is a continuous function of x over [a, b], and c be -

longs to [a, b], then f x dx f x dx f x dx
a

b

a

c

c

b
( ) ( ) ( ) .∫ ∫ ∫= +

 2. If f(x) is continuous function of x over [a, b], then 

Kf x dx K f x dx
a

b

a

b
( ) ( ) .∫ ∫=

 3. If f (x) is continuous function of x over [a, b], then 

f x dx f x dx
b

a

a

b
( ) ( ) .∫ ∫= −

 4. If f (x) is continuous in some neighbourhood of a, 

then f x dx
a

a
( ) .=∫ 0

 5. If f (x) and g(x) are continuous in [a, b], then

[ ( ) ( )] ( ) ( ) .f x g x dx f x dx g x dx
a

b

a

b

a

b
+ = +∫ ∫ ∫

 6. f x dx f z dz f t dt
a

b

a

b

a

b
( ) ( ) ( )∫ ∫ ∫= =

 7. f x dx f a x dx
a a

( ) ( )
0 0∫ ∫= −

 8. f x f x
a

a
( ) , ( )

−∫ = 0  if  is odd

 9. f x dx f x dx f x
a

a a
( ) ( ) ( )

−∫ ∫= 2
0

 if  is even

 10. f x dx f x dx f a x f x
a a

( ) ( ) , ( ) ( )
0

2

0
2 2∫ ∫= − = if 

  = 0 if f (2a - x) = - f (x)

 11. f x dx n f x dx f a x f x
na a

( ) ( ) , ( ) ( )
0 0∫ ∫= + = if 

Applications of Integration
Area as a Definite Integral
 1. The area enclosed by a curve y = f (x), the lines x = a 

and x = b and the x-axis is given by:

       

A f x dx
f x dx f x a x b

f x dx f x
a

b a

b

= =
≥ ≤ ≤

− ≤
∫

∫
| ( ) |

( ) , ( ) ,

( ) , ( )

 if  

 if 

0

00,  a x b
a

b
≤ ≤







 ∫

y

o xx = a x = b

y = f (x )

A

y

o x
x = a x = b

y = f (x )

A

 2. Similarly, the area enclosed by the curve x = g(y), the 

lines y = c and y = d and the y-axis is A g y dy
c

d
= ∫ | ( )|

 3. When f (x) ≥ 0 for a ≤ x ≤ c and f (x) ≤ 0 for c ≤ x ≤ b, then 
the area enclosed by the curve y = f (x), the lines x = a 

and x = b and the x-axis is A f x dx f x dx
a

c

c

b
= −∫ ∫( ) ( )
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y

o
(c, 0)

x = a
x = b

x

x = f (x )

A

 4. The area enclosed by the curves y = f (x) and y = g(x) 
and the lines x = a and x = b is given by,

y

x

f (x )

g (x )
x = a x = b

A

o

y

x

g(x )

f (x )
x = a x = b

A

o

A f x g x dx

f x g x dx f x g x

a x b

g
a

b

a

b

= − =

− ≥

≤ ≤
∫

∫
| ( ) ( )|

( ( ) ( )) , ( ) ( ),

( (

 if 

xx f x dx f x g x

a x b
a

b
) ( )) , ( ) ( );− ≤

≤ ≤













∫  if 

Example 10
Find the area enclosed by the curve y = x3, the line y = 2 and 
the y-axis in first quadrant?

Solution
The area bounded by y = x3, y = 2 and the y-axis is the area 
OAB as shown in the figure.

So, the region OAB is bounded by the curve x y=
1

3 ,  the 

lines y = 0 and y = 2 and the y-axis and x y y= ≥ ∈
1

3 0 0 2, [ , ]  

y

B

o

x

y = 2

y = x 3

A

\ The required area

= =








=∫ y dy y

y

1

3

4

3

0

2

0

2
3

4

= ×
3

4
2

4

3

=
3

2
2

3

=
3

43

Example 11
Find the area enclosed by the curve y = x2 and line y = 4?

Solution
The area enclosed by the curve y = x2 and the line y = 4 is 
the region OAB.
\ The region OAB is bounded by line y = 4 and the curve y 
= x2 from x = -2 to x = 2 and 4 ≥ x2 for all x ∈ [-2, 2]

y

o x

y = 4

y = x 2 A

B (2, 4)
(−2, 4 ) A

\ The required area = −
=−∫ ( )4 2

2

2
x dx

x

= − −∫2 4 42

0

2
2( ) ( )x dx x∵ as even

= −








 =2 4

3

32

3

3

0

2

x
x

Rectification
The process of determining the length of arcs of plane 
curves is called Rectification. The length of the arc can be 
calculated by any one of the methods given below.

Cartesian Equations Let y = f(x) be a function of x. The 
length of arc between the points with x-coordinates ‘a’ and 

‘b’ is given by S
dy

dx
dx

a

b
= + 






∫ 1

2

, provided 
dy

dx
 is con-

tinuous on [a, b].

If the equation of the curve is given in the form x = 
f (y), then the length of the arc between the points with 
y- coordinates ‘c’ and ‘d’ is given by

S
dx

dyc

d
= +









∫ 1

2

 dy provided 
dx

dy
 is continuous on [c, d]

NOTE

Parametric Equations Let x = f (t) and y = g(t) be paramet-
ric functions of ‘t’.The length of the arc between the points 
{f (t1), g (t1)} and {f (t2), g (t2)} is given by
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dx

dt

dy

dtt

t 





 + 




















∫
2 2

1

2

 dt provided 
dx

dt
 and 

dy

dt
 are both 

continuous on [t1, t2].

Polar Equations Let r = f (θ) be a function of θ, the length 
of the arc between the points {f(θ1), θ1} and {f(θ2),θ2} is 

given by S r
dr

d
= + 






∫ 2

2

1

2

θθ

θ
 dθ provided 

dr

dθ
 is continu-

ous along the arc.
If the equation of the curve is given in the form θ = f(r), 

then the length of the arc between the points (r1, f (r1)), (r2, 
f (r2)) is given by

S r
d

dr
dr

r

r
= + 






∫ 1 2

2

1

2 θ  provided 
d

dr

θ
 is continuous along 

the arc.

Theorems on Integration
 1. If f is a continuous function on [a, b] then there exists 

c ∈ (a, b) such that f x dx f c b a
a

b
( ) ( )( )∫ = −

 2. If f, g ∈ R [a, b] and g keeps the same sign on [a, b] 
then there exists m ∈ R lying between the infimum and 

the suprimum of f such that f x g x g x dx
a

b

a

b
( ) ( ) ( )=∫ ∫µ

This is called the first mean value theorem.
NOTE

 3. If f, g ∈ R [a, b], g is positive and decreasing on [a, b] 
  Then there exists m ∈ [a, b] such that

  f x g x dx g a f x dx
a

b

a
( ) ( ) ( ) ( )∫ ∫=

µ

This is known as Bonnet mean value theorem.
NOTE

 4. If f, g ∈ R [a, b] and is monotonic on [a, b] then 

there exists m ∈ (a, b) such that f x g x dx
a

b
( ) ( )∫ =

g x f x dx g x f x dx
b

a
( ) ( ) ( ) ( )+ ∫∫ µ

µ

This is known as second mean value theorem or 
weierstrars theorem.

NOTE

Example 12

Prove that these exists µ
π

∈





0

2
,   such that 

x x dxcos =∫ µ
π

0

2

Solution
Take f(x) = x and g(x) = cos x

\  f is continuous on 0
2

,  
π





and g is integrable on 0
2

,  
π



also 

g x( ) ,≥ 





0 0
2

 in  
π

\ By first mean value theorem, 

x dx x dxcos cos
0

2

0

π
π

µ µ∫ ∫= =

\There exists is µ
π

∈





0

2
,  such that cos x dx =∫ µ

π

0

2

Example 13
Verify second mean value theorem for f(x) = x2 and g(x) = 
x2 on [-1, 1].

Solution
Given f(x) = x2 and g(x) = x2 on [-1, 1] both f and g are 
continuous and integrable on [-1, 1] but g is a decreasing 
function on [-1, 0] and increasing function on [0, 1] \  g is 
not monotonic.

\ f x g x dx x x dx( ) ( ) = ⋅
−− ∫∫ 2 2

1

1

1

1

                  =








 = + =
−

x5

1

1

5

1

5

1

5

2

5
 (1)

But by second mean value theorem,

f x g x dx g a f x dx g b f x dx
a

b

a

b
( ) ( ) ( ) ( ) ( ) ( )= +∫ ∫∫

µ

µ

\ x dx g x dx g x dx4

1

1 2

1

21
1 1= − +

− −∫ ∫ ∫( ) ( )
µ

µ

= + = =∫∫ ∫−
x dx x dx x dx2 21

1

2 2

3µ

µ
 (2)

Since (1) and (2) are not equal the mean value theorem does 
not hold.

Improper Integrals
Consider definite integral ∫

b

a f x dx( )  (1)

If f(x) is a function defined in a finite interval [a, b] and 
f(x) is continuous for all x which belongs to [a, b]

Then (1) is called proper integral.
If f(x) is violated, at least one of these conditions then 

the integral is known as improper integral. These improper 
integrals are classified into three kinds.

Improper Integral of the First Kind In a definite integral 
if one or both limits of integration are infinite then it is an 
improper integral of first kind.

 1. f x dx f x dx
ba a

b
( ) lim ( ) .=

→∞

∞

∫ ∫
  (Singularity at upper limit)

 2. f x dx f x dx
b

a a

b
( ) ( ) .

−∞ →−∞∫ ∫= lim

 3. f x dx b f x dx
a a

b
( ) ( ) .

−∞

∞

→−∞∫ ∫= → ∞
lim

 Or 
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 4. f x dx f x dx f x dx
a ba

b
( ) ( ) ( ) .

−∞

∞

→−∞ →∞∫ ∫ ∫= +lim lim
0

0

  Or =
→∞ −∫lim

r r

r
f x dx( ) .

Convergent: If the limits of the above integral exists or 
finite then the integral is said to be converge.

Divergent: If the limits do not exist then they are said to be 
Divergent.

 1.  Geometrically for f(x) ≥ 0, the improper integral 

f x dx
a

( )
∞

∫ denotes the area of an unbounded region 

lying between the curve y = f (x) the ordinate x = a 
and x-axis.

 2.  Let f(x) and g(x) be non-negative functions and  

0 ≤ f x g x x a g x dx
a

( ) ( ) . ( )≤ ≥
∞

∫for If  converges 

then f x dx
a

( )
∞

∫ is also converges and f x dx
a

( ) ≤
∞

∫
g x dx

a
( ) .

∞

∫
 Similarly let 0 ≤ ≤

∞

∫g x f x g x dx
a

( ) ( ). ( ) If diverges 

then f x dx
a

( )
∞

∫ also diverges.

 That is the convergent or divergent of an improper 
integral by comparing it with a simple integral.

NOTES

Improper Integral of the Second Kind

Consider  ∫
b

a f x dx( )  (1)
If both the limits of Eq. (1) are finite and f (x) is unde-

fined or discontinuous at a point in between a and b, then 
Eq. (1) is known as Improper integral of second kind.

This can be evaluated as follows.
Let f (x) be undefined at a point c which belongs to (a, b) then 

f x dx f x dx f x dx
a

b

c

b

a

c
( ) ( ) ( ) .∫ ∫∫= +

∈→ ∈→ +∈

−∈
lim lim

0 0

If these limits exist then it is convergent otherwise it is 
divergent.

Improper Integral of Third Kind If the limits of the inte-
gral are infinite or f (x) may be discontinuous or both then 
the improper integral is known as third kind.

 1.  
1

1 x
dx

p

∞

∫  is convergent when p > 1 and it is divergent 

when p ≤ 1. This result is used in comparison test for 
testing the convergence or divergence of the integral 
of first kind.

 2.  
1

( )x c
dx

pa

c

−∫ is convergent for p < 1 and is divergent 

for p ≤ 1. This is used for convergence or divergence 
of an improper integral of second kind.

NOTES

Example 14

Examine 
dx

x p1

∞

∫  for convergence/divergence.

Solution

Consider 
dx

x
x dx

x

p
p

p

k p
p k

k

1

1

1
1 1

1∫ ∫= =
− +








 ≠−

− +

 if 

And ⇒ =[log ]x pk
1 1 if 

Case 1: If p
dx

x
k

k
= = −∫1 1

1
, log log = log k → ∞ when k 

→ ∞ it does not tend to a finite limit.
\It is divergent.

Case 2: If p
dx

x p
k

p

k p≠ =
−∫ −1
1

11

1[ ] it converges 

If p >1 and diverges if p ≤ 1.

Multiple integrals
Double Integrals: Integration of f(x, y) over a region R in 
xy-plane is called a double integral.

f x y dR f x y dxdy
y y

y

x x

x

R
( , ) ( , )  =

== ∫∫∫∫
1

2

1

2

Order of Integration in a Double Integral Order of inte-
gration depends on the nature of limits of the variables.

Case 1: If the limits of y are function of x, say y1 = f1(x) and 
y2 = f2(x) and the limits of x are constants, say x1 = a and x2 
= b, where a and b are constants, then integrate wrt y first 
treating x as constant and then integrate wrt x.

That is, f x y dR

y f x

f x y dy

y f x

dx
x a

x b

R
( , )

( )

( , )

( )

  =

=

∫
=

















=

=

∫
2 2

1 1

1

2

∫∫∫

Case 2: If the limits of x are function of y, say x1 = g1(y) and 
x2 = g2(y) and the limits of y are constants, say y1 = c and y2 
= d, then integrate wrt x first treating y as constant and then 
integrate wrt y.

That is, f x y dR

x g y

f x y dx

x g y

dy
y c

y d

R
( , )

( )

( , )

( )

  =

=

∫
=

















=

=

∫
2 2

1 1

1

2

∫∫∫

Case 3: If both the variables x and y have constant limits, 
then one can follow any order of integration.

Change of Order of Integration Evaluation of some of the 
double integrals can be made simple by changing the order 
of integration. In change of order of integration, we take the 
limits of the variables for the given region of integration in 
such a way that the order of integration reverses.
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Example 15

Evaluate
x

y
e dy dx

x

y

y x

x

x

−

== ∫∫
2

20

1

Solution

Let I
x

y
e dy dx

x

y

y x

x

x
=

−

== ∫∫
2

20

1
 (1)

Y

P A
A(1, 1)

Q

X

y = x

y = x 2

o

Evaluation of this integral can be made simple by changing 
the order of integration.

From the limits of x and y given, the region of integration 
is the region bounded by the line y = x and the parabola y = 
x2 as shown in figure.

Now by changing the order of integration, we first 
integrate wrt x, along the horizontal strip PQ from

P x y Q x y( ) ( )= = to and then

We integrate wrt y from 0(y = 0) to A(y = 1)

\  I
x

y
e dx dy

x

y

x y

y

y
=













−

== ∫∫
2

0

1
  (2)

Put 
x

y
t

x

y
dx dt

2 2
= ⇒ =

⇒ =
x

y
dx dt

1

2

x y t
y

y
y x y t

y

y
= ⇒ = = = ⇒ =

2 2

1 and 
( )

\ Eq. (2) Becomes

I e dt dy
t yy

= 







−

== ∫∫ 11

0

1 1

2

   

= − 


= − +

= − −

−

= =

− −

=

− −

∫ ∫( ) [ ]

]

e dy e e dy

ye e

t

y t y

y

y

y

0

1 1
1

0

1

1
0
1

    = (-e-1 – e-1) – (0 – e-0)

   
= − =

−−1 2
21e

e

e

Triple Integrals Integration of a function f(x, y, z) over a 
3-dimensional region V is called the triple integral.

f x yx z dv f x y z dxdydz
V z z

z

y y

y

x x

x
( , , ) ( , , )    ∫∫∫ ∫∫∫= === 1

2

1

2

1

2

Like double integrals, in triple integrals also the order 
of integration depends on the nature of the limits of the 
variables.

Applications of Double and Triple Integrals
 1. Area of the region R in xy-plane is given by

  Area of R dxdy
R

= ∫∫
y

xo

R

 2. Volume of the solid of revolution:
 (a)  The volume of the solid of revolution obtained by 

revolving the area A about x-axis is

 Volume = = ∫∫V y dx dy
A

2π

y

o x

A

 (b)  The volume of the solid of revolution obtained by 
revolving the area A about y-axis is

 
Volume = = ∫∫V xdx dy

A

2π

 (c)  Volume under the surface as a double integral: The 
volume V of the solid under the surface z = f(x, y) 
and above the xy-plane with the projection of z = 
f(x, y) on xy plane as its base is 

         Volume  = ∫∫ f x y dx dy
D

( , )

Y

Z

X

O

C

V

Z = f (x, y )

D

            (d)  Volumes as a triple integral: The volume of the 
3-dimensional region V is given by ∫v∫∫ dx dy dz

Example 16
Find the volume under the surface x + 2y + z = 4 and above 
the circle x2 + y2 = 4 in the xy-plane.

Solution
Given surface is x + 2y + z = 4

⇒ z = 4 – x – 2y   (1)

Chapter 01.indd   17 5/31/2017   12:36:48 PM



2.18 | Part II ■ Engineering Mathematics

Let D be the region bounded by the circle x2 + y2 = 4 in 
xy-plane

\ In D, y varies from y = − −4 2x y to  = −4 2x and x 

varies from x = -2 to x = +2.
\ The volume under the surface x + 2y + z = 4 and above 
the circle x2 + y2 = 4 in xy-plane is 

V zdxdy x y dxdy
y x

x

xD
= = − −

=− −

−

=− ∫∫∫∫ ( )4 2
2 4

4

2

2

2

2

  (2)

Evaluation of this double integral can be made simple by 
changing it into polar coordinates.

In polar coordinates, x = r cos θ, y = r sin θ and 

J
x y

r

x

r

x

y

r

y

r

r
=
∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

=
−( , )

( , )

cos sin

sin cos

 

 θ
θ

θ

θ θ
θ θ

\ J = r. Also, in the circle x2 + y2 = 4, r varies from r = 0 to 
r = 2 and θ varies from θ = 0 to θ = 2p
\ From (2),

V x y dx dy

r r J drd

D

r

= − −

= − −

∫∫
∫∫ ==

( )

( cos sin ) | |

4 2

4 2
0

2

0

2
θ θ θ

θ

π

    
= − −

== ∫∫ ( cos sin )4 2
0

2

0

2
r r rdr d

r
θ θ θ

θ

π

    
= − −( )== ∫∫ ( cos sin )4 22 2

0

2

0

2
r r r dr d

r
θ θ θ

θ

π

    
= − −











=
=∫ 2

3

2

3
2

3 3

0

2

0

2
r

r r
d

r

cos sinθ θ θ
θ

π

    
= − −



=∫ 8

8

3

16

30

2
cos sinθ θ θ

θ

π
d

    
= − + 


=

=
8

8

3

16

3
16

0

2

θ θ θ π
θ

π

sin cos

Example 17
Find the volume generated by the revolution of the rectangle 
formed by the lines x = 2, x = 5, y = 4 and y = 6 about x-axis.

Solution
The volume of the solid generated by revolving the rectan-
gle ABCD about x-axis = = ∫∫V ydxdy

R
2π

x = 2

y = 6

x = 5

y = 4

Y

O X

A B

CD

R

= = ( )( )== = =∫∫ ∫ ∫2 2
4

6

2

5

2

5

4

6
π πydxdy dx y dy

yx x y

= ( )( ) = × == =x yx y] ]2
5 2

4
6 3 20 60π π π

Change of Variables Evaluation of some of the double 
(or) triple integrals can be made simple by changing the 
 variables.

 1. In a double integral: Let a double integral ∫Rxy
∫∫

f x y dxdy( , ) in x and y is to be converted into the 

variables u and J where x = f(u, J) and y = Ψ (u, J). 
Then 

    f x y dxdy f u u J dud
RR

uxy

( , ) ( ( , ), ( , )) | |    = ∫∫∫∫ φ ϑ ψ ϑ ϑ
ϑ

1

  Where J
x y

u

x

u

x

y

u

y
=
∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

( , )

( , )

 

 ϑ
ϑ

ϑ
  Is the Jacobian of x and y wrt u and J and ′Ruϑ is the 

region of integration in u, J-plane corresponding to 
Rxy in xy-plane.

 2. In a triple integral: Let a triple integral ∫Rxyz
∫∫ 

f x y z dxdydz( , , )  in x, y and z is to be converted into 

the variables u, J and w, where x = f(u, J, ω), y = Ψ 
(u, J, ω) and z = h (u, J, ω) 

      Then f x y z dxdydz f u

u h

RR
u

xyz

( , , ) ( ( , , ),

( , , ),

    

   

= ∫∫∫∫∫∫ φ ϑ ω

ψ ϑ ω
ϑω

1

(( , , )) | |u J dud d  ϑ ω ϑ ω

  where J
x y z

u

x

u

x x

y

u

y y

z

u

z z

=
∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

( , , )

( , , )

  

  ϑ ω

ϑ ω

ϑ ω

ϑ ωω

 is the

jacobian of x, y and z wrt u, J and ω and ′Ruϑω is the region 
of integration in u, J, ω, coordinate system corresponding 
to the region Rxyz in xyz co-ordinate system.

Vector Calculus
If r  is the position vector of a point P, having co-ordinates 

( , , ), ,x y z r xi yj zk   then = + +  where i j k, ,   are unit 

vectors along OX, OY, OZ respectively, and

| | | | .r xi yj zk x y z= + + = + +2 2 2

Given any vector v ai bj ck= + +  its direction ratios are a, 
b, c and its direction cosines are given by:

l
a

v
m

b

v
n

c

v
l m n= = = + + =

| |
,

| |
,

| |
   and 2 2 2 1
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Linear Combinations
A vector r  is said to be a linear combination of the vec-
tors a b c, ,  …  etc. if there exist scalars x, y, z, … such that 

r xa yb zc= + + +�

Test of Collinearity
Three points A, B, C with position vectors a b c, ,  respec-
tively are collinear if f there exist scalars x, y, z not all zero 
such that xa yb zc x y z+ + = + + =0 0,  where 

Test of Coplanarity
Four points A, B, C and D with position vectors a b c d, , ,    
are coplanar if there exist scalars x, y, z and u (not all zero) 
such that xa yb zc ud x y z u+ + + = + + + =0 0,  where 

Linear Dependence and Independence
A system of vectors a b c, ,  … is said to be linearly inde-

pendent (L.I.) if xa yb zc+ + + =� 0

⇒ x = y = z … = 0

If a b c, ,  … is a system of vectors which is not LI, then 
they are linearly dependent (L.D) and for such system of 
vectors there exist scalars x, y, z … (not all zeros) such that 

xa yb zc+ + + =� 0

Every non-zero vector is LI.
Every pair of non-zero non-collinear vectors is LI.
Every pair of collinear vectors is LD.
Three non-coplanar vectors are LI.
Three coplanar vectors are LD.

NOTE

Multiplication of Vectors
Scalar or Dot Product If a b and  are two non-zero vectors 

and θ is the angle between them (0 ≤ θ ≤ p), then their dot or 

scalar product is given by a b a b a b⋅ = ⋅ ⋅| || | cosθ   is a scalar.

 

 1.  If one or both of a b a b, , ,  are  then 0 0⋅ =
 2. a b a b a⋅ = ⋅| | ( )scalar component of  along 

       = | | ( ),b a bscalar component of  along 

 3. a b b a⋅ = ⋅
 4.  If a b c, ,  are any three vectors, then a b c⋅ +( )

= ⋅ + ⋅a b a c
 5.  Two non-zero vectors  a b and   are perpendicular if 

a b⋅ = 0

 6. i j j i j k k j j k k i⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = 0

 7.  a b⋅  is positive, negative or zero according as 0 ≤ θ 
< 90°, 90° < θ ≤ 180° or θ = 90° 

NOTES

 8.  The square of a vector is the square of its modulus,   
i.e., ( ) | |a a2 2=

       i k j2 2 2 1= = =
 9. m is a scalar, then 

      m a b ma b a mb( ) ( ) ( )⋅ = ⋅ = ⋅

10.  If a a i a j a k= + +1 2 3  and b b i b j b k= + +1 2 3 ,  then 

a b a b a b a b⋅ = + +1 1 2 2 3 3
 and angle between the vec-

tors is 

      
cos

| || |
θ =

⋅
=

⋅ + ⋅ + ⋅

+ + ⋅ + +

a b

a b

a b a b a b

a a a b b b

1 1 2 2 3 3

1
2

2
2

3
3

1
2

2
2

3
2

11. Work done = ⋅F S

Vector or Cross Product
a b a b n× = ⋅| || | sinθ �  where θ (0 ≤ θ ≤ 180) is the angle 

between a b n and  and , �  is a unit vector such that it is per-

pendicular to both a b and .

a b n,   and �  (in the same order) are in the right handed 
orientation (i.e., the rotation of a right handed screw from 

a b to  advances it in the direction of n�).

 1. a b b a a b b a× ≠ × × = − × but 

 2. If a b and  are parallel, then a b× = 0

 3. i j k j k i k i j× = × = × =, ,  and 

         j i k k j i i k j× = − × = − × = −, ,

         i i j j k k× = × = × = 0?  [ ]In particular a a× = 0

 4. The angle between two vectors: sin
| |

| || |
θ =

×a b

a b

 5.  A unit vector perpendicular to the plane of a b and  

is given by n n
a b

a b
� � where =

×
×| |

 6.  Area of parallelogram whose adjacent sides are 
a b and  is given by | |a b×

 7.  When the diagonals are given, the vector area of par-

allelogram ABCD is 1

2
( )AB AC×

 8. The vector area of the triangle ABC AB AC= ×
1

2
( )  

 9. If a a i a j a k= + +1 2 3 and b b i b j b k= + +1 2 3 ,

        Then a b

i j k

a a a

b b b

× = 1 2 3

1 2 3

10.  Vector product is distributive with respect to vector 
addition a b c a b a c× + = × + ×( )

NOTES
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Triple Products
Scalar Triple Product The Scalar triple product of three 

vectors a b c, ,   is ( )a b c× ⋅ denoted by [ ]abc

The Scalar triple product of orthonormal right handed 

vector triad i j k, ,  is equal to unity

That is, [ ] [ ] [ ] .i j k j k i k i j= = =1

 1. The volume of a parallelepiped having a b c, ,   as 
co-terminus edges = [ ].abc

 2. If three vectors are coplanar then [ ]abc = 0

 3. If two of the three vectors are equal, then their scalar 
triple product is zero, i.e., [ ]a b c = 0

 4. If a a i a j a k b b i b j b k= + + = + +1 2 3 1 2 3, , 

  c c i c j c k= + +1 2 3 , then abc

a a a

b b b

c c c

  =
1 2 3

1 2 3

1 2 3

 5. The volume of a tetrahedron with co-terminus edges 

a b c abc, , [ ]   is 
1

6
 cubic units.

 6. [ ] ( ) ( )abc a b c a b c= × ⋅ = ⋅ ×

Vector Triple Product If a b c, ,  are three vectors, then the 

triple product a b c× ×( )  is called the vector triple product.

If a b c, ,  are any three vectors, then a b c× ×( )

= ⋅ − ⋅( ) ( )a c b a b c

Vector Variable
A variable of the form r xi y j zk= + +� � �  is called a vector 
variable and x, y, z are scalar variables.

Scalar Function If t is a scalar variable on a range a ≤ t ≤ b 
and a function f defined as f = f (t) for t ∈ [a, b] is called a 
scalar function of t.

Example: f (t) = 9t3 + 4t2 + 7,
f (t) = sint + 5cost + et, etc.

Vector Function If t is a scalar variable defined on a do-
main [a, b], and a function F t x t i y t j z t k( ) ( ) ( ) ( )= + +� � �  is 
called a vector function of the scalar variable t.

t is generally taken as ‘time’.
NOTE

Differentiation If F t( )  is a continuous single valued vec-
tor function of the variable t, then the derivative of F t( )  is 

defined as dF

dt

F t t F t

tt
=

+ −
→

lim
∆

∆
∆0

( ) ( )  where Δt is a small 

increment in t.

One can also look at second and higher order derivatives 
in a similar way.

Differentiation Formula 

 1. The derivative of a constant vector with respect to any 
scalar variable is 0.

 2. d

dt
F t G t

dF

dt

dG

dt
[ ( ) ( )] .± = ±

 3. 
d

dt
s t F t s t

dF

dt

ds

dt
F[ ( ) ( )] ( )= ⋅ + ⋅

 4. Chain rule: 
dF

dt

dF

du

du

dt
F F u= × =, ( ) where  and u is 

a function of t.

 5. Dot and cross products: 

  

d

dt
F G F

dG

dt

dF

dt
G( ) ,⋅ = ⋅ + ⋅

 

  

d

dt
F G F

dG

dt

dF

dt
G( ) .× = × + ×

 6. Partial derivatives: If F  is vector function dependent 
on x, y and z, say F F x y z= ( , , ),   then partial 
derivative of F  with respect to x is defined as 
∂
∂

=
+ −

→

F

x

F x x y z F x y

xx
lim

    z
∆

∆
∆0

( , , ) ( , , )
.

  Likewise, one can also define 
∂
∂

∂
∂

F

y

F

z
 and .

   It is also possible to define higher order partial 
derivatives as: 

 
∂
∂

=
∂
∂

∂
∂











∂
∂

=
∂
∂

∂
∂











2

2

2

2

F

x x

F

x

F

y y

F

y
, . 

∂
∂ ∂

=
∂
∂

∂
∂











2 F

x z x

F

z
,  etc

Differential Vectors

 1. If G G x y z= ( , , )   then 

  dG
G

x
dx

G

y
dy

G

z
dz=

∂
∂

+
∂
∂

+
∂
∂

 2. If F F i F j F k= + +1 2 3
� � � ,  then 

  dF dF i dF j dF k= + +1 2 3
� � �

 3. d F G F dG dF G( )⋅ = ⋅ + ⋅

 4. d F G F dG dF G( )× = × + ×

Vector Differential Operators ∇ is to be read as del or nabla

∇ =
∂
∂

+
∂
∂

+
∂
∂

i
x

j
y

k
z

� � �

∇ =
∂
∂

+
∂
∂

+
∂
∂

2
2

2

2

2

2

2x y z
 is called Laplacian.
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Gradient of a Scalar Function

If f (x, y, z) is a scalar function, then i
x

j
y

k
z

� � �∂
∂

+
∂
∂

+
∂
∂

φ φ φ  is 

known as the gradient of f and is denoted by grad f. One 
can also write the gradient of f using the ∇ operator as grad

φ
φ φ φ

φ=
∂
∂

+
∂
∂

+
∂
∂

= ∇i
x

j
y

k
z

� � �

Now ∇ f denotes a vector field.

 1. If f is a constant, then ∇ f = 0
 2.  If a vector G x y z( , , )   is defined at all points in a region 

we say G  is a vector field. A vector field is said to be 
irrotational if G  = grad f for some scalar function f.

 3.  Gradient can be used in finding directional  derivative. 
(An example is discussed in worked examples section)

 4. ∇ f also gives the normal to the surface f (x, y, z) = C.
 5.  If ∇2f = 0, the function is called the harmonic 

function.
 6.  The directional  derivative of f (x, y, z) in the direction 

of a vector a  is ∇ ⋅φ n̂ , where ˆ
| |

n
a

a
= .

NOTES

Divergence of Vector
F x y z( , , )   be a vector field which is differentiable at each 
point (x, y, z) in some region of space, i.e., F is differenti-
able vector field. The scalar product of the vector operator ∇ 
and F  gives a scalar which is termed as divergence.

∇⋅ = ⋅
∂
∂

+ ⋅
∂
∂

+ ⋅
∂
∂

F i
F

x
j

F

y
k

F

z
� �

If div ( ) ,F F For  then ∇⋅ = 0 is called ‘solenoidal’

NOTE

Curl of a Vector

Let F x y z( , , )   is a vector field defined for all (x, y, z) in 
a certain region of space and is differentiable, i.e., F  is a 
differentiable vector field. The cross product of the vector 
operator ∇ with the vector F  is termed as curl F .

curl F

i j k

x y z

F F F

F F i F j F k=
∂
∂

∂
∂

∂
∂

= + +

� � �

� � �

1 2 3

1 2 3;  

If curl F F= 0,  then  is said to be irrotational.

NOTE

Standard Results

 1. div (fF) = f div F  + F ⋅grad f or ∇ . fF  = f ∇ ⋅ F  + 
F  ⋅ ∇ f

 2. curl (f F) = ∇f × F  + f curl F

 3. div (F  × G) = F  ⋅ curl G  -  G  ⋅ curl F

 4. ∇⋅ ∇f = div (grad f ) or ∇⋅ ∇f = ∇2 f 

 5. curl (grad f) = 0  or ∇ × (∇ f ) = 0 , i.e., curl of a 
gradient equals 0 .

 6. div (curl F ) = 0 or ∇⋅ (∇ × F ) = 0

 7. curl (curl F ) = grad (div F ) - ∇2 F (or) ∇ × (∇× F ) 
= ∇ (∇⋅ F ) - ∇2 F

Integration
Line Integral
Let F x y z( , , )   be a vector function defined on a region 

of space and let C be curve in that region, then the integral 

F dr
c∫ ⋅  is called the line integral.

For Riemann Integration,

fdx
x a

x b

=

=

∫  the limits of integration are along the line seg-

ment joining (a, 0), (b, 0), where a < b.
Here instead of line, we integrate along the curve C.

Circulation
The line integral around a closed curve C denoted by 

F dr⋅∫�  is called circulation of F around C.

Example 18

Evaluate F dr F xyi y j
C

⋅ = +∫ � � �,  where 2 along the triangle x 

= 0, y = 0 and x + y = 1 in the first quadrant.

Solution
y

C1

C2
C3

x
0

F dr xydx y dy xydx y dy

xydx y dy

c CC

C

⋅ = + + +

+ +

∫ ∫∫
∫

( ) ( )

( )

2 2

2

21

3

C1 C2 C3

y = 0 y = 1 - x x = 0

0 < x < 1 1 < x < 0 dx = 0

dy = 0 dy = - dx 1 < y < 0

= + + − + − − + ∫∫∫ ==
[ ( ) ( ) ( ) ( )x dx x x dx x dx y dy

xx
0 0 1 1 2 2

1

0

1

0

0

1

= − − − + + ∫∫ ( )x x x x dx y dy2 2 2

1

0

1

0
1 2

= − + − − ∫∫ ( )2 3 12 2

0

1

1

0
x x dx y dy

= − +





 − =

−2

3

3

2
1

1

3

1

6
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Surface Integral Let S be a closed surface, then the normal 

surface integral ∫s FN ds is called the flux of F over S.

Cartesian Form Let F r F i F j F k( ) = + +1 2 3
� � � , where, F1, F2, 

F3, are continuous and differentiable functions of x, y, z. 
If cosα, cosb and cosg be the direction cosines of the unit 
normal N, then 

N i j k= + +� � �cos cos cos .α β γ

\ F N ds F F F ds
S S

⋅ = + +∫ ∫ ( cos cos cos )1 2 3α β γ

But then ds cosα, ds cosb and ds cosg are the projections 
of ds on yz, zx and xy planes. If dx, dy, dz are the differentials 
along the areas then 

ds cosα = dy dz; ds cosb = dz dx; ds cosg = dx dy.

\ F N ds F dy dz F dz dx F dx dy
SS

⋅ = + +∫∫∫ ( )1 2 3

If R1 is the projection of S on xy-plane, then 

F Nds F N
dxdy

S R
⋅ = ⋅∫ ∫∫ cosγ1

                = ⋅ ⋅
⋅

⋅ =∫∫ F N
dxdy

N k
N k

S | |
(| | cos )�
� γ  

Equivalently,

F Nds F N
dydz

N i
F N

dzdx

N jS R R
⋅ = ⋅

⋅
= ⋅

⋅∫ ∫∫ ∫∫∫
| | | |� �2 3

NOTE

Volume Integral

∫
x2

x1
 ∫

y2

y1
 ∫

z2

z1
  f x y z dz dy dx( , , )  

= ∫ ∫ ∫

x2

x1 y1

y2 z2

z1

f (x, y, z) dz dy dx

Gauss’ Divergence Theorem
If F  is continuously differentiable vector function in the 
region bounded by a surface S, then F N ds Fdv

VS
⋅ =∫∫∫∫∫ div  

where N  is the unit normal to the surface. 

Green’s Theorem If P and Q are scalar point functions, 
possessing continuous derivatives of the first order, in a re-
gion S of the xy plane bounded by a closed curve C then

Pdx Qdy
Q

x

P

y
dxdy

SC
+ =

∂
∂

−
∂
∂









∫∫∫ .

Stoke’s Theorem If S is an open surface bounded by a 
closed curve C and F  is a continuously differentiable vec-

tor point function, then F d r F Nds
C S

⋅ = ⋅∫ ∫ curl ,  where N 

is unit outward drawn normal at any point on the surface. 

Example 19

If A x i x j xk= + +3 2� � �  and 

B xi x j x k= − + +� � �2 3 ,  then find the values of 

(i) d

dx
A B( )⋅  and (ii) 

d

dx
A B( ).×

Solution

 (i) 
d

dx
A B A

d

dx
B B

d

dx
A( ) ( ) ( )⋅ = ⋅ + ⋅

= + + ⋅ − + +( ) ( )x i x j xk
d

dx
xi x j x k3 2 2 3� � � � � �

 

   
+ − + + ⋅ + +( ) ( )xi x j x k

d

dx
x i x j xk� � � � � �2 3 3 2

= + + ⋅ − + +( ) ( )x i x j xk i x j x k3 2 22 3� � � � � �
 

    + − + + ⋅ + +( ) ( )xi x j x k x i x j k� � � � � �2 3 23 2

  = - x3 + 2x3 + 3x3 - 3x3 + 2x3 + x3 = 4x3.

 (ii) 
d

dx
A B A

dB

dx

dA

dx
B( )× = × + ×

= + + × − + +( ) ( )x i x j xk
d

dx
xi x j x k3 2 2 3� � � � � �

 

   
+ + +

d

dx
x i x j xk( )3 2� � � × − + +( )xi x j x k� � �2 3

= + + × − + +( ) ( )x i x j xk i x j x k3 2 22 3� � � � � �
 

   + + + × − + +( ) ( )3 22 2 3x i x j k xi x j x k� � � � � �

=
−

+
−

i j k

x x x

x x

i j k

x x

x x x

� � � � � �
3 2

2

2

2 31 2 3

3 2 1

= − − + + +i x x j x x k x x� � �( ) ( ) ( )5 3 6 2 5 34 2 5 4 2

Example 20
If f = x3 - 6xy² - 9xyz is a scalar function, then find
∂
∂

∂
∂ ∂

2

2

2f

x

f

x y
, . 

Solution
f = x3 - 6xy² - 9xyz 

∴
∂
∂

= − −
f

x
x y yz3 6 92 2

∴
∂
∂

= − =
2

2
6 0 6

f

x
x x

  

∂
∂

= − −
f

y
xy xz12 9

∂
∂ ∂

=
∂
∂

∂
∂








 =

∂
∂

− −
2

12 9
f

x y x

f

y x
xy xz( )

= - 12y - 9z.
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Example 21
If f ≡ x3 + y3 + z3 - 3xyz, then find the value of grad f at 
(2, 1, 1).

Solution

Grad φ
φ φ φ

=
∂
∂

+
∂
∂

+
∂
∂

i
x

j
y

k
z

� � �  (by definition)

=
∂
∂

+ + − +
∂
∂

+ + −i
x

x y z xyz j
y

x y z xyz� �( ) ( )3 3 3 3 3 33 3
 

    
+

∂
∂

+ + −k
z

x y z xyz� ( ).3 3 3 3

= − + − + −3 2 2 2[ ( ) ( ) ( )]i x yz j y xz k z xy� � �

\ grad f at (2, 1, 1)

= − + − + −3 4 1 1 2 1 2[ ( ) ( ) ( )]i j k� � �

= − −9 3 3i j k� � � .

Example 22

If P x yi x j xyz k= − +2 3 2� � � ,  then find div p and curl p.

Solution
 (i) div P  = ∇ ⋅ P

=
∂
∂

−
∂
∂

− +
∂
∂x

x y
y

x
z

xyz( ) ( ) ( )2 3 2

= 2xy - 0 + 2xyz = 2xy (1 + z)

 (ii) curl P P

i j k

x y z

x y x xyz

= ∇× =
∂
∂

∂
∂

∂
∂

−

� � �

2 3 2

 
=

∂
∂

−
∂
∂

−








 −

∂
∂

−
∂
∂







i

y
xyz

z
x j

x
xyz

Z
x y� �( ) ( ) ( ) ( )2 3 2 2

   
+

∂
∂

− −
∂
∂









k

x
x

y
x y� ( ) ( )3 2

= − + − −xz i yz j k x x2 2 2 23� � �( )

= − −xz i yz j x k2 2 24� � �.

Example 23
Find the value of r if, 

p xy i xyz j r xyz k= + + −2 2 32� � �( )  is solenoidal at (1, - 1, 1). 

Solution
p is solenoidal ⇒ div p = 0 ⇒ ∇⋅ p = 0

⇒
∂
∂

+
∂
∂

+
∂
∂

=
p

x

p

y

p

z
1 2 3 0

⇒
∂
∂

+
∂
∂

+
∂
∂

− =
x

xy
y

xyz
z

r xyz2 2 32 0( ) [( ) ]

⇒ y² + xz² + (r - 2) 3xyz² = 0 at (1, -1, 1), div p = 0

⇒ (-1)² + (1)² + (r - 2) 3 (1) (-1) (1)² = 0

⇒ + − + = ⇒ =1 1 3 6 0
8

3
r r .

Example 24
Find the value of a, if P y xz i= +( )2 2 �

+ + + +( ) ( )z xy j x ayz k2 22 � � is irrotational. 

Solution
The vector P is irrotational

⇒ curl P = 0  ⇒ ∇ × P = 0

⇒
∂
∂

∂
∂

∂
∂

+ + +

=

i j k

x y z

y xz z xy ayz x

� � �

2 2 22 2

0

⇒
∂
∂

+ −
∂
∂

+








i

y
x ayz

z
xy z� ( ) ( )2 22

 

   
−

∂
∂

+ −
∂
∂

+





j

x
x ayz

z
y xz� ( ) ( )2 2 2

   
+

∂
∂

+ −
∂
∂

+








 =k

x
z xy

y
y xz� ( ) ( )2 22 2 0

⇒ − + − + − =i az z j x x k y y� � �( ) ( ) ( )2 2 2 2 2 0

⇒ − = = ⇒ − =i z a i z a� �( ) ( )2 0 0 2 0

⇒ a - 2 = 0 ⇒ a = 2

Example 25
Find the angle between the surfaces xy² z = 3x + z² and 3x² 
- y² + 2z = 1 at (1, -2, 1).

Solution
Let f = xy²z - 3x - z² = 0 and 
g = 3x² - y² + 2z - 1 = 0.

\  grad f i y z j xyz k xy z= − + + −� � �( ) ( ) ( )2 23 2 2

grad g i x j y k= + − +� � �( ) ( ) ( )6 2 2
But, angle between two surfaces at a point is equal to angle 
between the normals to the surfaces at that point.
\Let ( , , )n f1 1 2 1= −grad  at   and n g2 1 2 1= −grad  at  ( , , )  
respectively

\  n f1 1 2 1= −( ) ( , , )grad  at  

= − − + −

+ − − = − +

i j

k i j k

� �

� � � �
[( ) ] [ ( )( ) ]

[ ( ) ( )]

2 1 3 2 1 2 1

1 2 2 1 4 2

2

2

n g2 1 2 1= −( ) ( , , )grad  at  

= + − − + = + +i A j k i j k� � � � � �[ ( )] [ ( )] ( )6 2 2 2 6 4 2 

Let the angle between the normals n n1 2 and  be θ.
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So, n n n n1 2 1 2 6 16 4⋅ = ⇒ − +| || | cosθ

= + + + +( )( ) cos1 16 4 36 16 4 θ

∴ =
−

=
−

=cosθ
6

21 56

3

7 6

3

7 6

\θ =










−cos 1 3

7 6

Example 26

If F x y i xy j= + −( )2 2 2� � evaluate F d r⋅∫�  along the 

straight line C from (0, 0, 0) to (1, 2, 3).

Solution
The equation of the line joining (0, 0, 0) and (1, 2, 3) is 
x y z

t
1 2 3
= = = ( ).

Then along the line C, x = t, y = 2t, z = 3t.

\ r xi y j zk t i t j tk

dr i j k

= + + = + +

= + +

� � � � � �

� � �
2 3

2 3

Given F x y i xy j= + −( )2 2 2� �

And along C F t t i t t j, [ ( ) ] ( )= + −2 22 2 2� � = −5 42 2t i t j� �

\ F dr⋅ = (5t² - 8t² + 0) dt = –3t² dt

at (0, 0, 0), t = 0 and at (1, 2, 3), t = 1.

\ F dr t dt
t

c t
⋅ = − =

−







 = −∫ ∫ = 3

3

3
12

0

1
3

0

1

.

Example 27

If F xi z k= −3 2� � , , evaluate F dr⋅∫ ,�  where the curve C is 
the rectangle in the xz bounded by z = 0, z = 2, x = 0, x = 3.

Solution
Since the integration takes place in xz-plane (y = 0)

\  F dr f dx f dz x dx z dz⋅ = + = −∫∫ ∫1 200

2

0
3

F dr F dr F dr F dr F dr
OPC PQ QR RO

⋅ = ⋅ + ⋅ + ⋅ + ⋅∫∫ ∫ ∫ ∫�
(i) Along OP: 

z = 0, dz = 0 and x varies from 0 to 3

F dr x dx
x

⋅ = =








 =∫∫ 3

3

2

27

20

3
2

0

3

Z

XO

2

R

P
(3, 0)

Q(3, 2)
(0, 2)

(ii) Along PQ:
x = 3, dx = 0 and z changes from 0 to 2.

∴ ⋅ = − =
−







 =

−
∫∫ F dr z dz

Z
PQ

2
3

0

2

0

2

3

8

3

(3) Along QR: 
         y = 2, dy = 0 and x changes from 3 to 0

∴ ⋅ = =








 =

−
∫∫ F dr x dx

x
QR

3 3
2

27

2

2 0

33

0

(4) Along RO:
x = 0,
dx = 0 and y varies from 2 to 0.

\ F dr z dz
z

RO
⋅ = − = −









 =∫∫ 2

3

2

0

2

0

3

8

3

Thus F dr
C

⋅ = − − + =∫�
27

2

8

3

27

2

8

3
0

Example 28
Evaluate by Green’s theorem �∫( )�∫( ) (xy + y²) dx + x² dy, where 

C is the closed curve of the region bounded by y = x and y 
= x².

Solution

Here P xy y
P

y
x y= + ∴

∂
∂

= +2 2

Q x
Q

x
x= ∴

∂
∂

=2 2

Hence by Green’s theorem,

( ) ( )xy y dx x dy x x y dx dy
C S

+ + = − −∫ ∫∫2 2 2 2

= − = −



−− ∫∫∫∫ ( ) ( )x y dx dy x y dy dx

y x

x

xS
2 2

0

1

y

x

y = x2

y = x

(0, 0)
(1, 1)

= − = −= == ∫∫ [ ] ( )xy y dx x x dxy x
x

xx

2 3 4

0

1

0

1 2

= −








 = − =

x x4 5

0

1

4 5

1

4

1

5

1

20

Example 29

By applying Gauss theorem, evaluate (x dy dz x ydz
S

3 2+∫∫  

dx x zdx dz+ 2 ), where S is the closed surface consisting of 

the cylinder x² + y² = a² and the circular discs z = 0 and z = b.
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Solution
We have 
F1 = x3; F2 = x²y; F3 = x²z

\ 
∂
∂

=
∂
∂

=
∂
∂

=
F

x
x

F

y
x

F

z
x1 2 2 2 3 23 , ,  

\
∂
∂

+
∂
∂

+
∂
∂

= + + =
F

x

F

y

F

z
x x x x1 2 3 2 2 2 23 5

\ Using Gauss theorem,

F dy dz F dz dx F dx dy
S 1 2 3+ +∫∫

=
∂
∂

+
∂
∂

+
∂
∂









∫∫∫

F

x

F

y

F

z
dx dy dz

V

1 2 3

∴ + +∫∫ x dy dz x ydz dx x zdx dy
S

3 2 2

= =
==

−

= ∫∫∫∫∫∫ 5 202 2

000

2 2

x dx dy dz x dx dy dz
z

b

y

a x

x

a

V

=
=

−

= ∫∫20 2

00

2 2

x b dx dy
y

a x

x

a
.

= −∫20 2 2 2

0
b x a x dx

a

[Let x = a sin θ; dx = a cos θ dθ

Upper limit: x = a ⇒ a sin θ = a ⇒ θ =  π
2

⋅

Lower limit: x = 0 ⇒ a sinθ = 0 ⇒ θ = 0]

= −∫20 12 2

0

2 2 2b a a a dsin ( sin ) cosθ θ θ θ
π

= ∫20 4 2

0

2 2a b dsin cosθ θ θ
π

= ∫20
1

4
24 2

0

2a b dsin θ θ
π

=
−






∫5

1 4

2
4

0

2a b d
cos θ

θ
π

= −





5

2

4

4

4

0

2a b
θ

θ
π

sin

= −




=

5

2 2
0

5

4

4
4a b

a b
π π

Example 30
Evaluate F dr

c
⋅∫  by Stokes theorem, 

If F x y i xy j= + −( ) ,2 2 2� �  where c is the rectangle formed 

by the lines x = ± a, y = 0 and y = b.

Solution

F x y i xyj= + −( )2 2 2�

By Stoke’s theorem,

( )∇× ⋅ = ⋅∫ ∫F N ds F d r
c

∇× =
∂
∂

∂
∂

∂
∂

+ −

= −F

i j k

x y z

x y xy

yk

� � �

�

2 2 2 0

4

∴ ∇ × ⋅ ⋅∫ ( ) ( )F N k ds

= − ⋅ = − ⋅∫ ∫( ) ( )4 4ky N ds y N k ds −∫∫ 4y dx dy
R

Since N ⋅ k ds = dx dy
And R is the region bounded by the rectangle.

= − =
−







−==− ∫∫∫ ( )4

4

2

2

0
0

y dy dx
y

dx

b

a

a

y

b

x a

a

= − − = − = −
− −∫2 0 2 42 2 2( ) [ ] .b dx b x ab

a

a

a
a

Exercises

 1. lim{ }
x

x x x
→∞

− − =3 9 2  ______.

 (A) 
1

6
 (B) 3

 (C) 6 (D) None of these

 2. lim
cos

x

x x x

x→

4− + −







 =

0

2

6

24 24 12

24

 (A) 
1

720
 (B) 

−1

120

 (C) 
1

120
 (D) 

−1

720

 3. Evaluate lim
.x→2 7

 (x - [x]), where [x] is the greatest inte-

ger less than equal to x.
 (A) -0.3 (B) 0.7
 (C) 4.7 (D) 2

 4. Evaluate lim .
x x→0 189

1

 (A) 0 (B) ∞
 (C) -∞ (D) None of these

 5. lim
/

x

x x x

→

+







 =

0

1
2 3

2

 (A) 1 (B) 3

 (C) 6  (D) 2
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 6. lim
x→2

 |x - 2| + [ x - 2] =

 (A) 0.
 (B) only left limit exists.
 (C) only right limit exists.
 (D) limit does not exist.

 7. Let the function f (x) = [x]. Where [x] is the greatest 
integer less than or equal to x. Which of the following 
is/are true?

 (A) f (x) has jump discontinuity at all x ∈ Z.
 (B) f (x) has removable discontinuity at all x ∈ Z.
 (C) f (x) is continuous at all irrational values.
 (D) both (A) and (C).

 8. f x
x x

x x x
( ) =

− < ≤
− < <





5 4 0

4 3 1 22
 at x = 1

 (A) Left hand continuous at x = 1.
 (B) Right hand continuous at x = 1.
 (C) continuous at x = 1.
 (D) None of these

 9. The function f x
x x

x
( )

sin

( )
=

+2 2
 is

 (A) continuous for all x.
 (B) discontinuous for all x.
 (C) constant function.
 (D) discontinuous only at x = ±2.

 10. Check the continuity of the following function

 f x
ax

x

a

x

x
( )

sin
,=











≠2

2

2

when 0

when =0
 at x = 0

 (A) continuous at x = 0
 (B) discontinuous at x = 0
 (C) discontinuous of first kind
 (D) None of these

 11. If f x

x

ax b x

x c R

( )

,

,=
<

+ < <
>









7 5

5 7

11 7 is  continuous on 

 then the values of a and b are
 (A) a = 2, b = 3 (B) a = -2, b = 3
 (C) a = 3, b = -2 (D) a = 2, b = -3

 12. Let f (x) = max(1 - x, x2 - 1). Then f is
 (A) not continuous at x  = 1, -2.
 (B) continuous and differentiable everywhere.
 (C) not differentiable at x = -2, 1.
 (D) continuous but not differentiable at x = 1, -1.

 13. Consider the function f x
x x

( ) =
−

+
−

1

1

1

3
 defined in 

the interval [1, 3]
 P. f is continuous on [1, 3]

 Q. f is differentiable on (1, 3)

 R.  there exists c ∈(1, 3) such that f ′(c) = 0 which of the 
above statements are true?

 (A) P, Q only (B) Q, R only
 (C) P, R only (D) P, Q, R

 14. A function f : R → R is such that f (x + y) = f (x) ⋅ f (y) 
for all x, y in R and f (x) ≠ 0 for any x in R. If f(x) is dif-
ferentiable and f ′(0) = 2, then

 (A) f ′(x) = 2f (x) (B) f (x) = 2f ′(x)
 (C) f (x) = f ′(x) (D) f ′(x) = -f (x)

 15. Which of the following statement(s) is/are true?
 (A) y = x2 has a minimum value at x = 0
 (B) y x= −| |3  has a minimum value at x = 3

 (C) The maximum value of the function y
x

=
+
1

1 2  is 1

 (D) All of these

 16. The maximum and minimum values of f (x) = 3 sin2 x + 
4 cos2 x is

 (A) {-4, -3} (B) {7, 3}
 (C) {4, -3} (D) {4, 3}

 17. If the function f (x) = 2x3 - 9ax2 + 12a2 x + 1, where a > 
0, attains its maximum and minimum at x = p and x = q 
respectively such that p2 = q, then the value of ‘a’ is

 (A) 2 (B) 
1

4

 (C) 
1

8
 (D) 4

Direction for questions 18 and 19: 
The sum of the hypotenuse and one side of a right angled 
triangle is given as a units.

 18. When the area is maximum the ratio of the side and the 
hypotenuse is ______.

 (A) 2 : 1 (B) 1 : 3
 (C) 1 : 2 (D) 2 : 3

 19. When the area is maximum, find the angle between the 
hypotenuse and the other side is ______.

 (A) 60° (B) 30°
 (C) 45° (D) None of these

 20. Consider f (x) = |x2 - 3|, 0 ≤ x ≤ 6  and g(x) = 

3 0 1

4 1 3

x x

x x

,

,

≤ ≤
− < ≤





. Then Rolle’s theorem can be applied  

in the respective intervals
 (A) to both f (x) and g(x).
 (B) only to f (x).
 (C) only to g (x).
 (D) neither to f (x) nor to g (x).

 21. If the function f (x) = px2 + qx2 + rx + s on [0, 1], satis-
fies the mean value theorem, then the value of c in the 
interval (0, 1) is

 (A) 
1

2
 (B) 

1

3

 (C) 
2

3
 (D) 

2

3 3
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 22. f (x) =
x

x

2

1+
 increases in

 (A) (- 2, 0)

 (B) [- 4, -2]

 (C) (-∞, - 2] ∪ [0, ∞)

 (D) (- ∞, - 2) ∪ (0, ∞)

 23. Let f (x) = eax and g(x) = e−ax be two functions defined 
in [ p, q], If the functions satisfies Cauchy mean value 
theorem then the value of ‘c’ is ______.

 (A) p + q (B) 
p q+

2
 

 (C) 2( p + q) (D) None of these

 24. If x = cos (z + y2), then 
∂
∂

=
z

y

 (A) 1 (B) y
 (C) 2y (D) -2y

 25. If u = 
x y

x y

4 4

6 6

6
+

+













,  then x
u

x
y

u

x

∂
∂

+
∂
∂

=  

 (A) 
u

2
 (B) 

4

u

 (C) 4u (D) 6u

 26. The stationary points of the function f (x, y) = x3 + y4 - 
27x + 32y + 100 is/are

 (A) (3, 2), (3, -2)

 (B) (-3, 2), (-3, -2)

 (C) (3, 2), (-3, -2)

 (D) (3, -2), (-3, -2)

 27. For the function f (x, y) = 2x2 + 4y2 + 4xy + 2x + 
10y + 7.

 (A) Local maximum exists, but no local minimum.
 (B) Local minimum exists, but no local maximum.
 (C) Neither local minimum nor local maximum exists. 
 (D) Both local minimum and local maximum exists.

 28. For the function xyz, if x + y + z = 3, then the local 
maximum occurs for xyz at the point ______.

 (A) 4
1

2

1

2
, ,









 (B) (5, -1, -1)
 (C) (1, 1, 1)
 (D) (7, -3, -1)

 29. The ratio of the dimensions of a rectangular box of vol-
ume 64 cubic units and open at the top that requires 
least material for its construction is 

 (A) 2 : 2 : 1 (B) 2 : 4 : 5
 (C) 2 : 3 : 4 (D) 1 : 2 : 3

 30. Which of the following function/s is/are integrable but 
not continuous on (0, 10)?

 (A) f (x) = [x]  (greatest integer function)
 (B) f (x) = |x - 3|
 (C) f (x) = |x - 5| + |x - 2|
 (D) f (x) = x2 + 5x + 9

 31. sec3 x dx∫ =  ______.

 (A) 
sec tan

log (sec an )
x x

x x
3

+ +    

 (B) 
sec tan

log tan
2

3

1

3 4

x x
x+ +








π
 

 (C) 
sec tan

log tan
x x x

2

1

2 4 2
+ +








π
 

 (D) None of these

 32. sin cos
/

4 6

0

2

x xdx =∫
π

 ______.

 (A) 
3

128

π
⋅ (B) 

2

425

π
⋅ c

 (C) 
3

2560

π
⋅  (D) 

3

512

π
⋅ 

 33. Area bounded by the curve y = -3x2, x = 2 and the two 
coordinate axes is ______ sq units 

 (A) 2 (B) 3

 (C) 6 (D) 8

 34. The volume of the solid obtained by revolving the area 
bounded by the parabola y2 = x - 4, x-axis and the lines 
x = 4 and x = 7, about x-axis is ______ cubic unit

 (A) 
9

2
π ⋅ (B) 

11

2
π ⋅

 (C) 
13

2
π ⋅ (D) 

15

2
π ⋅

 35. The length of arc of the curve y = ln (cos x) from x = 0 

to x = 
π
4

⋅ is ____.

 (A) ln ( )1 2+  (B) ln ( )2 1−  

 (C) ln ( )2 3+  (D) ln ( )2 3−  

 36. Evaluate ( cos sin )3 4
0

4

0

4

θ θ θ φ
ππ

+∫∫ d d
//

 ______.

 (A) 
2 1

2

−







π  (B) 

( )4 2 1

4 2

− π

 (C) 
( )4 2 1

2

− π
 (D) 

( )4 2 1

4 2

− π
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 37. Evaluate 
dxdy

x y

x

1 2 2
0

1

0

1 2

− −

−

∫∫

 (A) 
π
4

⋅ (B) 0

 (C) 
π
2

⋅ (D) 1

 38. By changing the order of integration, the integral 

f x y dxdy
x

( , )
0

2

2

−∞

∫∫  becomes ______.

 (A) f x y dxdy
y

( , )
2

2

0

+∞

∫∫  (B) f x y dxdy
y

( , )
+

∞∞

∫∫
20

 

 (C) f x y dxdy( , )
00

∞∞

∫∫  (D) f x y dxdy
y

( , )
+

∞

∫∫
2

1

1

 39. By changing the variables in the double integral 
dxdy

xy
R
∫∫ ⋅, where x = eu+v and y = uv, it changes to 

φ ν( )uv dud
R
∫∫  then f(u, v) is 

 (A) 
R

e uvu v( ( ))+  (B) 
e

uv

u v+
 

 (C) 
1 1

v u
+  (D) 

1 1

v u
−

 40. By changing the variables from x, y to u, v where x = u 

+ 2v and y = 4u + 3v, the given integral ⋅ ∫∫ f x y dxdy
R

( , )  

changes to f u v u v u v dud v
R

( , ) ( , )+ +∫∫ 2 4 3 ψ  then Ψ 

(u, v) is ______.

 (A) 5 (B) -5

 (C) 
1

5
 (D) −

1

5

 41. The area bounded by the circle x2 + y2 = 6 and the 
parabola y = x2 is given by:

 (A) dydx
y x

x

x =

−

=−
∫∫
2 6

2

2

 

 (B) dydx
y x

x

x =

−

=−
∫∫

6

2

2 2

 

 (C) ( )x y dydx
y x

x

x

2 2
6

2

2 2

+
=

−

=−
∫∫  

 (D) ( )y x dxdy
y x

x

x

−
=

−

=−
∫∫ 2

6

2

2 2

 

 42. The volume of the solid bounded by the planes x = 0, y 
= 0, z = 0 and x + y + z = 4 is ______ cubic units.

 (A) 
32

3
 (B) 

64

3

 (C) 32 (D) 64

 43. The acute angle between the vectors 3i + j + 2k and i - j 
+ k is θ, then the value of cosθ is

 (A) 
8

21
 (B) 

8

21

 (C) 21 8  (D) 
8

21
 

 44. If r  is the position vector of a particle which passes 
along the curve x = 3 sin 4t, y = 3 cos 4t, and z = 5t 
(t > 0). The magnitude of its velocity and acceleration 
respectively are 

 (A) 13, 45 (B) 12, 48

 (C) 13, 48 (D) 12, 45

 45. f t( )  be a vector function and f
d f

dt
× = 0  implies 

 (A) f is a vector function with constant magnitude.
 (B)  f is a vector function both in direction and 

magnitude.
 (C) f is a vector function of constant direction.
 (D) Either A or C.

 46. The directional derivative of f = x3 y + y3 z + z3 x in the 
direction of i + 2 j + 2 k at (0, 1, -1) is 

 (A) 
5

3
 (B) 

4

3

 (C) 
−4

3
 (D) 

−5

3
 

 47. If r  = x î + y ĵ  + z k̂   and | r | = r, then ∇ rn = 

 (A) n(n - 1)rn-1 r  (B) n(n - 2)rn-2 r

 (C) n ⋅ rn-2 × r  (D) n(n - 1) r

Direction for questions 48 and 49: 
Two equations f = x y2 z - 2y + z2 and g = x2 + yz - x - 2 
represents two surfaces 

 48. Find normal vector to ‘g’ at (1, -1, 2) 

 (A) i + 2j + 2k  (B) i + 2j - k 

 (C) 2 i - j - k (D) i - j - 2k

 49. The acute angle between the surfaces f and g at (1, -1, 
2) is

 (A) cos–1 
15

390









  (B) cos–1 

15

390









  

 (C) 60° (D) 30°
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 50. The magnitude of maximum directional derivative of 
f = 2xy2 - xyz + y2 z in the direction from the point 
(1, - 1, 1) is

 (A) 62 (B) 52

 (C) 62  (D) 56  

 51. The directional derivative of a scalar point function is a 
function of 

 (A) only direction  (B) only position 
 (C) either A or B (D) both A and B

 52. The values of div r  and curl r  respectively when r  = 

2x î  - y ĵ  + 3z k  is

 (A) 4; î  (B) 0, 0
 (C) 4, 4 k  (D) 4, 0  

 53. The necessary and sufficient condition that the force 
field F(x, y, z) is conservative is  

 (A) (curl F ) = - F  (B) div F  = 0  

 (C) curl F F=  (D) curl F  = 0  

 54. Which of the following is/are true?

 (A) ∇ × =( )r a 0

 (B) Grad ( )r a a⋅ =

 (C) ∇× × = −( )r a a2

 (D) All of these

 55. Compute the value of div(∇f × ∇f  ).

 (A) ∇f curl (∇f) (B) ∇f curl (∇f)

 (C) curl (∇f × ∇f  ) (D) 0

 56. For what value of p the vector f = (2x + 3y)i + (z + 2y) j 
+ (x - pz) k is solenoidal?

 (A) 4 (B) -4
 (C) 2 (D) 0

 57. For what values of p, q and r the vector f = (x + ry - z) 
i + (3x - y + qz)j + (px + y - z) k is irrotational?

 (A) p =1, q = -1, r = 3
 (B) p = -1, q = 1, r = 3
 (C) p = -1, q = 1, r = -3
 (D) p =1, q =1, r = -3

 58. If ∇f = yzî + zx ĵ + xy k̂ , then f(x, y, z) =
 (A) xyz + f (y, z); f ≠ constant
 (B) xyz + g(x, z); g ≠ constant
 (C) xyz + h(x, y); h ≠ constant
 (D) xyz + k; k is a constant

 59. If F  = (5xy - 6x2)î  + (2y - 4x) ĵ, compute the line inte-

gral F dr
C
∫ ⋅ where C ≡ y = x3 in the  xy-plane joining 

(1, 1) and (2, 8).
 (A) 35 (B) -32
 (C) 12 (D) 18

 60. Compute ⋅∫ x y ds
S

2 2  around the circle x = cos t and y = 

sin t.

 (A) 
π
4

⋅ (B) 0

 (C) 
π
2

⋅ (D) p

 61. If F  = y2î  - 2xy ĵ, compute the circulation ⋅ ∫ F dr
C

 

where C is the rectangle bounded by y = 0, y = 1, x = 0 
and x = 2.

 (A) 3 (B) 4
 (C) -4 (5) -3

 62. A particle in the force field F = 2x2 i + (y - 3xz)j + 2z k 
is moving along a space curve defined by x = 2t, y = t2, z 
= 3t2 - 2. Find the work done by F  in moving a particle 
along the straight line from A(0, 0, 0) to B(2, 1, 1).

 (A) 
107

30
 (B) 

121

30

 (C) 
113

30
 (D) 

109

30

 63. Evaluate ⋅∫
C
� (x2ydx + xy2 dy) using greens theorem where 

C is the triangle with vertices (0, 0), (2, 0) and (2, 1).

 (A) 
11

24
 (B) 

11

12

 (C) 
−11

6
 (D) 

11

4

 64. Find the area of the region in the first quadrant bounded 

by the curves y = 4x, y = 
1
x

 and y = 
x

4
 using green’s 

theorem.

 (A) log 2  (B) 
1

2
 log 2

 (C) log 4 (D) log 16

 65. Evaluate ⋅ ∫∫ F
s

 nds where F = 2xzî  - yz ĵ + yxk  where S 

is the cube bounded by x = 0, x = 3, y = 0, y = 3 and z = 
0, z = 3.

 (A) 
27

2
 (B) 

81

4

 (C) 
27

4
 (D) 

81

2
 

 66. For the force field F  = x2 i + xyj in the square region in 
the xy-plane bounded by the lines x = 0, y = 0, x = 2, y 

= 2. Using stokes theorem, find the value of ⋅ ∫ F dr
C

, .

 (A) 4 (B) 6

 (C) 8 (D) 2
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 1. Evaluate 
sin t

t
dt

0

∞

∫  [GATE, 2007]

 (A) p (B) 
π
2

⋅

 (B) 
π
4

⋅ (D) 
π
8

⋅

 2. A velocity vector is given as v xyi y j yz k= + +5 2 32 2 . 

The divergence of the this velocity vector at (1, 1, 1) 

is  [GATE, 2007]
 (A) 9 (B) 10

 (C) 14 (D) 15

3. The value of ( )6
00

3

− −∫∫ x y dx dy
x

is [GATE, 2008]

 (A) 13.5 (B) 27.0
 (C) 40.5 (D) 54.0

 4. The inner (dot) product of two vectors P and Q is 
zero. The angle (degrees) between the two vectors is 
 [GATE, 2008]

 (A) 0 (B) 30
 (C) 90 (D) 120

 5. For a scalar function f (x, y, z) = x2 + 3y2 + 2z2, the 
gradient at the point P(1, 2, -1) is [GATE, 2009]

 (A) 2 6 4
� � �
i j k+ +  (B) 2 12 4

� � �
i j k+ −

 (C) 2 12 4
� � �
i j k+ +  (D) 56

 6. The lim

sin

x

x

x→






0

2

3
 is [GATE, 2010]

 (A) 
2

3
 (B) 1

 (C) 
3

2
 (D) ∞

 7. Given function 

  F(x, y) = 4x2 + 6y2 - 8x - 4y + 8. The optimal value of 
f(x, y) [GATE, 2010]

 (A) is a minimum equal to
10

3

 (B) is a maximum equal to
10

3

 (C) is a minimum equal to
8

3

 (D) is a maximum equal to
8

3

 8. What is the value of the definite integral, 

x

x a x
dx

a

+ −∫ ?
0

 [GATE, 2011]

 (A) 0 (B) 
a

2

 (C) a (D) 2a

 9. If a  and b  are two arbitrary vectors with magni-

tudes a and b, respectively, a b
� �
×

2
 will be equal to 

 [GATE, 2011]

 (A) a b a b2 2 2− ⋅( )
� �

 (B) ab a b− ⋅
� �

 (C) a b a b2 2 2+ ⋅( )
� �

 (D) ab a b+ ⋅
� �

 10. For the parallelogram OPQR shown in the sketch, 

OP
 →  = ai  + bj and 

OR
 →  = ci + dj. The area of 

the parallelogram is 

 67. Evaluate the volume integral div N dv
V

  ∫ ⋅, where N is the 

outward drawn normal to the surface described by x² + 
(y - 5)² + (z - 8)² = 12.

 (A) 8p (B) 12p
 (C) 48p (D) 24p
 68. If S is a closed surface and n is unit normal to the sur-

face ‘S’ then ⋅ ∫∫ r
S

 nds = ______.

 (A) 4V (B) 3V

 (C) 2V (D) V

 69. 
1

1 0001
1

.
dx

x

=
∞

∫  ______.

 (A) 1000 (B) 100000

 (C) 10000 (D) 1000000

 70. 
1

2 4 5
0

3

( ) /x
dx

−
=∫   ______. 

 (A) 5 - 21/5 (B) 5 + 21/5

 (C) 5(1 - 2)1/5 (D) 5 1 21 2+ 
/  

Previous Years’ Questions
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O 

P

Q

R

 [GATE, 2012]

 (A) ad - bc

 (B) ac + bd

 (C) ad + bc
 (D) ab - cd 

 11. There is no value of x that can simultaneously sat-
isfy both the given equations. Therefore, find the least 
square error solution to the two equations, i.e., find 
the value of x that minimizes the sum of squares of the 
errors in the two equations

 2x = 3
 4x = 1 [GATE, 2013]

 12. The solution for cos sin
/

4 3

0

6

3 6θ θ θ
π

d∫ is [GATE, 2013]

 (A) 0 (B) 
1

15

 (C) 1 (D) 
8

3

 13. lim
sin

x

x x

x→∞

+





  equals is [GATE, 2014]

 (A) -∞ (B) 0

 (C) 1 (D) ∞

 14. The expression lim
x

x
→

−
0

1α

α
is equal to  [GATE, 2014]

 (A) lnx (B) 0
 (C) xlnx (D) ∞

 15. With reference to the conventional cartesian (x, y) 
coordinate system, the vertices of a triangles have the 
following coordinates: (x1, y1) = (1, 0): (x2, y2) = (2, 
2): and (x3, y3), = (4, 3). The area of the triangle is 
equal to  [GATE, 2014]

 (A) 
3

2
 (B) 

3

4

 (C) 
4

5
 (D) 

5

2

 16. lim
x

x

x→∞
+






1

1
2

is equal to [GATE, 2015]

 (A) e-2 (B) e
 (C) 1 (D) e2

 17. While minimizing the function f (x), necessary and 
sufficient conditions for a point, x0 to be a minima 
are: [GATE, 2015]

 (A) f ′(x0) > 0 and f ″(x0) = 0
 (B) f ′(x0) < 0 and f ″(x0) = 0
 (C) f ′(x0) = 0 and f ″(x0) < 0
 (D) f ′(x0) = 0 and f ″(x0) > 0

 18. The directional derivative of the field u(x, y, z) = x2 - 

3yz in the direction for the vector ˆ ˆ ˆi j k+ −( )2  at point 

(2, -1, 4) is _______. [GATE, 2015]

 19. The optimum value of the function f(x) = x2 - 4x + 2 
is [GATE, 2016]

 (A) 2 (maximum) (B) 2 (minimum)
 (C) -2 (maximum) (D) -2 (minimum)

 20. The quadratic approximation of f(x) = x3 - 3x2 - 5 at 
the point x = 0 is [GATE, 2016]

 (A) 3x2 - 6x - 5 (B) -3x2 - 5
 (C) -3x2 + 6x - 5 (D) 3x2 - 5

21. What is the value of lim ?
x
y

xy

x y→
→

+0
0

2 2
 [GATE, 2016]

 (A) 1 (B) -1
 (C) 0 (D) Limit does not exist

 22. The area between the parabola x2 = 8y and the straight 
line y = 8 is _____. [GATE, 2016]

 23. The area of the region bounded by the parabola y = x2 
+ 1 and the straight line x + y = 3 is [GATE, 2016]

 (A) 
59

6
 (B) 

9

2

 (C) 
10

3
 (D) 

7

6

 24. The angle of intersection of the curves x2 = 4y and y2 
= 4x at point (0, 0) is [GATE, 2016]

 (A) 0° (B) 30°
 (C) 45° (D) 90°

 25. The value of 
1

1 2 00 +
+

∞∞

∫∫ x
dx

x

x
dx

sin
 is 

 [GATE, 2016]

 (A) 
π
2

⋅ (B) p

 (C) 
3

2

π
⋅ (D) 1
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Answer Keys

Exercises
 1. A 2. D 3. B 4. D 5. C 6. D 7. D 8. C 9. A 10. A
 11. D 12. C 13. B 14. A 15. D 16. D 17. A 18. C 19. B 20. D
 21. A 22. D 23. B 24. D 25. A 26. D 27. B 28. C 29. A 30. A
 31. C 32. D 33. D 34. A 35. A 36. B 37. C 38. B 39. D 40. A
 41. B 42. A 43. D 44. C 45. C 46. D 47. C 48. B 49. A 50. C
 51. D 52. D 53. D 54. D 55. D 56. A 57. B 58. D 59. A 60. A
 61. C 62. D 63. C 64. C 65. D 66. A 67. C 68. B 69. C 70. D

Previous Years’ Questions
 1. B 2. D 3. A 4. C 5. B 6. A 7. A 8. B 9. A 10. A 
11. 0.875 12. B 13. C 14. A 15. A 16. D 17. D 18. -5.72 to -5.70 19. D 
20. B 21. D 22. 85.33 23. B 24. D 25. B
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