Chapter 2

Ordinary Differential
Equations

CHAPTER HIGHLIGHTS

= Introduction
w  Differential equations

= [ aplace transforms

INTRODUCTION

Familiarity with various methods used in evaluating indefi-
nite integrals or finding anti-derivatives of functions [or, in
other words, evaluating [f{x) dx] is a pre-requisite.

DIFFERENTIAL EQUATIONS

An equation involving derivatives of a dependent variable
with respect to one or more independent variables is called
a differential equation. The equation may also contain the
variables and/or their functions and constants. If there is
only one independent variable, the corresponding equation
is called an ordinary differential equation. If the number of
independent variables is more than one, the corresponding
equation is called a partial differential equation.

Examples:

1. Q:x4+e"‘+y

2 4 y+3(dyj +3y*x =sinx+6
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d2

4. —+4 0
I y=

4
—y — +e?v =6
dx’

6. L de dy+9y—16x2

a3 dx?

7. xa—u+ya—u=8u
ox T oy
2 2

g Ju ou_,o
6y2 aXZ
2 2

9. ﬂ:25ﬂ
ayZ ox?

0*u 0%u 64

i =3
ox ox2oy? ay

10.

We note that in the given examples, Eqgs. (1) to (6) are
ordinary differential equations while Eqgs. (7) to (10) are
partial differential equations. We refer to these examples
later on in next chapter.

Certain Geometrical Results may also be
Expressed as Differential Equations

Illustration 1 Consider a family of parallel lines. All these
lines have the same slope. If & represents the slope, we may
interpret the family of parallel lines as curves having the

4

same slope. As represents the slope of the tangent to

a curve at any point (x, y), we may say that the differential

equation % = k represents a family of parallel lines.
X
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Ilustration 2 The differential equation y% = k (aconstant)
x

may be said to represent the family of curves having the

length of subnormal equal k& at every point (x, y) on the

curve. (We may note that the family of curves is the family

of parabolas). Our study is confined to ordinary differential

equations. In what follows, differential equation means

ordinary differential equations.

Order of a Differential Equation

It is defined as the order of the highest derivative present in
the equation. Examples (1), (3) are of first order; (2), (4) are
of second order and (5), (6) are of third.

Degree of a Differential Equation

The degree of a differential equation is defined as the degree
of the highest order derivative present in the equation. (It
is assumed that the various order differential co-efficients
or derivatives present in the equation are made free from
fractional powers).

Examples (1), (2), (3), (4), (6) are of first degree while
Example (5) is of second degree.
Consider the differential equation,

(&)

Taking the square on both sides (to free it from fractional
powers), the differential equation is

(2] ol

This is a third order second degree differential equation.

dy

a3

Linear Differential Equation

If, in a differential equation, the dependent variable and the
derivatives appear only in the first degree and there is no
term involving products of the above or containing func-
tions of the dependent variable, it is called linear differen-
tial equation.

1. Z—y + Py = O (where P and Q are functions of only x) is
X

an example of a first order linear differential equation.

2
2. y + Pd—y + Qy = R ,where P, O, R are functions of
dx? dx
d? d
only x; Y a Dy a,y = f(x),where a,, a, are con-

dx? dx
stants and f(x) is a function of x are examples of sec-
ond order linear differential equations.

Similarly, we can have nth order linear differential
equation.

n n—1 n-2
d"y d™ 'y ‘P, d f
dx™

F,
0 dx"

+ Pl dxn—l

+...

+Pn—1d_y+Pny:Q
dx

where P, P, P,, ..., P, Qare functions of x or constants.
If an equation is not linear, it is called a non-linear differ-
ential equation. In examples, 1, 3, 4, 6 are linear differential
equations, while examples 2 and 5 are non-linear differential
equations.

Solution of a Differential Equation

A function y = f{x) or F(x, y) = 0 is called a solution of
a given differential equation if it is defined and differenti-
able (as many times as the order of the given differential
equation) throughout the interval where the equation is
valid, and is such that the equation becomes an identity

2
when y, Q, Q, are replaced by flx), f(x), f7(x),...
dx’ dx?
respectively. 2
[In the case of F'(x, y) = 0 one has to get d_y’ d_y’ ...b
dx  dx?

successive differentiation of F(x, y) = 0 with respect to x].
Examples:
. . d . o
1. y = ¢™ is a solution of d_y =7y, since on substitution

X
of y = €%, both left and right sides of the differ-
ential equation become identical. We find that

y=e’*,3e’x, 7@“ or, in general, y = Ce™, where

C is an arbitrary constant represents solutions of

2. y» — x* = 4 is a solution of the differential equation
d .
&_X Also, y* —x*=5,)*> —x*=-10, ... or, in gen-
dx y
eral, y> — x* = C where C is an arbitrary constant repre-

. dy x
sents solutions of _ —.

dx y
In both the above examples, we could represent the solu-
tions of the differential equations which involve an arbitrary
constant denoted by C. We now define the general solution
of a first order differential equation.

The general solution of a first order differential equa-
tion is a relation between x and y involving one arbitrary
constant such that the differential equation is satisfied by
this relation or, the general solution of a first order differen-
tial equation is a one parameter family of curves where the
parameter is the arbitrary constant. By assigning particu-
lar values to the arbitrary constant, we generate particular
solutions of the equation.

In Example (1) y = Ce™ represents the general solu-

tion of the differential equation % =7y and the solutions
X



y=e",y=3e", ... are its particular solutions. The general solu-
tion represents a family of exponential curves.
In Example (2) »* — x* = C represents the general solu-

i =2 and the solutions
dx y
VP —x?=4,y>—x>=15, ... are its particular solutions. The

general solution in this case represents a family of rectan-
gular hyperbolas.

tion of the differential equation

3. y =23+ 5¢% is a solution of the second order differ-
ential equation ﬂ -3 a_ 18y=0
dx*>  dx e

(which can be verified by actual substitution). Also,

y=4de¥ —10e%, e + %, ... or, in general, y = Ae™
+ Be® where 4 and B are arbitrary constants represents
. d’>y _dy
solution of —-3—-18y=0.
dx? dx

4. y =2 cos 4x + 3 sin 4x or, in general, y = 4 cos 4x + B

sin 4x where 4 and B are arbitrary constants represents
2

<y +16y =0.
dx?

In Example (3), the general solution is y = Ae ™ + Be® and
in Example (4), the general solution is y = A cos 4x + B sin 4x.

By assigning particular values to the arbitrary constants
one can generate particular solutions.

From Examples (3) and (4), we infer that the general
solution of a second order differential equation is a relation
between x and y involving two arbitrary constants such that
the differential equation is satisfied by this relation or the
general solution of a second order differential equation is
a two-parameter family of curves where the parameters are
the arbitrary constants.

To sum up, the general solution of an nth order differ-
ential equation is a relation between x and y involving n
arbitrary constants, such that the differential equation is sat-
isfied by this relation or the general solution of an nth order
differential equation is an n-parameter family of curves
where the parameters are the arbitrary constants. For the
first and second order differential equations, we have

solutions of

First Order Equation
One parameter family of curves:

Representation: Relation between x and y involving one
arbitrary constant, say C.

Eliminate: Eliminate C to obtain a DE representing the
given curve.

Second Order Equation

Two-parameter family of curves:

Representation: Relation between x and y involving two
arbitrary constants, say 4 and B

Elimination: Eliminate 4 and B to obtain a DE representing
the two-parameter family of curves.

We shall work out a few examples to illustrate the forma-
tion of differential equations.
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SOLVED EXAMPLES

Example 1

Form the differential equation representing the one-
parameter family of curves

xX*—A4y=0.
Solution
Given, x> — 4y =0 (1)
Ay=x°
dy 3x?
A= =3x? = A="- 2
< & b))
dx
Substituting 4 in the Eq. (1),
we have
3x? dy
W-Z—y=0 = x—-3y=0.
&Y R
dx
Example 2

Obtain the differential equation of all the circles in the first
quadrant, which touch the co-ordinate axes.
Solution

The equation of any circle in the first quadrant, which
touches the co-ordinate axes may be represented as (x — /)*
+(—hyP=nr.

Differentiating with respect to x,
2(x—h)+2(y—h)ﬂ =0
dx

or h=

Substituting the above expression for / in the equation
of the circle

d 2 2 2
x+yl x+y—y x+y—y
o dx | dx | _ dx
d Y & | | @y
1+4 1+% I+
dx dx dx
2 2
or (x—y)z(d—y) N =(x+yﬂj
dx dx

2 2
dy dy
2
or X - I+ — | |=|x+y]|—|]| -
b { (dxj } { y(dxﬂ
Initial Value Problems A first order differential equation

with a condition that y = y, when x = x [written as y(x,)
=y,] is known as an initial value problem. For example,
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dy_i

122 0 =1
oy »(0)

2. Q+2xy:x3;y(1):6
dx

3. d—y+3—y=e";y(0):4
dx x

To solve such problems, we first obtain the general solu-
tion and find that particular value of the arbitrary constant in
the general solution which satisfies the condition y(x,) = y,.
This means that the solution of an initial value problem is a
particular solution of the given differential equation.

First Order First Degree Equations The general form of

the equation will be j—y = f(x, y).
X

Separable Equations (or Variables Separable Type) Here,
the given differential equation can be reduced to the form

f()dy = g(x)dx. [Recall that Z—y may be thought as the ratio
X

of the differential of y to the differential of x]. Direct inte-
gration of the relation with respect to the variable on each
side gives general solution or, in other words, the general
solution of the differential equation above may be written as
[fy)dy = [g(x) dx + C, where C is an arbitrary constant.

Example 3
Solve: d_y: 1+y2.
dx 1+ x2
Solution
dy 1+ y?
E - 1+ x2

! dy = ! dx
\/l +? \/l +x?
Integrating on both sides,
1 1
——dy = |—=dn.
J'\/l+y2 j\/1+x2
sinhly = sinh™x + ¢.

Example 4

Solve: (x—xyz)j—y+(y+x2y) =0.
X

Solution
(-0 Dt (yexy) =0
dx
(x—xA)dy+@+xy)dc=0
x(1 -y dy+y(1+x})dx=0

1+ x2

1— 2
Y dy+
y X

dx =0

Integrating on both sides,

j@—y}m j[iujdxzo

2 2
logy—y?+logx+%:logC

yz_xz
w_yi-x ﬂ:e( 2 ]

log,
gC 2

y27x2
= xy= Ce( 2 )
Example 5
Solve the initial value problem

d 3
=2 y(1)=(0)
dx

Solution
Given: y? D 2ev
dx
y2e ™ dy = x2dx.
_[yze‘ygdy = Ix2dx

Let e =t = e -=3y%dy=dt

Given: Whenx =1,y =0;

1
——e°=—+c

.. The solution is —16’}’3 = x———.
3 3

X+e»?-2=0.

Homogeneous Differential Equations

Homogeneous differential equation will be of the form f{(x,
y)dy = g(x, y)dx, where f(x, y) and g(x, y) are homogeneous
functions in x and y of the same degree.

Definition
A function F(x, y) in x and y is a homogeneous function in
x and y of degree n(n, a rational number), if F(x, y) can be

expressed as x"¢ [Z) or y"y (ﬁj
X y



3
4_y_y_3] is a homogeneous

1. xX*+4x?y—y3 :x3[1+
X x

function in x and y of degree 3.
2. X3 tan[lj is a homogeneous function in x and y of
X
degree 3.

X+ . Lo
Y s a homogeneous function in x and y of

2x -3y
degree 0. We change the dependent variable y to v by

_ d d
the substitution y = vx. Then, Yy
dx dx

o dy . .
On substitution y and d_y in the given homogeneous
X

equation, it reduces to the variables separable form.

Example 6

Solve:x2@=x2+7xy+9y2.
dx
Solution
x26~l—y:x2+7xy+9y2
/x
d 7 :
o1+ 249 Xj
dx X X
Put y=xv = d—y=v+ﬂ
dx dx
v+@:1+7v+9v2
dx
xﬂ:9v2+6v+l
dx
U -l
92 +6v+1 X

Integrating on both sides,

| |
I9v2+6v+1dvzj§dx

= |—dx — =logx+1lo
I(3v+1)2 I 3(3v+l grrioge

1 -
= —:logecx:—leogecx

3 ( 3y . 1] 9y +3x
X
where C is an arbitrary constant.

Example 7

Solve xﬂ =y+ xsin(zj
dx X
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Solution

Given: x @ y+x sin[zj
x

dx
& =2y sin(zj
dx x X

Put y:vx,ﬂzv+xﬂ.
dx dx

Substituting in (1) we get,

dv .
Vv+x—=v+siny
X

= x;dv:sinv = ,1 dv:ldx
dx sin v X

= Icosecv dv = J.% dx

= log (cosecv —cotv) =logx + logc
= cosecv—cotv=cx
cosec 2 cot 2= cX.
X X
Example 8

Solve 3y? dx + (2xy + 3x?) dy = 0.

Solution
3y*dx + (2xy + 3x?) dy = 0.
dy_ -3
dx  2xy+3x?
Puty=w = —y—v+xﬂ
x dx
dv —3v2
V+x—
dx  2v+3
dv —3y2 3
dx 2v+3
dv _ —3v2 —2v2 -3y
dx 2v+3
ﬂd‘, - ldx
—5v2 =3y X
ﬂd\;_i_ldx =0
v(5v+3) X

Integrating on both sides,
= j{l— 3 }dv+J‘ldx=O
v 5v+3 X

= logv—%log (5v+3)+logx =logec.

= Slogv-3log (5v+3)+5logx=>5logec.

(1
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e

5 _ 5

logmx =logc

¥
———— =¢, where¢; =¢’
(5y+3j

x

533
(5;;—3)6)3:01 = x*y’=¢(5y+3x)

Exact Differential Equations

If M, as well as N, is a function in x and y, then the equation
Mdx + Ndy = 0 is said to be an exact differential equation if
there exists a function f(x, y) such that

d(f(x, y)) = Mdx + Ndy.
That is, g dx + %dy = Mdx + Ndy
Ox oy
Example: 3x?ydx +x’dy =0 is an exact differential equation
since there exists a function x*y such that
d(x* y) = 3x%vdx + x’dy
The necessary and sufficient condition for an equa-
tion of the form Mdx + Ndy = 0 to be an exact equation is
M _ov
oy ax
The solution of the exact differential equation
Mdx+ Ndy =01is U + j¢(y) dy=C
ou

where U = jde and ¢(y)=N .
V

X
Or Ide + I (terms of N not containing x)dy = C

X
Here fde denotes integration of M with respect to x
treating y as a constant.

Example 9
Find the solution of
(Bx=2y+5)dx+@By—2x+7T)dy=0.
Solution
M=3x-2y+5 N=3y—-2x+7
M _ N _ oM _oN
oy Ox “oy  ox

.. The given equation is exact.
The solution is

I Mdx + J(the terms of NV not containing x) dy = C

X

j(3x—2y+5) dx + j(3y+7) dy=C

2 2
3%—Zyx+5x+3%4—7))=C

Example 10
Find the solution of (¢’+ 1) cotxdx + ¢ log(sinx)dy = 0.

Solution
Given (e” + 1)cot x dx + e log (sin x)dy =0
Let M = (e” + 1)cot x and N = e” log (sin x)

oM ON
— =¢”cotx and — =¢” cotx

oy ox
oM _on
oy  Ox

The given equation is exact.
The solution is

jde + I (the terms of N not containing x)dy = C

f(ey +1)cot x dx + jo dy=C

(e+1)log(sinx)=C

Integrating factors: Let us say M(x, y)dx + N(x, y)dy =0
be a non-exact differential equation. If it can be made exact
by multiplying it by a suitable function u(x, y), then u(x, y)
is called an integrating factor.

Methods to Find the Integrating Factors
Method |

If Mdx + Ndy = 0 is a homogeneous differential equation
and Mx + Ny # 0, then o

is an integrating factor of
Mx + Ny
Mdx + Ndy =0

Example 11
Find the solution of (x + 2y)dx + (y — 2x)dy = 0.

Solution
Here M=x+2yand N=y—2x
M _,aN
oy ox
oM aN
oy  Ox

The above equation is not an exact equation.
But M and N are homogeneous functions

.. The integrating factor = ——
Mx + Ny

(x+2)x + (v —2x)y =x2 + )? (1)

Now by multiplying Eq. (1) by %, it become an
X +y

exact equation.
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20 s 2225 g 20 LM NI 150y
x? +y? x? +y? N| oy ox | 2xy
-2
The solution is U + j¢(y) dy=C = . = f(x)
Integrating factor (IF)
¢ x+2y & &
U= ledx, where M| = m _ ejf(x)dx
-2 1
Fx+2y it freer o _ L
= .[— dx xz
x2+y? 1
Multiplying the given equation with — . we get
X 1 2,2 *
= |——dx+2y|———=dx X" -y 2xy .
'[x2+y2 Ix2+y2 [ = ]dx+x—2dy—0
¥2 12
= Liog(x2+y?)+ 2y Ltan | £ S |dr+22dy =0 2)
22 y
1 x M, = >— and N, = —
=—log (x* +y?)+2tan~!| = x x
Since in N, = ); _+ Y there is no term independent of x, o x2’ ox  x?
XmtTy
the solution is oM, _ ONy
1 N oy Ox
Elog (x* +y?)+2tan”! (;j =C . Eq. (2) is an exact equation and its solution is
IM 1dx + .[ (the terms of NV, not containing x)dy = C
Method 2 R
If the differential equation Mdx + Ndy = 0 is of the form I 2 dx + IOdy =C
1 . x 2 2
v, fixy)dx + x g(xy)dy = 0 and Mx — Ny # 0, thenm is - _[l_y_zdx -C - x+2 —C
an integrating factor of Mdx + Ndy = 0. * *
Example 13
Method 3 Find the solution of xy2dx + (y + )*)dy = 0.
In the equation Mdx + Ndy =0, Solution
Given xy’dx + (y +)?)dy =0 (1)
.~ 1|0M ON F(x)dx . . Y
f N{E _6_X:| = f(x), then ej 1S an integrating Mdx + Ndy =0
factor of the given equation. M=xy; N=y+y?
oM ON
Similarly if LN _ oM _ g(y)then e k0@ s an E = 2xy and e 0
M| ox Oy
. . . . oM  ON
integrating factor of the given equation. — F
oy  Ox
Example 12 1[oN om] 1 5
Find the solution (x* — y)dx + 2xy dy = 0. Ml oy |l Y
Solution 2
, =—=g)
Given (x> —y*)dx + 2xy dy =0 (1) y
M=x*—y*and N = 2xy Integrating factor is e/#0)%
j;zdy 1og% 1
aﬂ:_gyanda_NZQy —e VvV =g 2logydy — o "y ==
oy Ox y
2 2
oM oN Multiplying Eq.(1)by iz we get 2 zdx +£y i de =0
oy oOx y y y
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xdx+(l+1jdy=0
¥

2
Integrating on both sides we get % +logy+y=C

Linear Equations

Consider the linear differential equation Z—y +Py=0 (1)
X

where P and Q are functions of only x. We explain below,
how such equations can be solved. Consider the equation
i +Py=0 )
dx
The Eq. (2) is called the homogeneous linear equation corre-
sponding to Eq. (1). We find the general solution of Eq. (2).
Eq. (2) is a variables separable type. We write it as

d
2 —Pdx.
Yy
Integrating the above equation given.
log y = —[Pdx+1og C or y = Ce P 3)

This represents the general solution of Eq. (2).
Eq. (3) may also be written as ye?* = c.

Now, i(ye IP”IX) =0
dx

Thatis, /7 @erejpdx x P =0or el {Q+Py} =0.
dx dx
This means that if we multiply both sides of Eq. (2) by

7% the product
o [Pés {ﬂ+ Py} isi{ye Iracy " The factor e is called
dx dx
an integrating factor of Eq. (2).

Suppose we multiply both sides of Eq. (1) by e, it is

d d S IPd

reduced to — (yelPdry = = [Pax gy, {SIHCG (|Qe'r®
Soyelriy = (el ), since (|

dx) = Qe IPdx | Hence, we get the general solution of Eq. (1) as

yelPds = C + Ierdedx.

Example 14

. dy
Solve sinx—+ ycosx =1.

dx
Solution
. d
smx—y+ycosx =1
dx

d
LA (cotx)y = cosecx.
dx

This is a linear equation in y

Here, P = cotx, Q = cosecux.

[ Pdx = Jcotx dx = log (sinx)
IF = elPdx = plogsinx — gin y.
. The general solution is y - IF = [QIF dx + ¢
y sinx = Jeosecx - sinxdx + ¢
y sinx = [dx + ¢
ysinx=x+c.

Example 15
Solve (1+ xﬂ% +4x3y =sin’x.
X

Solution

Given: (1+ x4)j—y +4x%y =sin®x
x

3

Q 4x3 X

dx  1+x*

sin
y=—"7"
1+x*

It is a linear differential equation in y.
3 3

4x sin® x
Here, P=———— and 0 =
1+x* 0 1+x4
4x3 4
dex:j - dx =log(1+x*)
I+x

IF = elrd = glos+) = 14 x

General solution
y-IF=]Q-IF dx +c.

s23
y(1+x4)=j%(1+x4)dx+c

3sinx —sin3x

= Isin3x dx+C = I— dx +
4
y(l+x4):%—§cosx+c

12y(1 + x*) = cos3x—9 cosx + ¢

Example 16

Solve x2 [d—y+yj =4x2+8-2y.
dx

Solution

Given: x? (Z—y+yj=4x2 +8-2y

X
ﬂ_{_ =4+i_2_y
x x? x?
fy 2 8
—+y|l+—|=4+
dx ( xzj x?

Helre,P=1+i2 and Q=4+i2
X X

2 2
J.de: Il+x—2dx:x—;

Cc



2
IF =elPdx = e(x_;J
General solution is y - IF = JQ - IFdx + ¢

2 8§ ) »2
ye X = (4+—2Je xdx+c
X

2 »-2
:4‘[(1+—2je xdx+c
5 x

(Put e =t

2
x—= 2
= e x (1+—jdx =dt)
2
=4Jdt+c=4t+c
The general solution is
2 2

ye ¥ =4e ~+4c

Bernoulli’s Linear Equations
dy

An equation of the form . + Py = Qy"is called Bernoulli’s
X

linear equation, where P, Q are continuous functions in x.

Example 17

Solve & +xy =—(3x?).
dx

Solution
. d
Given 2 + xy = —(30?)
dx
Throughout the equation dividing with y* we get
y2 @ +xy7l =-3x

dx
24 _du

Lety'l=u = -y o

The Eq. (1) becomes —d_du +xu =—-3x
X

@—xu:?)x
dx

The above equation is a linear differential equation in u.

2
IF = elPdv = g=lvax = 072~

Solution is u - IF = [QIF dx

2 2

- -
u-e? = I3xe 2 dx.

—x2
= —j3e’tdt when ¢ = T

M
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3+Ce2

1

3+Ce?2

< =l

Example 18

Solve i +Zlogy = %(log )2,
dx x X

Solution
2
Given &, ylogy _ y(logy)
dx X x3

1 4 1 1 1 (1)
y(logy)? dx x (logy) x*

1

logy

Differenting wrt x

Let

:u’

-1 ldy du

(logy)> ydx dx

Eq. (1) becomes

—du 1 1 du 1 -1
—_—t U= = ———u=—
dx x x3 dx x X

It is a linear equation in u.
-1 -1
Here P=— and 0= —
X X
1
IF =elPd = eij;dx =elogx = 1
X

Solution is u - IF = JQIFdx + ¢

1 -1 1
—u=|—-—dx+c
X J.x3 X
1 4
—u=—|x""dx+c
x

1 1

— = +c
(logy)x 3x3

Second Order Linear Differential Equations
with Constant Co-efficients

The standard form of a second order linear differential equa-

tion with constant co-efficients is
d’y ~dy
ay—=+a—+a,y=F(x) (1)
02 N Y
where a, a,, a, are real constants and F(x) is a function of
only x. The second order equation,

d? d
Kg+ald—i+a2y:0 (2)

represents the corresponding homogeneous equation.

20
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Let y = u (x) represent the general solution of Eq. (2)
[u(x) will contain two arbitrary constants]. This means that

d*u

dx?
Let y = v(x) represent a particular solution of the given
equation of Eq. (1). We have, then,

ap +a1@+a2u=0 3)

d?v

dv
ay——+a, —+a,v=F(x
de2 ldx 3 (x)

“4)

Substituting y = u(x) + v(x) in Eq. (1),

d? d
ag ﬁ(u+v)+ala(u+v)+a2(u+v)

= aﬂ+aﬂ+au + aﬁ—kaﬂ—kav
a2 e 2 a2 ax 7

=0+ F(x) (by Egs. (3) and (4))

= F(x).

We infer that y = u(x) + v(x) is the general solution of
the Eq. (1). Thus, the general solution of Eq. (2) is the sum
of the general solution of the corresponding homogeneous
equation (2) and a particular solution of the given equation
(1). y = u(x) is called the complementary function of Eq. (2)
and y = v(x) is called a particular integral of Eq. (1). The
general solution of Eq. (1) is given by y = u(x) + v(x).

= [Complementary function] + [Particular integral]
= CF + PI (in short).

To find the complementary function of Eq. (1) or to

obtain the general solution of the homogeneous equation

(2): Asy=e™isasolution of Z—y —my =0, we assume y =
X

e™ (for some value of m) to be a solution of Eq. (2).
2
Then, q, d—(e””‘) +a i(e"“) +a,e™ must be equal
dx? dx

to zero (or) e™{a,m*+a m+a,} = 0.
Since ™ cannot be equal to zero, a,m* +a m+a,=0 (5)
Eq. (5) is called the auxiliary equation corresponding to
(1) [or (2)]. Eq. (5) is quadratic in m and gives two values
for m, which may be real or complex.

Case 1: Let the roots of Eq. (5) be real and distinct, say m,
and m, (m, # m,). Then, y = ™" and y = e™"are two distinct
solutions of (2) or ¥ = Cie™ +Cre™? 6)

(C, and C, are arbitrary constants) is the general solution
of (2) or the complementary function of (1).
Case 2: Let the roots of (5) be real and equal and each
equals to m,.

d d?

Let —=D, ——=D?2.
dx dx?

Then Eq. (2) may be expressed as (a,D* +a,D+a,)y=0.

Since the roots of the auxiliary equation are equal and
each equal to m, this reduces to

a(D-m)y=0o0r(D-m)y=0 (7)
(since a, # 0)
Let(D-m)y=7, (8)
Then, Eq. (7) becomes (D —m,)Y, = 0. %)

. dy, ..

Now, Eq. (9) is reduced to —-—m,¥; =0, giving Y =

C,e" as the solution. dx
P d . .
Substituting in Eq. (8), d—y —my=ce™  is a linear
X

equation. The general solution is given by ye™*=c, + fcle"’lx
x e ™MYdx =cy +cx
or y=ce™* +cxe™ =e™ (¢, +c1X)
where ¢, and c, are arbitrary constants.
Case 3: Let the roots of (¥) be complex. Let us assume the

roots as the conjugate pairs o+ if3. (The co-efficients a, a,,
a, being real, roots occur in conjugate pairs).

The general solution is y = ¢;e(@*F)¥ 4 ¢, el@=1F)x

=c;e?*(cos fx +isin fx)+ce® (cos fx —isin fx)

=e™{(c, +¢,) cos fx +i(c, — c,)sin Bx}
=e™{4, cos Bx + A, sin Bx).
where A4 and B are arbitrary constants. We may now

summarize the nature of the complementary function of
Eq. (1) as follows:

Roots of the Auxiliary
Equation am?+a,m +a,=0

Complementary Function of
(1), or General Solution of (2)

Roots, real and distinct, say
m1' m2

— M4 X MoX
y=c,em* +c,em

Roots, real and equal, say
each equals m,

y=(c, +c,x)em”
Roots, complex, say a+iff  y=e*{c,cos Bx + ¢, sinfix}
Roots, complex and
repeated, say m, =m, = o+
iBandm,=m,=a-ip

y=e*[(c, +cx)cospx+(c, +
c,X) sin Bx

Example 23
Obtain the complementary function of the equation
d*y Tdy
— L 46y=x"
o dx
Solution
d’y dy
— 7= 46y =x*
dx? dx 7

= (D*-7D+6)y=x*

Auxiliary equation is m> — 7Tm+ 6 =0
m=1,6.
.. The complementary function of the given equation.

— X 6x
y=c e +cye™



Example 24
Obtain the general solution of the equation
2
Y _10.%Y o5y 20,
dx? dx
Solution
2
Given: Q—IOQ+25y =0
2 dx

= (D~ 10D+25)y=0
Auxiliary equation is m?> — 10m +25=0

The roots are (m) =5, 5

. The general solution of the equation is (¢, + c,x)e™.

Example 25
Obtain the complementary function of the equation
d’y  dy
—=—6-—+10y=¢>*
dx? A
Solution

2
Given: 2—6.d_y+1oy =3

dx? dx

= (D*- 6D+ 10)y =e*

Auxiliary equation is m* — 6m + 10 =0

L _6%V36-40 62 _

2 2

3+i

. The complementary function is given by y_ = e*(c cos x
+ c,sin x).

To find a particular integral of Eq. (1) or to find a particular
solution of the Eq. (1):

d’y dy
ay—+a—+a,y=F(x
0 2 T 2y (x)

We may write the above as (¢,D* + a,D + a,)y = F(x) or
f(D) y = F(x) where f(D) stands for (a¢,D* + a,D + a,).
Particular integral y is that function of x independent of
arbitrary constants such that /(D) on y or /(D) y yields F(x).

1
This is symbolically represented as y = ———{F(x)}.
/(D)
Case 1: F(x) = ¢ where k is a constant.
We have D(e*) = ke*, D*(e®) = k*¢* ... or, in general,
g(D) () = g(k) ¢~ where g(D) is a polynomial in D, in

particular, f(D) {e*} =f(k) e~

Since e® is that function of x which when oper-
ated by f(D) gives e, it is clear that ef = Lek"
/(D) S (k)
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provided f(k) # 0. f(k) reduces to zero when one or both
the roots of the auxiliary equation a m* +am+a,=0, is k.

1. Suppose one of the roots is k. Then, /(D) = a (D — k)
(D —m,), where m # k. Particular integral

ay(D—k)(D—my)

_ 1 ! kv
" D—k |ag(D—my)

_ 1 L
ao (k—mq) (D —k)

1 ke _

Let e _Xl
(D—k)

Then (D —k)X, =e* or %—le = el
x

This is a linear equation and the particular solu-
tion of the above equation is xe®. Therefore, particular
integral = ——— xekv.
ag(k —my)

2. Suppose both the roots of the auxiliary equation are k.

Then, particular integral
1 ke
=——[e
[ (D -k )2 [ ]

1 Lk
ay(D—k) [ (D~ k)

=[xk,

ag(D—k)

1

D_k(xe""):Xz

Use the result in (1) . Now, let

We have, therefore, (D— k) X, =xe*or ddﬁ — kX, = xe®
x

which is a linear equation.
x2
Particular solution is X, :Tekxor, particular inte-

gral in this case is given by y = %e"".

Example 26

Solve the differential equation:
(D*+5D+6)y=e*

Solution

(D*+5D+6)y=e*

Auxiliary equation is m?> + 5m + 6 = 0.
(m+3)(m+2)=0.

.. Roots are m =-3, 2.
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Complementary function is ¢ e + c,e ™.

1 —4x
—.e
D?+5D+6

1

Particular integral =

—4x:e

T (4215416

.. General solution is

—4x
e
y=ce > +ce? + 7

Example 27
Solve (3D* — D — 10)y = 6¢*

Solution
Given (3D? — D — 10)y = 6¢*
Auxiliary equation 3m*> —m —10=0
m=2, -
. Complementary function is 3
-5
CF =ce** + cze?x

PI = ;6&)5
3D?2-D-10
= _t 6e*
(D-2)(3D+5)

= 6—1 L e¥ | = o Lez"l
D-2|3D+5 (D-2)11
6 1 2x 6 2x

=— e xe
11(D-2) 11
General solution is

S 06
y=ce* +cye 3 +—xe> .
11
Example 28
Solve (D? — 12D + 36)y = &%

Solution
Given: (D?—12D +36)y = &*
Auxiliary equation is m* — 12m + 36 = 0.
m?—12m+36=0.
m=06,6

Complementary function (CF) = (c, + c,x)e™

Pl = ! e% = ! 0
D?-12D +36 (D-6)?
— ﬁeéx
2!

.. General solution is y = CF + PI

2
= (¢ + cyx) €% + —bx0
21

Case 2: F(x) = sinkx or cos kx where k is a constant.
We have D{sin kx} = k coskx

D*{sin kx} = —k* sinkx
Similarly, D*{coskx} =—k* coskx
If g(D?) is a polynomial in D?,
g(D?) {sinkx or coskx} = g(—k?) sin kx or g(—k?) cos kx.

Hence, ! 5 sin kx = ! 5 sinkx and 5 cos kx
g(D?) g(=k*) g(D?)
;cos kx, provided g(—&*) # 0.

gk
We shall illustrate the above technique by considering
two examples.

Example 29

Find the particular integral of the equation (D* + 16)y
= cos 3x.

Solution
Plz;cos3x :;0053)(: cos 3x
D? +16 -(3)*+16 7

Example 30

Find the particular integral of the equation (D*> — 5D + 6)y
= sin3x.

Solution

1 .
PI=——sin3x
D?-5D+6

1 .
=————sin3x
-32-5D+6

sin3x

-5D-3

5D-3 .
= ——sm3x
(5D+3)(5D-3)

(5D-3) . 3-5D
——— SN =—"""—
—(25D% -9) 25%(-9)-9

= ﬁ[(:& —SD) Sin3x]

= %4[3 sin3x —5D(sin3x)]

= _—1[3sin3x—1500s 3x]
234

Pl— 15cos 3x 3 3sin 3x
234 234




Suppose g(—4£*) = 0.
Let us discuss the technique of finding particular inte-
gral in this case.

1
Suppose we have to find ———[sin kx].
pp S IYE [ ]

By Euler’s formula, ¢ = coskx + i sinkx or sinkx
= imaginary part of e,

Particular integral = sin kx].
¢ D? +k? : ]
= Imaginary part of ! (™)
Y D? +k?
. 1 .
=Imaginarypartof e’

(D —ik) (D +ik)
= Imaginary part of L ﬂ
Sy DA O Tk | 2ik

yelke
= Imaginary part of

=Imaginarypartof % (cos kx + i sin kx)

=Imaginarypartof Zx_k (—icoskx +sin kx)

_ —xcoskx
2k

1
Similarly, if we have to find ———[cos kx].
Y D? +k? [ ]

We write it as the real part of (')

D2 + k2
1

ikx
DD

= Real part of

= Real part of % (—1cos kx + sin kx)

xsin kx
2k

———sinkx =_—xcoskx
D? + k2 2k

1 .
WCOSIGC zismkx
+

Example 31
Solve the equation (D? + 16) y = sin4x.

Solution

Given: (D? + 16)y = sin4x

Auxiliary equation is m?> + 16 =0
m==14i

Chapter 2 m Ordinary Differential Equations | 2.45
= CF =c¢, cos4x + ¢, sin4x

[ = —1 sin4x.
D? +16

=—— cosdx
2-4

;sinkx = —icoskx
D?* +k? 2kx

:—fcos4x
8

General solution is y = CF + PI

. X
=¢; cos4x +c, sindx — gcos 4x.

Cauchy’s Homogeneous Linear Equations

An equation of the form

dr dnfl
X T e,y = 0() (1)
where p, p,, ..., p, are constants is called Cauchy’s linear

equation. To convert the above equation into linear differen-
tial equation with constant co-efficients, we substitute x = ¢
or z =logx.

z=logx,

dz 1

= —=—
dx x
& _dy dz
dx dz dx
b _d 1
dx dz x
b _ b
dz dx

dy _dfdy)_d(1 dy
dx?  dx\dx dx\ x dz
-ldy ld(dyj
=4 ——] =
x2 dz  xdx\dx
_—_1@+li(d_yj%
x2dz xdz\dz )dx
d’y _-ldy 1d%
dx®>  x%*dz x* dz?
pdy_dy b _dldy
dx?  dz? dz dz| dz
2d2)’

= =0(0-1
o ©-1)

dy dy
Let—=0y = x—=0y,x =
a0 e 2

zZ X
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3

Similarly x Z =0(0-1)(0-2)y,and so on.
3

Then Eq. (1) is changed into a linear differential equation.

We solve this by methods discussed earlier.

Example 32
Solve x? dz—y+3xd—y—3y =0
dx? dx
Solution
Letx=e*orz=1logx
2 dy

dy
Then =0y; ——99 1
xdx e dx? ( )y

The above equation becomes
[6(6-1)+30-3]y=0
[02+20-3|y=0
Auxiliary equation is m>+2m —3 =0
= (m+3)(m-1)=0
= m=-3,1
y=ce¥ +ce

— —3
= clx + sz.

Example 33
d? y

3
Solve x3 d—§/+6 2

dy
—— +8—=+2y=x%logx.
dx dx I &

Solution
Put x = ¢ or z =logx. Then

dy
322 -9(0-1)60-2
L =00-1)0-2)y

The given equation becomes
[6(6-1)(0-2)+60(0—1)+80+2]y=¢*z
(0°+30°+40+2)y=¢*z
AE=m*+3m*+4m+2=0
(m+1)(m*+2m+2)=0
m=—lorm=-1=%i
CF=Ce*+e7(Cosz+ Csinz)
1 2z
= .¢%z
03 +30% +40+2

— e2z 1

=22 ! -z
03 +90% +2860 + 30

(0+2) +3(0+272 +40+2)+2

z

[ 0319024280 |
207 280
30 30

eh{ 03+992+280}
S R A il

30 30
eZz 28 ..
= Z_
30 (30)2
y=CF+PI
2z
=Cle’z+e*Z(Czcosz+C3sinz)+e _ 28 e2?
(30)°
C‘ xZlogx 28
— +—(C, cos(log x) + Cy sin(log x)) + 20
(2 (log x) +Cy sin(log X))+ — ==~
Example 34

2
Solve (2x —1) d_y +2(2x— I)Q —~100y =32(2x —1)?
dx? dx

Solution
Let2x—1=u
o du
dx
dy_dy du_,dy
dx du dx du
By _d(d)_d[,d
dx®  dx\dx dx\  du
_,d(dy) du 22d2_y
du\du ) dx du?
.. The given equation becomes
2,2 4 2 00u D 100y = 3202
du? du
2
2Q+uﬂ—25y:8uz
du du

Letu = e7, u%:O;xzi—fze(Q—l)
[6(0 —1)+0 —25]y = 8e?*
|02 -25]y =8¢
AE=m?>-25=0 = m=4%5
CF =Ce>+Ce”

'8622 28622 1 ___862:

Pl = . =
6% -25 22-25 21

y=CF+Pl=Ce*+Ce* —%ezz

=Cu +Cyu® —%u where u = (2x — 1).



Method of Variation of Parameters

+ O(x)y = R(x),

where P(x), O(x) and R(x) are real Valued functions of x, is
called the linear equation of the second order with variable
co-efficients.

The above equation is solved by the method of variation
of parameters.

The method is explained below:

An equation of the form Ly +P(x)

1. Find the solution of j’z’ J +Pd +Qy=0and let the
2

solution be y, = C U(x) + C,/(x)
2. Write particular solution as follows:
y,= AU(x) + BV(x)

and B = I%dx

u v
dv

where W =|4qUu dV|= U——Vd—U is called the
— dx dx
dx dx

Wronskian of U and V.
3. Then the solutionis y,_+ Y,

i.e., y=CUX) + C,V(x) + AU(x) + BV(x)

Example 35

Solve the differential equation (D? + 4)y = sec2x by varia-
tion of parameters.

Solution
Given (D? + 4)y = sec2x
AE=m*+4=0 = m=22i
CF =y, =Ccos 2x + C,sin2x
*. U(x) = cos2x; V(x) =sin2x
y,= AU(x) + BV(x)
av . du

W=U—-V
dx dx

=cos2x 4 (sin2x)—sin2x- 4 (cos2x)
dx dx

=2co0s?2x +2sin?2x =2

sec2x

Jer Ed __J-s1n2x~ dx
2
= _J-tan 2x dx = %log(oos 2x)
B %dx= J-cos2x-5602xdx=%x

Yp = % [log(cos2x)]-cos2x + % xsin2x
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y=y.+y, =Ccos2x+C,sin2x+

%[log(cos 2x)]cos2x + %x sin2x.

Example 36
Solve the differential equation y” + 4y + 4y = x3e*

Solution

Given equation
(D*+4D+4)y=x3e*
The auxiliary equation is
m*+4m+4=0
m+2P?=0 = m=-2
=C e+ Cxe™
Let Ux)=e?* and WV(x)=xe™®
y,= AU(x) + BV(x)

A= (R B:j@d
w w

W= uﬂ—v@ =e X i(xe’z)‘) —xe ¥ i(e’z")
dx dx dx dx
— e—2x Le—Zx _ er—Zx J + zxe—er—Zx — e—4x
UR xe 2¥x3 . 2%
A=—|———dx=—|——d
I udv _vdu =
dx dx
=— Ix4e4xdx
B _x4 e4x x3e4x B x264x xe4x 6 e4x
4 4 16 16x4 16x16
—2x 3 2x
B= I f dx = I 3ty

4 4 4 16 32
y=y,+y,=AUX) + BV(x) + Ce™

e2x x362x 3x282x

3 e4x 3 5 e4x xe4x e4x:|

+ Cxe™

=Ce™+Cxe™—x* -
4 16
6xe?* 3e? xer™ 3xde* 3 ., 3 .
' - + - + —x%e**——xe
64 3128 4 16 32 128
2x
= Ce 2" + Cyxe 2" ——x3e2"—ix2 2xi_xe iezx

16 32 128 128 128

LAPLACE TRANSFORMS

Let f{#) be a given function defined for all 7> 0. The Laplace
transform of F(7) is denoted by L{f(#)} or L{f} and is defined
as Lifn} = [ f(e)dt = F(s).
0
Here L is Laplace transform operator. f{¢) is the deter-
mining function depends on it. F(s) is the function to be
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determined called generating function. e
of the transform.

Some standard results of Laplace transforms are given

below.
. Lleatl = ,
1 {e } - s>a
1
. L —at — ,
2 {e } s+a
3. (a) Let kbeaconstant L{k}= K
K
(b) L{l}:l,s>0
K
" n!
4. L{t }:SnT,S>O
s
. L{COSat}:m,S>O
6 L{sinat}zsz+a2,s>0
7. L{coshat}zm,s>|a|
8. L{sinhaz‘}zsz_a2 ,s>lal
9 n aty — I’l' +
. L{f ‘e }—m,neZ

10. L{%f(t) } = :].F(s)ds

Example 37
Find the Laplace transform of the function

f(x) =5 +7e
Solution

L{f(x)} = L(5¢** +7e3%)
=5L(e*) + 7L(e™)
1 1

L{f(f)}=5'5+7'm

5 7

s—2 s+3

Example 37
Find L{f(#)} where
f(H=0,0<¢t<1
=1,1<¢t<2
=tt>2.

~5Tis called kernel

Solution
As the given function is not defined at =0, 1 and 2

Lif(t)} = j e F(t)dt
0

= ].e‘“ -0dt + j.e‘“ 1dt + O}e‘“ - tdt
0 1 2

2 ©
- je‘”dt + fe‘” -tdt
1 2

s K K s —S
-2s —s —2s
—e e e 1
= +—42 +— e
s s s s

Example 39
Find the Laplace transform of the function

—st 2 _st | 0o ¢
f(t)=sin21,0<t<n:e }J‘H-e ][_J-e »
I E R P R
=0,t>m
Solution

0

Lif(n} = [e f(tydr

0

e -sin 2tdt + J‘e’” -0dt

a

e % sin 2tdt

Se—\8 SN

—st

=¢ [—ssin2t —2cos 2t]]§

2 +4
_2(1-e)
s2+4
Example 40
Find the Laplace transform of the function f(#) = (sin¢ + cos £)*
Solution
L{(sint + cost)*} = L{1 + sin2¢t} = L{1} + L{sin2¢t} =
1, 2

s s*+4
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Some important (theorems) properties of Laplace (using multiplication theorem)

transforms: ( -1 (s +4)— s(2s)]

. -1
Lisint =\ F e ey

1. Linear property: Let fand g be any two functions of
tand a, a, are constants, then L{a f{f) + a,g(t)} =a L

2
0} +a,Lign)} . il 2
. PN 2s2 2(s2 -1-4)2
2. First shifting property: If L {f{(f)} = F(s) then L {e*
— (e_ _ 2
S)=F(s—a) Lie tsin 1) = I 4-(+2)
s—a 2(s+2)*  2[(s+2)* +4
Example: L {e“ cos ct} = —————
(s—a)”+c (using shifting property)
3. Change of scale property: If L{ ()} = F(s) then 1 Ao+ 52
L{flat)} = ‘l F[ij - As+2)?  2As?+4s+8)
al \a
Example: We know Example 42
a ! in 2t —cos 2t
Lie} = o =F(s) Find the Laplace transform of snameoss .
1 s 1 1 1 b -
Then L{be” =—F(—j=— = Solution
en Libemi =0 Fl g Bls 16l s—ab ) .
b o L {sin2t — cos2t} = 2.4 244
4. Differentiation theorem: If derivatives of f{f) are
continuous and L{f(f)} = F(s) then L {f"(¢)}= sF(s) — sin 2f — cos 2¢ “ 2 5
f0) and o t J :'[ 214 s2+4 °
Lifm} :1 $"F(s) ="~ 0) =572 f7(0)..... f1(0) = (using division property)
.
s"E(s) — ZS”‘I" - f7(0) (f" represents rth derivative 2 Y1
=0 = —(tan1 —) ——[log(s* +4)I*
of f) s 2
5. Multiplication theorem: If L{f{(f)} = F(s) then L{¢ - T a1 S 1 | 24
f(t)} :—F'(S) —E— an E‘l‘E Og(s + )
and L{e - 10} = (17" [F(s) — ot S+ Log(s? +4)
ds" 2 2 '
1
6. Division theorem: If L{f(f)} = F(s), then L{; f(t)} = | Example 43
0 t .
2
_[F (s)ds Find the Laplace transform of SR .
K 0
7. Transforms of integrals (theorem) Solution
t
1 .
IFL{fU)} = F(s), then L{ [ f(w)du} =~F(s) Lisin2u} = —
0 K s°+4
sin2u] ¢ 2
= d
Example 41 and{ u } Jsz 4
1 —2t q1n2
Find the Laplace transform of te sin’t. (using division theorem)
Solution 2 ST s s
—tan™ —| =——tan" —=cot™ —
, 1 1(1 s 2 21 2 2 2
L{sin“t} =—L{l—cos2t} =—<——
¢ J 2 ¢ ) 2 {s 52+ 4}

L{t-sin%}:(-l)i[l{l— - }j
ds\2 s s°+4 (using transform of integral theorem).
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Inverse Laplace Transforms
If F(s) is the Laplace transform of the function f{7) i.e., L
{f(H)} = F(s) then f{7) is called the inverse Laplace transform
of the function F(s) and is written as f{(t) = L'{F(s)}. Here
L' is called inverse Laplace transformation operator.

Some important standard results for inverse Laplace
transform.

ofl-
A

1 " . s
2. L ( j = where 7 is a positive integer
n!

n+l

tn_l

a1
or L [s"j_(n—l)!

A L—l 1 _eattn—l
) (s—a)" (n-1)!
5. Ll( ! j:—sinat
s2+ad?) a
s
6. L‘l( jzcosat
s +a?
7. L‘l( zs 2j=coshat
s*—a
1 1
8. L‘l[ )z—smhat
s2—a*) a
9. L! ! =le”’ sin bt
(s—a)>+b% | b
10. Ll{( s)—za bz}:e‘”cosbt
s—a)’+
_ 1 .
11. L 1{(sz+a2)2}:§ (sin at — at cos at)
oS G
(s> +a*)?| 2a

To find the inverse Laplace transform we use the following
methods.

1. Using the following properties
(a) IfLY{F(s)} = f(1), than LY{F(s—a)} =e" f(t)
(b) If LY{F(s)} = f(¢))and f(0) = 0; then

(i L*l{sF(s)}%(f(r))

S0 i 70 = £10) =

(i) LYs"F(s)}=

S 0)=0

(¢) If LV {F(s)} = f(¢), then
o ' {E = [
§ 0

(i) L {if)} = tIfI f (t)dt}dt
N 00

2. Convolution theorem: Let f{f) and g(f) be two
functions and

LYF(s)} = £() and L {G(5)} = £(2), then
LYF(s)-G(s)} = [£(x)g(t ~x)dx
0

Itis denoted by f{¢) * g(f) here * represents convolution.

3. Unit step function: This function is defined as

0
u(t—a)=H(t—a)= {1
of Hit—a)=L {H(t—a)}

a
S the Laplace transform
a

e—as

= je’s’u(t —a)dt =
0

This is also called as Heavisides unit function

4. Periodic function: If f{(7) is a periodic function with
period a i.e., f(# + a) = f(f), then

a

je’” F(tdt
Lifin} = 01—,m
—e

G(s)

H(s)
where G and H are polynomials in S then break F(s)
into partial fractions and manipulate term by term.

5. Using partial fractions: If F(s) is of the from

6. Heavisides expansion formula: Let F(s) and G(s)
be two polynomials in ‘s’ where F(s) has degree less
than that of G(s). If G(s) has n distinct zeros a , r =1,
2,3,...,nm

i.e., G(s)=(s— 0,)(s — t,)...(s — ), then

-1 F(S) _ . F(ar) o .t
t {G(S)}Zcxar)e ’

r=1

Transform of Special Functions

7. Bessel function:
x2 x* x©
O I TIVER TIVENT

then L {J, (x)} = >
57+



8. Error function: Error function is denoted as er f()

2 Vi 2
erf(ﬁzﬁ J.e” dt,
0

then L {er f (y/x) =s\/%

9. Complex inversion (theorem) formula: If f{) has a
continuous derivative and is of exponential order and
L{fit)} = F(s) then L™ {F(s)} is given by

r+io
f(0) =5~ [ e"F(s)ds. 1> 0and f1)=0 for 1 <0
i

r—ioo

1. The above result is also known as Bromwich’s
integral formula

2. The integration is to be performed along a line
s = r in the complex plane where s =x + iy. The
real number r is chosen so that p = r lies to the
right of all the singularities.

10. The Gamma function: If n > 0, then the gamma

function is defined by T (n) = Iu”’le”du
0
11. Exponential Integral: The exponential integral is

denoted by
E(t)= = [“—du
; u
Example 44
eZ—Ss

Evaluate L71 —/2

(s+2)°
Solution
We have

I 1
-1 — 2t -1
r {(Hz)”}_e t {SW}

5_ 3
o 12 Ap2e
(2]
2

2-3s —3s
1€ — 2! ¢
(s+2)%? (s+2)%2
i(l‘ _ 3)3/2 e2=4) -H(t _ 3)
N3

(when expressed in terms of Heaviside’s unit step function)
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Example 45
3s+7
Evaluate L'y ———
s2—2s-3
Solution

L [3s=D+10
(s—1)> —4
_Lfl 3(S_1) + 10
T s=1)2 -4 (s—1)2—4
_3[! (—(S _Sl;l_ 4j+10L1 {—(3—1; _4}
tr- - 1
:3eLl{szjzz}ﬂoml{sz_zz}.

=3¢’ cosh 2t + 5¢’ sinh 2t = 4% — e

Example 46
) 1
Evaluate L™ { ———
s(s? +4)?
Solution

)l s
L {Sz (s2+4)2}

1
Let F (s) = 7z and F(s)= ﬁ so that

(s*+4)
1
L {F (s)} = L{ }—f =/1,(0)
s
d L’I{FZ( V=L ————
- S {(Sz+4)2}
t sin 2¢

= = f2(1) (say)

.. By convolution theorem, we have

o {%m} _ URS) B()

0
t

0
! 1
== .[x sin 2xdx —— .fxz sin 2xdx
4 4;

- [ A== [ Xsin2fr- s
t

t

0
(——cos 2x+ —s1n 2xj
0

) t
—l[—x—COSZx+£sin2x+10052x]
4 2 2 4 0

:L(l—tsin2t—cos2t)
16
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Application of Laplace transforms to solutions of dif-
ferential equations: Solution of ordinary differential equa-
tions with constant co-efficients:

Consider a linear differential equation with constant
co-efficients

(D" +CD'+ CD 4+ (C )y =F(t) 1)
where F(7) is a function of the independednt variable ¢
Lety(0)=4,y' (0)=A4,,....y"" (0)=4,_, 2)

be the given initial or boundary conditions where 4, 4, ...
A, are constants.

By taking the Lapalce transform on both sides of (1) and
using the conditions (2), we obtain an algebraic equation
known as subsidiary equation from which y(s) = L {y(£)} is
determined. The required solution is obtained by finding the
inverse Laplace transform of y(s).

Example 47
Solve (D + 3)>y=9¢™, y(0) =—1 and y'(0) = 9.

Solution
The given equation can be written as

(D*+ 6D +9)y=9e
applying Laplace transform we get

S LYY+ 6L{Y} + 9Ly} = 9L{e™}

9
or s°L{y} = sp(0) =¥’ (0) + 6[sL{y} -y (O] +9L{y} = —=

9
or 2L{y} +s—9+6sL{y}+6+9L{y} =713
S

9
= ($P+6s+9)L{y}= —+3—s+3
s

(s+37 Ly} = 575
s+3
18 —s2
L«{y}——(sH)3

] 9-(s+3)2 +6(s+3)

v=t { (s+3)° }

9—52 +6s
_ ,-3t7-1
sl {s—3}

el
s s s
y=e 9~ﬁ—1+6t

2!

.. The required solution is

e—3t
y=7(9t2 +121-2).

d2
1. The order and degree of the DE d—;} = n’y respectively
/X

are
(A) 1,2 B) 1,1
(C) 2,2 D) 2,1

2. The differential equation whose solution is y = mx +

4 . .
—, where ‘m’ is parameter is

m
2
(A) x d_y - @+4ﬂ=0.
dx dx dx
2
(B) ﬂ —d—y+4=0.
dx dx
©) xﬂ—y+4=0.
dx

2
(D) x(ﬂj +d—y+4 =0.
dx dx

3. Ify=c, logx+c,logc,+c, e +c,is the general solu-
tion of a homogeneous linear differential equation, then
the order of the equation is
A 2
© 4

(B) 3
(D) 5

4. Find the solution of tany sec? x dx + tan x sec’ydy = 0
T
whenx=y= e
(A) tanxtany =1
(B) cotxtany =1
(C) tanxcoty=1
(D) cotxcoty=1
5. The general solution of the DE, (e* + 1)ydy = (y + 1)
e'dx is
(A) log(e"+1)—log(y+1)+c=0
(B) log(e+1)=y—-log(y+1)+c
(C) log(e"= 1D +log(y+1)+c=0

ex
=c
y+1

d
6. Solve Y _ [x|
dx

(D) log (



7.

10.

11.

12.

13.

14.

Solve (x+ y)? _Y_ k2.
dx

(A) y=tan (x +y)

+
(B) y=sin" [_x y)+c
k
Ve

©) y=ktan‘[ P j

(D)y=cm‘[£%lj+c

. The general solution of the DE, % =Bx+y+1)?is

X
(A) sec!Bx+y+1)=x+c

B) % tan™! (%) =x+c

(C) tan' Bx+y+1)=x+c

2 L[ 2x—y+l]
D) ﬁtan T =x+c

d _
The general solution of g ) is
X Xx+y
(A) X+xy+y* =k B) x*—y*=k
(C) ¥*=2xy—y*=k (D) x¥»*=k
dy x-2y+1 |

The general solution of — = is
dx 2x-4y+3

(A) ¥*—4xy—6y=c

(B) x¥*—4xy+4*+2x—6y=c

©C) ¥*+4xy+4*+2x—-6y=c

(D) X*+4xy—x+6y=c

The solution of the differential equation 2xy dy + (x> +
V+1)dx=01s

(A) ¥*+x*+3x=c

B) ¥*+3x+x=c

3
©) ?+xy2+x=c

(D) 3x*+y*+2x=c
The general solution of ye¥dx + (xe¥ + 2y)dy =0 is
(A) e+)y*=c (B) e¥+)*=c

©) eyz+xy=c D) e@+xy=c

The solution of the differential equation (3xy + 2y*)dx
+ (> +2xp)dy =0 is
(A) X¥y+xly=c
(C) xy+xy*=c

B) ¥}y +x*=c

D) 2xy(x+y)=c

The integrating factor of the equation (x*+ xy — »*)dx +

(xy—xH)dy=0is
1

») =

©) »

1
(B) )

(D) x*

15.
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d

The solution of (1 + x) d_y —xy = 1 — x satisfying the
X

initial conditions at x=0and y =1 is

(A) l+x=y+e B) vl +x)=x+¢e

©€) x+y=¢ (D) x(1 +y)=ce"

Direction for questions 16 to 17:

d .
Consider the differential equation d_y +ycotx = y%sinx
X

16.

17.

18.

19.

20.

21.

The integrating factor of the above equation is
(A) cosecx (B) sinx
(C) cosx (D) secx

The solution of the above equation when x = %, y=1is

+2
(A) ycosecx —x= ﬂT
COSEC X T+2
(B) +x=
y 2

-2
(C) ycosecx+x= ﬂT

cosecx T+2
—x=

D) ) >

d
The general solution of x d_y +y =)?logx is
X

(A) y=logx+cx (B) y=x+clogx

1 1
) —=1+cx (D) — =1+cx+logx
y y

. . . . d .
Consider the differential equation cos y—y +3x2 siny
_z dx
To convert the above equation into linear form the sub-
stituted variable is
(A) z=cosy (B) z=cosecy
(C) z=siny (D) z=secy
The solution of (aD* + bD + ¢) y = 0 whose auxiliary
equation has its discriminant as zero and has 5 as one
of its roots is
(A) y=ce™+ce™

(C) y=(c, +cx)e™

(B) y=cetce
(D) y=c +c,x

3 2
d’y ,d7y

Find the general solution of —=-
dx3 dx?

—4y=0.

(A) y=(c,+tcx)e+ce™
(B) y=(c,+cx)e™ +ce
(C) y=(c,+tcx)e™+ce”
(D) y=(c, +cx)e* +c,e™



2.54 | Part |l m Engineering Mathematics

22. The general solution of the differential equation = 30. Solve the equation
d*x d*x d? dy

—+13—+36x=01is . Iy =2,
dt* dr? X dx2 xdx y=x
(A) x=(c] +Czt) COS2t+(CS+C4l‘) sin 3t (A) y=C1x’3+C2 '+ x3/7
(B) x=ce*+ce?+ce’+ce™ (B) y=Cpx*+ Cx+x/7

(C) x=(c,+c)e¥+(c,+cp)e’

(C) y=Cx"+Cx'+x/7
(D) x=c, cos 2t+ c, sin 2t + c,cos 3¢+ c, sin 3¢

D) y=Cx "+ Cx+x7

23. The particular integral of (D* — 4D + 3)y = e* is 31. Laplace transform of 2sin? 2¢ =
xe3x
(A) (B) & Ay L1 By — 5
2 (A) s s*+16 (B) 2 +16
1
(C) — e},\' (D) xel\' C l _ 1 D l n 1
2 © %6 ®) S e
. . s A
24. The particular integral of (D* —4D?)y =6 is 32. The Laplace transform of (¢ + 1)? is
3
(A) x? (B) —x? 6—65+3s> —s3 6+65+3s2 +5°
4 (a) T @) R
; o s s
©€) ——x D) —— 6(1+s5+s%+5) 6+65+3s>+53
4 4 (©€) (—4 (D) —_

25. The particular of integral of (D> + 3D + 2)y = cos 2x is § §

. 33. The value of L {sinh 3zcos 3¢}
. 3sin2x —cos2x
(A) 3sin 2x —cos 2x B) ——

2 2
20 57 +18 5% +18
&) s*+81 ®) s*+324
© cos2x —3sin2x D) cos x —sin 2x
10 40 3(s2 -18) 3(s2 +18)
. © ® 5
26. The particular integral of (D> — D) y=x?—2x+4is
(A) ¥ —8x+4 (B) —* +4x — 4 34. The value of L{Pcos 3t} is
2 2
P 3 s =27 2s(s*—27)
(€ 5 +8x-4 (D) ———4x—4 (A) 19" (B) 2107
27. If y, = e and y, = xe™ are two solutions of a second §3-27 s(s=27)
order linear differential equation, then the Wronskian © (s> +9)* (D) (s> +9)}
Wofy andy, is
x " 4t
(A) € (B) xe* 35. Laplace transform of o8
(C) 2¢* (D) 2xe* !
28. The complementary function of the differential equa- (A) 64 (B) 16
d’y _dy s2+16 (52 +16)?
tion —=-+5—+06y =5e™is y =ce™ + e using
dx dx ¢ p
the method of variation of parameters, its particular is ©) S (D) Does not exist
found to be y,=A4(x) e+ B(x) e3*. Then A(x) = (s* +16)
(A) 5e* (B) &% 36. The Laplace transform of the function defined by
1 2, O0<t<l1 .
— ,5x —5x t)= 18
(@) 5¢ (D) e /(@) L s
29. The solution of the DE (D* + 1)y = 0 given x = 0, y 2 oS 2o
n . (A) (B)
=2andx:5,y=—21s K 2
(A) y=sinx—cosx (B) y=2(cosx — sinx) 2+e7* 2+e7*
© (D)

(C) y=2cosx sinx (D) y=2(e" + &) - .



37.

38.

39.

40.

41.

42.

I£f(£)=1;0 <t <3 and f(t + 3) = f(¢), then L{f(£)} is

A 1+ 3s + —3s
(W) g lere™]
(B) —1 [1- e 4+ se‘35]
s(1—e™3)
©) _ [1-e3 —35e7]
S2 (1 _ e%s)
(D) —1 [1- e — se’h]
s(1— e’3s)
© 4t -8t
The value of Ji dts is
0
(A) log2 (B) log 4
(C) log 8 (D) log 6
_[t~e‘2f sin3dt =
0
) — B)
169 169
6 12
C) — D) —
© 169 D) 169

1
The inverse Laplace transform of (Wj is
S

16 [17 8\/75
A) —.|— B) —.|—
()105n ()157r

16 [t 8 [t
C) —.— D) — |—
()35\/; ()1057r

8 4+2s | .
—————"tis )
3s—2 16s%-25

The value of L™ {

(A) §sinhz—cosh2
3 4 4

(B) §.32/3’ —sinhz—cosh2
3 4 4

©) §em’—lsinhz—lcosh2
3 5 4 8 4

(D) None of these
The inverse Laplace transform of

ezt e4t
(A) 7 sin 2t (B) 7 sin 2¢

(C) e*sin2t¢ (D) e* sin4t

—1is .
52 —8s+20

43.

44.

45.

46.

47.
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1

The inverse Laplace transform of ————1is
s (s +4)

1
(A) E(2t2 +cos2t—1)  (B) 2A—cos2t— 1
1 2 1 2
(®) E(1—cos2t—4t ) (D) §(2+cos2t—4f )
—3s
The inverse Laplace transform of when

(s—4)y
expressed in terms of Heaviside unit step function is

1
(A) —t*e* ) H(t - 3)
16
(B) i(t—3)4e4’H(t—3)
24
1
C) —(t-3)*e" " IH(-3
(©) 5;(=3) (i=3)
(D) it“e‘“H(t—3)
24
-4
The value of L' {log 5 } is
s+3
(A) e4t _e—3t (B) %(641‘ _e—3t)
1
(C) ;(ef3t _e4t) (D) f(e_3t _e4t)
t
Using convolution theorem, the value of jsinx cos
(t — x)dx is 0
(A) lcost (B) L sint
2 2
t t
C) tsin — D) ¢ -
(C) tsin 5 (D) tcos 5
Solve (D*—16)y=1,y=)"=)"=y""=0.

(A) y=l_—61—[cosh21+sinh2t]
1
(B) y=—(1-cosh2t+cos2t)
32
©) —_—1+i(cosh2t—sint)
4 16 32

-1 1
D =—+—(cosh2t+cos2t
D) y T 32( )
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48.

Solve (D*-5D+6)y=1-¢*,y=1,y' =0 whent=0.
1 11 59
A) p= 2t 4t g2t 27
B =0 % T
U, 28,

11
B) y=——-—e?'+
B y=¢20¢ 3¢ s

(C) y:l_ie2t+2672t+ge3t
6 20 4 30
1 1 11 59
D =___62t__e—2t+_63t
®) v 6 20 4 30

PRrREVIOUS YEARS’ QUESTIONS

1.

d
The solution for the differential equation d_y = x%y
/X

with the condition that y =1 atx=01is [GATE, 2007]

1 3
(A) y= e (B) In(y)= = +4
2

©) In()=— (D) y=e3

: d*y :
The general solution of ) +y =0is
be

[GATE, 2008]

(A) y=Pcosx+Qsinx
(B) y=Pcosx
(C) y=Psinx
(D) y =P sin’x

Solution of Q=—£a’[x= landy= J3is
X y
[GATE, 2008]
A) x—y?=-2 B) x+)y*=4
(C) x*—y*==2 (D) ¥*+)*=4

Solution of the differential equation 3 y%+2x= 0
X

represents a family of

(A) ellipses (B) circles

(C) parabolas (D) hyperbolas

Laplace transform for the function f(x) = cosh(ax) is

[GATE, 2009]

[GATE, 2009]
a &
A B
A 5 ®) 5
©) S D) 5
52 +a? 52 +a?

The order and degree of the differential equation

d’y dyY .
—< 44| = | +y? =0 are respectivel
dx3 (dx 4 P Y

[GATE, 2010]

o

10.

11.

(A) 3and 2 (B) 2and 3
(C) 3and3 (D) 3and 1
The solution to the ordinary differential equation
dP . y=0 is [GATE, 2010]
dx*>  dx
(A) y=ce +ce™
(B) y=ce™+ce™
(C) y=ce*+ce”
(D) y=ce*+ce™
. The solution of the differential equation % +§ =
with the condition that y=1 atx =1, is
[GATE, 2011]
(&) y=m+2 B) y=2+
3x2 3 2 2x
© y=2+4% @) y=2+t
3 3 3x 3

d
. The solution of the ordinary differential equation d_y
X

+ 2y = 0 for the boundary condition, y=5atx =1 is
[GATE, 2012]

(A) y=e™

(B) y=2e™

(C) y=10.95¢>
(D) y=36.95¢>

The integrating factor for the differential equation
d

71: +kP=kLe"is [GATE, 2014]
(A) e—klt (B) e—kzt

(©) e (D) e

Consider the following differential equation:

x(ydx + xdy)cos = V(xdy — ydx) sin 2
x X

Which of the following is the solution of the above
equation (c is an arbitrary constant)? [GATE, 2015]



Chapter 2 m Ordinary Differential Equations | 2.57

(A) ZcosZ=cC B) Zsinf=C (A) Lcl +eyx + ¢y sin/3x + ¢4 cos 3xJ and
y X y x
‘_3x4 —12x% + CJ
Y _ in=

(ChSuicos Y € (D) i x c (B) chx +c3 sin+/3x + ¢4 COS \/ng and

12. Consider the following second order linear differen- [5 x*—12x2 + c]
2
i ion 22 = _1222 _

tial equation > 12x% 4 24x — 20. ©) Lcl e e o) @5 \/ng and

The boundary conditions are: atx=0,y =5 and at x = 4 )

2.y=21 [3x* -12x2 +c]

The value of y atx =1 is . [GATE, 2015] )
13. The respective expressions for complimentary func- (D) Lcl e X+ ey snV3x + ¢4 cos @J and

tion and particular integral part of the solution of the [ 54 _12x2 4+ c]

differential equation are [GATE, 2016]

Exercises

1. D 2. A 3. B 4. A 5. B 6. D 7. C 8. B 9. C 10. B
11. C 12. B 13. B 14. B 15. B 16. A 17. B 18. D 19. C 20. C
21. B 22. D 23. A 24. C 25. B 26. D 27. A 28. B 29. B 30. D
31. C 32. D 33. C 34. B 35. D 36. A 37. C 38. A 39. D 40. A
41. C 42. B 43. A 44. C 45. C 46. B 47. D 48. B

Previous Years’ Questions

1. D 2. A 3.D 4. A 5. B 6. A 7. C 8. D 9. D 10. D

11. C 12. 18 13. A
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