
IntroDuction
Familiarity with various methods used in evaluating indefi -
nite integrals or fi nding anti-derivatives of functions [or, in 
other words, evaluating ∫ f(x) dx] is a pre-requisite.

Differential EQuations
An equation involving derivatives of a dependent variable 
with respect to one or more independent variables is called 
a diff erential equation. The equation may also contain the 
variables and/or their functions and constants. If there is 
only one independent variable, the corresponding equation 
is called an ordinary diff erential equation. If the number of 
independent variables is more than one, the corresponding 
equation is called a partial diff erential equation.
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We note that in the given examples, Eqs. (1) to (6) are 
ordinary diff erential equations while Eqs. (7) to (10) are
partial diff erential equations. We refer to these examples 
later on in next chapter.

Certain Geometrical Results may also be
Expressed as Diff erential Equations

Illustration 1 Consider a family of parallel lines. All these 
lines have the same slope. If k represents the slope, we may 
interpret the family of parallel lines as curves having the 

same slope. As 
dy

dx
 represents the slope of the tangent to 

a curve at any point (x, y), we may say that the diff erential 

equation 
dy

dx
k=  represents a family of parallel lines. 
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Illustration 2 The differential equation y
dy

dx
k= (a constant) 

may be said to represent the family of curves having the 
length of subnormal equal k at every point (x, y) on the 
curve. (We may note that the family of curves is the family 
of parabolas). Our study is confined to ordinary differential 
equations. In what follows, differential equation means 
 ordinary differential equations. 

Order of a Differential Equation
It is defined as the order of the highest derivative present in 
the equation. Examples (1), (3) are of first order; (2), (4) are 
of second order and (5), (6) are of third.

Degree of a Differential Equation
The degree of a differential equation is defined as the degree 
of the highest order derivative present in the equation. (It 
is assumed that the various order differential co-efficients 
or derivatives present in the equation are made free from 
fractional powers).

Examples (1), (2), (3), (4), (6) are of first degree while 
Example (5) is of second degree.

Consider the differential equation,
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
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Taking the square on both sides (to free it from fractional 
powers), the differential equation is
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













=










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This is a third order second degree differential equation.

Linear Differential Equation
If, in a differential equation, the dependent variable and the 
derivatives appear only in the first degree and there is no 
term involving products of the above or containing func-
tions of the dependent variable, it is called linear differen-
tial equation.

 1. 
dy

dx
Py Q+ =  (where P and Q are functions of only x) is 

an example of a first order linear differential equation.

 2. 
d y

dx
P
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dx
Qy R
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+ + = ,where P, Q, R are functions of 

only x;
d y

dx
a
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a y f x
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2 1 2+ + = ( ),where a
1
, a

2
 are con-

stants and f (x) is a function of x are examples of sec-
ond order linear differential equations.

Similarly, we can have nth order linear differential 
equation.
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where P
0
, P

1
, P
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, . . ., P

n
, Q are functions of x or constants. 

If an equation is not linear, it is called a non-linear differ-
ential equation. In examples, 1, 3, 4, 6 are linear differential 
equations, while examples 2 and 5 are non-linear differential 
equations.

Solution of a Differential Equation
A function y = f(x) or F(x, y) = 0 is called a solution of 
a given differential equation if it is defined and differenti-
able (as many times as the order of the given differential 
equation) throughout the interval where the equation is 
valid, and is such that the equation becomes an identity 

when y
dy

dx

d y

dx
, , ,

2

2
… are replaced by f(x), f ′(x), f ″(x), … 

respectively.
[In the case of F (x, y) = 0 one has to get 

dy

dx

d y

dx
, ,

2

2
…

 
by 

successive differentiation of F(x, y) = 0 with respect to x].

Examples:

 1. y = e7x is a solution of 
dy

dx
y= 7 , since on substitution 

of y = e7x, both left and right sides of the differ-
ential equation become identical. We find that 

y e e ex x x=
−7 7 73

1

2
, ,  or, in general, y = Ce7x, where 

C is an arbitrary constant represents solutions of 
dy

dx
y= 7 .

 2. y2 – x2 = 4 is a solution of the differential equation 
dy

dx

x

y
= . Also, y2 – x2 = 5, y2 – x2 = –10, … or, in gen-

eral, y2 – x2 = C where C is an arbitrary constant repre-

sents solutions of 
dy

dx

x

y
= .

In both the above examples, we could represent the solu-
tions of the differential equations which involve an arbitrary 
constant denoted by C. We now define the general solution 
of a first order differential equation.

The general solution of a first order differential equa-
tion is a relation between x and y involving one arbitrary 
constant such that the differential equation is satisfied by 
this relation or, the general solution of a first order differen-
tial equation is a one parameter family of curves where the 
parameter is the arbitrary constant. By assigning particu-
lar values to the arbitrary constant, we generate particular 
solutions of the equation. 

In Example (1) y = Ce7x represents the general solu-

tion of the differential equation 
dy

dx
y= 7  and the solutions 
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y = e7x, y = 3e7x, … are its particular solutions. The general solu-
tion represents a family of exponential curves.

In Example (2) y2 – x2 = C represents the general solu-

tion of the differential equation 
dy

dx

x

y
= and the solutions 

y2 – x2 = 4, y2 – x2 = 5, … are its particular solutions. The 
general solution in this case represents a family of rectan-
gular hyperbolas.

 3. y = 2e–3x + 5e6x is a solution of the second order differ-

ential equation 
d y

dx

dy

dx
y

2

2
3 18 0− − = .

  (which can be verified by actual substitution). Also, 
y = 4e–3x – 10e6x, e–3x + e6x, … or, in general, y = Ae–3x 
+ Be6x where A and B are arbitrary constants represents 

solution of 
d y

dx

dy

dx
y

2

2
3 18 0− − = .

 4. y = 2 cos 4x + 3 sin 4x or, in general, y = A cos 4x + B 
sin 4x where A and B are arbitrary constants represents 

solutions of 
d y

dx
y

2

2
16 0+ = .

In Example (3), the general solution is y = Ae–3x + Be6x and 
in Example (4), the general solution is y = A cos 4x + B sin 4x.

By assigning particular values to the arbitrary constants 
one can generate particular solutions.

From Examples (3) and (4), we infer that the general 
solution of a second order differential equation is a relation 
between x and y involving two arbitrary constants such that 
the differential equation is satisfied by this relation or the 
general solution of a second order differential equation is 
a two-parameter family of curves where the parameters are 
the arbitrary constants.

To sum up, the general solution of an nth order differ-
ential equation is a relation between x and y involving n 
arbitrary constants, such that the differential equation is sat-
isfied by this relation or the general solution of an nth order 
differential equation is an n-parameter family of curves 
where the parameters are the arbitrary constants. For the 
first and second order differential equations, we have 

First Order Equation
One parameter family of curves:

Representation: Relation between x and y involving one 
arbitrary constant, say C.

Eliminate: Eliminate C to obtain a DE representing the 
given curve.

Second Order Equation
Two-parameter family of curves:

Representation: Relation between x and y involving two 
arbitrary constants, say A and B

Elimination: Eliminate A and B to obtain a DE representing 
the two-parameter family of curves.

We shall work out a few examples to illustrate the forma-
tion of differential equations.

SOLVED EXAMPLES

Example 1
Form the differential equation representing the one-
parameter family of curves

x3 – Ay = 0.

Solution
Given, x3 – Ay = 0 (1)

           Ay = x3

       A
dy

dx
x A

x
dy

dx

= ⇒ =3
32

2

  (2)

Substituting A in the Eq. (1), 
we have

x
x
dy

dx

y x
dy

dx
y3

23
0 3 0− ⋅ = ⇒ − = .

Example 2
Obtain the differential equation of all the circles in the first 
quadrant, which touch the co-ordinate axes.

Solution
The equation of any circle in the first quadrant, which 
touches the co-ordinate axes may be represented as (x – h)2 
+ (y – h)2 = h2.

Differentiating with respect to x,

2 2 0( ) ( )x h y h
dy
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− + − =

or     h
x y
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dx
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dx

=
+
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
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Substituting the above expression for h in the equation 
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x
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1

Initial Value Problems A first order differential equation 
with a condition that y = y

0
 when x = x

0
 [written as y(x

0
)  

= y
0
] is known as an initial value problem. For example,
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 1. 
dy

dx

x

y
y= =; ( )0 1

 2. 
dy

dx
xy x y+ = =2 1 63; ( )

 3. 
dy

dx

y

x
e yx+ = =

3
0 4; ( )

To solve such problems, we first obtain the general solu-
tion and find that particular value of the arbitrary constant in 
the general solution which satisfies the condition y(x

0
) = y

0
. 

This means that the solution of an initial value problem is a 
particular solution of the given differential equation.

First Order First Degree Equations The general form of 

the equation will be 
dy

dx
f x y= ( , ). 

Separable Equations (or Variables Separable Type) Here, 
the given differential equation can be reduced to the form  

f (y)dy = g(x)dx. [Recall that
dy

dx
may be thought as the ratio 

of the differential of y to the differential of x]. Direct inte-
gration of the relation with respect to the variable on each 
side gives general solution or, in other words, the general 
solution of the differential equation above may be written as 
∫f(y) dy = ∫g(x) dx + C, where C is an arbitrary constant.

Example 3

Solve: 
dy

dx

y

x
=

+
+

1

1

2

2
.

Solution

         
dy

dx

y

x
=

+
+

1

1

2

2

1

1

1

12 2+
=

+y
dy

x
dx

Integrating on both sides,

1

1

1

12 2+
=

+
∫ ∫

y
dy

x
dx.

        sinh–1y = sinh–1x + c.

Example 4

Solve: ( ) ( ) .x xy
dy

dx
y x y− + + =2 2 0

Solution

                           ( ) ( )x xy
dy

dx
y x y− + + =2 2 0

 (x – xy2) dy + (y + x2y) dx = 0

x(1 – y2) dy + y (1 + x2) dx = 0

                    

1 1
0

2 2−
+

+
=

y

y
dy

x

x
dx

Integrating on both sides,

1 1
0

y
y dy

x
x dx−




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


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
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
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log log logy

y
x

x
C− + + =

2 2

2 2

                  
loge

y x
xy

C

y x xy

C
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−
⇒ =
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

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
2 2

2

2

2 2
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
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

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xy Ce
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Example 5
Solve the initial value problem 

y
dy

dx
x e yy2 2 3

1 0= =, ( ) ( )

Solution

Given: y
dy

dx
x e y2 2 3=

y e dy x dxy2 23− = .

y e dy x dxy2 23

∫ ∫− =

Let e t e y dy dty y− −= ⇒ ⋅ − =3 3

3 2

        
− = ∫∫

1

3
2dt x dx

             

−
= +

1

3 3

3

t
x

c

        
− = +−1

3 3

3
3

e
x

cy .

Given: When x = 1, y = 0;

− ° = +
1

3

1

3
e c

      
c = −

2

3

∴ The solution is − = −−1

3 3

2

3

3
3

e
xy .

x3 + e–y3 – 2 = 0.

Homogeneous Differential Equations
Homogeneous differential equation will be of the form f (x, 
y)dy = g(x, y)dx, where f (x, y) and g(x, y) are homogeneous 
 functions in x and y of the same degree.

Definition
A function F(x, y) in x and y is a homogeneous function in 
x and y of degree n(n, a rational number), if F(x, y) can be 

expressed as x
y

x
y

x

y
n nφ ψ















or .
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 1. x x y y x
y

x

y

x
3 2 3 3

3

3
4 1

4
+ − = + −









  is a homogeneous 

function in x and y of degree 3.

 2. x
y

x
3 tan







  is a homogeneous function in x and y of 

degree 3.

 3. 
x y

x y

+
−2 3

 is a homogeneous function in x and y of 

degree 0. We change the dependent variable y to v by 

the substitution y = vx. Then, 
dy

dx
v x

dv

dx
= + .

On substitution y and 
dy

dx
 in the given homogeneous 

equation, it reduces to the variables separable form.

Example 6

Solve: x
dy

dx
x xy y2 2 27 9= + + .

Solution

                 x
dy

dx
x xy y2 2 27 9= + +

dy

dx

y

x

y

x
= + + 






1

7
9

2

Put y xv
dy

dx
v

dv

dx
= ⇒ = +

    
v

dv

dx
v v+ = + +1 7 9 2

  
x

dv

dx
v v= + +9 6 12

 

1

9 6 1

1
2v v

dv
x

dx
+ +

=

Integrating on both sides,

1

9 6 1

1
2v v

dv
x

dx
+ +

=∫ ∫
1

3 1

1
2( )v

dv
x

dx
+

=∫ ∫ −
+

= +
1

3 3 1( )
log log

v
x c

= −
+








= =
−
+

=
1

3
3

1
9 3y

x

cx
x

y x
cxe elog log

where C is an arbitrary constant.

Example 7

Solve x
dy

dx
y x

y

x
= + 






sin

Solution

Given: x
dy

dx
y x

y

x
= + 






sin

    
dy

dx

y

x

y

x
= + 






sin  (1)

Put y vx
dy

dx
v x

dv

dx
= = +, .

Substituting in (1) we get, 

v x
dv

dx
v v+ = + sin

⇒ = ⇒ =
xdv

dx
v

v
dv

x
dxsin

sin

1 1

  
= = ∫∫ cosec v dv

x
dx

1

⇒ log (cosec v – cot v) = log x + log c
⇒ cosec v – cot v = cx

cosec
y

x

y

x
cx







 −







 =cot .

Example 8
Solve 3y2 dx + (2xy + 3x2) dy = 0.

Solution
3y2 dx + (2xy + 3x2) dy = 0.

dy

dx

y

xy x
=

−
+
3

2 3

2

2

Put y vx
dy

dx
v x

dv

dx
= ⇒ = +

v x
dv

dx

v

v
+ =

−
+

3

2 3

2

x
dv

dx

v

v
v=

−
+

−
3

2 3

2

x
dv

dx

v v v

v
=
− − −

+
3 2 3

2 3

2 2

2 3

5 3

1
2

v

v v
dv

x
dx

+
− −

=

⇒
+
+

+ =
2 3

5 3

1
0

v

v v
dv

x
dx

( )

Integrating on both sides,

⇒ −
+







+ =∫ ∫
1 3

5 3

1
0

v v
dv

x
dx

⇒ − + + =log log ( ) log log .v v x c
3

5
5 3

 ⇒ 5 log v –3 log (5v + 3) + 5 log x = 5 log c.
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⇒
+

=log
( )

log
v

v
x c

5

3
5 5

5 3

⇒

+







= =
y

y

x

c c c
5

3 1 1
5

5 3

, where

⇒
+

= ⇒ = +
y x

y x
c x y c y x

5 3

3 1
3 5

1
3

5 3
5 3

( )
( )

Exact Differential Equations
If M, as well as N, is a function in x and y, then the equation 
Mdx + Ndy = 0 is said to be an exact differential equation if 
there exists a function f (x, y) such that 

d(f (x, y)) = Mdx + Ndy.

That is,                
∂
∂

+
∂
∂

= +
f

x
dx

f

y
dy Mdx Ndy

Example: 3x2ydx + x3dy = 0 is an exact differential equation 
since there exists a function x3y such that 

d(x3 y) = 3x2ydx + x3dy

The necessary and sufficient condition for an equa-
tion of the form Mdx + Ndy = 0 to be an exact equation is 
∂
∂

=
∂
∂

M

y

N

x
.

The solution of the exact differential equation

Mdx Ndy U y dy C+ = + =∫0 is φ( )

where U Mdx y N
u

y
= = −

∂
∂∫  and φ( )

Or Mdx
x

+ ∫∫  (terms of N not containing x)dy = C

Here ∫Mdx
x

 denotes integration of M with respect to x 
treating y as a constant.

Example 9
Find the solution of 

(3x – 2y + 5) dx + (3y – 2x + 7)dy = 0.

Solution
M = 3x – 2y + 5, N = 3y – 2x + 7

∂
∂

= −
∂
∂

= −
∂
∂

=
∂
∂

M

y

N

x

M

y

N

x
2 2.

∴ The given equation is exact.
The solution is 

Mdx
x

+∫ ∫(the terms of N not containing x) dy = C

( ) ( )3 2 5 3 7x y dx y dy C
x

− + + + =∫∫
3

2
2 5

3

2
7

2 2x
yx x

y
y C− + + + =

Example 10
Find the solution of (ey + 1) cot x dx + ey log(sin x) dy = 0.

Solution
Given (e y + 1)cot x dx + e y log (sin x)dy = 0

Let M = (e y + 1)cot x and N = e y log (sin x)

∂
∂

=
∂
∂

=
M

y
e x

N

x
e xy ycot cot and 

∴
∂
∂

=
∂
∂

M

y

N

x

 ∴ The given equation is exact.
The solution is

Mdx
x

+ ∫∫  (the terms of N not containing x)dy = C

∴ + + =∫∫ ( ) cote x dx dy Cy
x

1 0

                    (ey + 1) log (sin x) = C

Integrating factors: Let us say M(x, y)dx + N(x, y) dy = 0 
be a non-exact differential equation. If it can be made exact 
by multiplying it by a suitable function µ(x, y), then µ(x, y) 
is called an integrating factor.

Methods to Find the Integrating Factors
Method 1
If Mdx + Ndy = 0 is a homogeneous differential equation 

and Mx + Ny ≠ 0, then 
1

Mx Ny+
 is an integrating factor of 

Mdx + Ndy = 0

Example 11
Find the solution of (x + 2y)dx + (y – 2x) dy = 0.

Solution
Here M = x + 2y and N = y – 2x

∂
∂

=
∂
∂

= −
M

y

N

x
2 2

∂
∂

≠
∂
∂

M

y

N

x

The above equation is not an exact equation.
But M and N are homogeneous functions

∴ The integrating factor =
+
1

Mx Ny

 (x + 2y)x + (y – 2x)y = x2 + y2 (1)

Now by multiplying Eq. (1) by 
1

2 2x y+
, it become an 

exact equation.
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x y

x y
dx

y x

x y
dy

+
+









 +

−
+









 =

2 2
0

2 2 2 2

The solution is U y dy C+ ( ) =∫φ

U M dx M
x y

x y

x

= =
+
+∫ 1 1 2 2

2
,  where 

=
+
+∫

x y

x y
dx

x 2
2 2

=
+

+
+∫∫

x

x y
dx y

x y
dx

2 2 2 2
2

1

= + +








−1

2
2

12 2 1log( ) tanx y y
y

x

y

= + +








−1

2
22 2 1log ( ) tanx y

x

y

Since in N
1
 =

−
+

y x

x y

2
2 2

 there is no term independent of x, 

the solution is 

1

2
22 2 1log ( ) tanx y

x

y
C+ +









 =−

Method 2
If the differential equation Mdx + Ndy = 0 is of the form 

y, f(xy)dx + x g(xy)dy = 0 and Mx – Ny ≠ 0, then
1

Mx Ny−
is 

an integrating factor of Mdx + Ndy = 0.

Method 3
In the equation Mdx + Ndy = 0,

if 
1

N

M

y

N

x
f x

∂
∂

−
∂
∂









 = ( ), then e f x dx( )∫

⋅ is an integrating 

factor of the given equation.

Similarly if 
1

M

N

x

M

y
g y

∂
∂

−
∂
∂









 = ( ) then e g y dy( )  is an 

integrating factor of the given equation.

Example 12
Find the solution (x2 – y2)dx + 2xy dy = 0.

Solution
Given (x2 – y2)dx + 2xy dy = 0 (1)

M = x2 – y2 and N = 2xy

∂
∂

= −
∂
∂

=
M

y
y

N

x
y2 2 and 

∂
∂

≠
∂
∂

M

y

N

x

∫

1 1

2
2 2

N

M

y

N

x xy
y y

∂
∂

−
∂
∂









 = − −[ ]

 =
−

=
2

x
f x( )

Integrating factor (IF)

= ∫e f x dx( )

= ∫ = ∫ = =
−

−e e e
x

x
dx x x

2
2

1

2
2 1log log

∴ Multiplying the given equation with
1
2x

, we get 

x y

x
dx

xy

x
dy

2 2

2 2

2
0

−







 + =

  
x y

x
dx

y

x
dy

2 2

2
2 0

−







 + =  (2)

M
x y

x
N

y

x
1

2 2

2 1
2

=
−

= and 

∂
∂

=
− ∂

∂
=
−M

y

y

x

N

x

y

x
1

2
1

2

2 2
,  and 

∂
∂

=
∂
∂

M

y

N

x
1 1

∴ Eq. (2) is an exact equation and its solution is 

M dx
x

1 + ∫∫ (the terms of N
1
 not containing x) dy = C

x y

x
dx dy C

x 2 2

2
0

−
+ =∫∫

⇒ − = ⇒ + =∫1
2

2

2y

x
dx C x

y

x
C

x

.

Example 13
Find the solution of xy 2dx + ( y + y2)dy = 0.

Solution
Given xy2dx + ( y + y2)dy = 0 (1)

Mdx + Ndy = 0

M = xy2; N = y + y 2

∂
∂

=
∂
∂

=
M

y
xy

N

x
2 0 and 

∂
∂

≠
∂
∂

M

y

N

x

1 1
2

2

2M

N

x

M

y xy
xy

y
g y

∂
∂

−
∂
∂









 = −

=
−

=

[ ]

( )

Integrating factor is e∫g(y)dy

=
∫

= = =
−

−e e e
y

y
dy

y dy y

2

2

1

2

2 1log
log

Multiplying Eq. (1) by 
1

0
2

2

2

2

2y

xy dx

y

y y

y
dy,  we get +

+







 =
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xdx
y

dy+ +








 =

1
1 0

Integrating on both sides we get 
x

y y C
2

2
+ + =log

Linear Equations
Consider the linear differential equation

dy

dx
Py Q+ =  (1)

where P and Q  are functions of only x. We explain below, 
how such equations can be solved. Consider the equation

    
dy

dx
Py+ = 0  (2)

The Eq. (2) is called the homogeneous linear equation corre-
sponding to Eq. (1). We find the general solution of Eq. (2). 

Eq. (2) is a variables separable type. We write it as

dy

y
Pdx= − .

Integrating the above equation given.

       log y = – ∫Pdx+ log C or y = Ce–∫Pdx (3) 

This represents the general solution of Eq. (2).
Eq. (3) may also be written as ye ∫Pdx = c. 

Now, 
d

dx
ye Pdx( )∫ = 0

That is, e
dy

dx
ye PPdx Pdx∫ + ∫ × = 0 or e

dy

dx
PyPdx∫ +




= 0.

This means that if we multiply both sides of Eq. (2) by 
e∫Pdx, the product 

e
dy

dx
PyPdx∫ +





is
d

dx
{ye ∫Pdx}. The factor e ∫Pdx is called 

an integrating factor of Eq. (2). 

Suppose we multiply both sides of Eq. (1) by e ∫Pdx, it is 

re duced to 
d

dx
ye

d

dx
Qe dxPdx Pdx( ) ( )∫ ∫= ∫ , since

d

dx
Qe dx QePdx Pdx( ) .∫ ∫∫ =





 

since
d

dx
Qe dx QePdx Pdx( ) .∫ ∫∫ =





Hence, we get the general solution of Eq. (1) as

ye C Qe dxPdx Pdx∫ ∫
= + ∫ .

Example 14

Solve sin cosx
dy

dx
y x+ =1.

Solution

sin cosx
dy

dx
y x+ =1

dy

dx
x y x+ =(cot ) .cosec

This is a linear equation in y 

Here, P = cot x, Q = cosec x.

∫ Pdx = ∫cot x dx = log (sin x)

    IF = e ∫Pdx = elog sin x = sin x.
∴ The general solution is y ⋅ IF = ∫QIF dx + c

y sin x = ∫cosec x . sin x dx + c
y sin x = ∫dx + c
y sin x = x + c.

Example 15

Solve ( ) sin .1 44 3 3+ + =x
dy

dx
x y x

Solution

Given: ( ) sin1 44 3 3+ + =x
dy

dx
x y x

dy

dx

x

x
y

x

x
+

+
=

+
4

1 1

3

4

3

4

sin

It is a linear differential equation in y.

Here, P
x

x
Q

x

x
=

+
=

+
4

1 1

3

4

3

4
 and 

sin

Pdx
x

x
dx x=

+
= +∫∫

4

1
1

3

4
4log( )

IF = = = +∫ +e e xpdx xlog( )1 44

1

General solution

y ⋅ IF = ∫Q ⋅ IF dx + c.

y x
x

x
x dx c( )

sin
( )1

1
14

3

4
4+ =

+
+ +∫

= + =
−

+∫ ∫sin
sin sin3 3 3

4
x dx C

x x
dx c

y x
x

x c( )
cos

cos1
3

12

3

4
4+ = − +

12y(1 + x4) = cos3 x – 9 cos x + c

Example 16

Solve x
dy

dx
y x y2 24 8 2+






 = + − .

Solution

Given: x
dy

dx
y x y2 24 8 2+






 = + −

               

dy

dx
y

x

y

x
+ = + −4

8 2
2 2

dy

dx
y

x x
+ +






 = +1

2
4

8
2 2

Here, P
x

Q
x

= + = +1
2

4
8

2 2
and

Pdx
x

dx x
x

= + = −∫∫ 1
2 2
2
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IF = =∫
−








e ePdx
x

x

2

General solution is y ⋅ IF = ∫Q ⋅ IFdx + c

ye
x

e dx c
x

x
x

x
− −

= +





 +∫

2

2

2

4
8

= +





 +∫

−
4 1

2
2

2

x
e dx c

x
x

(Put e t
x

x
−

=
2

⇒ +





 =

−
e

x
dx dt

x
x

2

2
1

2
)

= 4 ∫ dt + c = 4t + c
The general solution is

ye e c
x

x
x

x
− −

= +
2 2

4

Bernoulli’s Linear Equations

An equation of the form 
dy

dx
Py Qyn+ = is called Bernoulli’s 

linear equation, where P, Q are continuous functions in x.

Example 17

Solve 
dy

dx
xy xy+ = − ( ).3 2

Solution

Given 
dy

dx
xy xy+ = − ( )3 2

Throughout the equation dividing with y2 we get

  y
dy

dx
xy x− −+ = −2 1 3  (1)

Let y u y
dy

dx

du

dx
− −= ⇒ − =1 2

The Eq. (1) becomes 
−

+ = −
du

dx
xu x3

du

dx
xu x− = 3

The above equation is a linear differential equation in u.

∴ IF = = =∫ − ∫
−

e e ePdx xdx
x2

2

∴ Solution is u ⋅ IF = ∫ QIF dx

u e xe dx
x x

⋅ =
− −

∫
2 2

2 23 .

= − =
−−∫3 2

2

e dt t
xt  when 

=
−
−

=
−

−3

1
3

e
e

t
t

u e e C
x x

⋅ = +
− −2 2

2 23

1
3

2

2

y
Ce

x

= +

y

Ce
x

=

+

1

3

2

2

Example 18

Solve 
dy

dx

y

x
y

y

x
y+ =log (log ) .

3
2

Solution

Given 
dy

dx

y y

x

y y

x
+ =

log (log )2

3

⇒ + ⋅ =
1 1 1 1

2 3y y

dy

dx x y x(log ) (log )
 (1)

Let 
1

log
,

y
u=  

Differenting wrt x
−

⋅ =
1 1

2(log )y y

dy

dx

du

dx

∴  Eq. (1) becomes

⇒
−

+ = ⇒ − =
−du

dx x
u

x

du

dx x
u

x

1 1 1 1
3 3

It is a linear equation in u.

Here P
x

Q
x

=
−

=
−1 1

3
 and 

IF = = = =∫ − ∫ −e e e
x

Pdx x
dx x

1 1log

∴ Solution is u . IF = ∫QIFdx + c

1 1 1
3x

u
x x

dx c=
−
⋅ +∫

1 4

x
u x dx c= − +−∫

1 1

3 3(log )y x x
c= +

Second Order Linear Differential Equations 
with Constant Co-efficients
The standard form of a second order linear differential equa-
tion with constant co-efficients is 

            a
d y

dx
a

dy

dx
a y F x0

2

2 1 2+ + = ( ) (1)

where a
0
, a

1
, a

2
 are real constants and F(x) is a function of 

only x. The second order equation,

  a
d y

dx
a

dy

dx
a y0

2

2 1 2 0+ + =  (2)

represents the corresponding homogeneous equation.
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Let y = u (x) represent the general solution of Eq. (2) 
[u(x) will contain two arbitrary constants]. This means that 

                a
d u

dx
a

du

dx
a u0

2

2 1 2 0+ + =  (3)

Let y = v (x) represent a particular solution of the given 
equation of Eq. (1). We have, then,

  a
d v

dx
a

dv

dx
a v F x0

2

2 1 2+ + = ( ) (4)

Substituting y = u(x) + v(x) in Eq. (1), 

a
d

dx
u v a

d

dx
u v a u v0

2

2 1 2( ) ( ) ( )+ + + + +

= + +








 + + +









a

d u

dx
a

du

dx
a u a

d v

dx
a

dv

dx
a v0

2

2 1 2 0

2

2 1 2

= 0 + F(x)  (by Eqs. (3) and (4))

= F(x).

We infer that y = u(x) + v(x) is the general solution of 
the Eq. (1). Thus, the general solution of Eq. (2) is the sum 
of the general solution of the corresponding homogeneous 
equation (2) and a particular solution of the given equation 
(1). y = u(x) is called the complementary function of Eq. (2) 
and y = v(x) is called a particular integral of Eq. (1). The 
general solution of Eq. (1) is given by y = u(x) + v(x).

= [Complementary function] + [Particular integral]

= CF + PI (in short).

To find the complementary function of Eq. (1) or to 
obtain the general solution of the homogeneous equation 

(2):  As y = emx is a solution of 
dy

dx
my− = 0,  we assume y = 

emx (for some value of m) to be a solution of Eq. (2).

Then, a
d

dx
e a

d

dx
e a emx mx mx

0

2

2 1 2( ) ( )+ +  must be equal 

to zero (or) emx{a
0
 m2 + a

1
 m + a

2
} = 0.

Since emx cannot be equal to zero, a
0
 m2 + a

1
 m + a

2
 = 0 (5)

Eq. (5) is called the auxiliary equation corresponding to 
(1) [or (2)]. Eq. (5) is quadratic in m and gives two values 
for m, which may be real or complex.

Case 1: Let the roots of Eq. (5) be real and distinct, say m
1
 

and m
2
  (m

1
 ≠ m

2
). Then, y e y em x m x= =1 2 and are two distinct 

solutions of (2) or y C e C em x m x= +1 2
1 2  (6)

(C
1
 and C

2
 are arbitrary constants) is the general solution 

of (2) or the complementary function of (1).

Case 2: Let the roots of (5) be real and equal and each 
equals to m

1
.

Let 
d

dx
D

d

dx
D≡ ≡, .

2

2
2

Then Eq. (2) may be expressed as (a
0
 D2 + a

1
 D + a

2
) y = 0.

Since the roots of the auxiliary equation are equal and 
each equal to m

1
, this reduces to 

        a
0
(D – m

1
)2 y = 0 or (D – m

1
)2 y = 0 (7)

(since a
0
 ≠ 0)

Let (D – m
1
)y = Y

1
 (8)

Then, Eq. (7) becomes (D – m
1
)Y

1
 = 0. (9)

Now, Eq. (9) is reduced to 
dY

dx
m Y1

1 1 0− = , giving Y
1
 = 

C
1
em1x as the solution.

Substituting in Eq. (8),
dy

dx
m y c em x− =1 1

1 is a linear 

equation. The general solution is given by ye–m1x = c
2
 + ∫c

1
em1x 

× = +−e dx c c xm x1
2 1

or     y c e c xe e c c xm x m x m x= + = +2 1 2 1
1 1 1 ( )

where c
1
 and c

2
 are arbitrary constants.

Case 3: Let the roots of (V) be complex. Let us assume the 
roots as the conjugate pairs a ± ib. (The co-efficients a

0
, a

1
, 

a
2
 being real, roots occur in conjugate pairs).

The general solution is y c e c ei x i x= ++ −
1 2

( ) ( )α β α β

= + + −c e x i x c e x i xx x
1 2
α αβ β β β(cos sin ) (cos sin )

= ea x{(c
1
 + c

2
) cos b x + i(c

1
 – c

2
) sin b x}

= ea x{A
1
 cos b x + A

2
 sin b x).

where A and B are arbitrary constants. We may now 
summarize the nature of the complementary function of 
Eq. (1) as follows:

Roots of the Auxiliary 
Equation a0m 2 + a1m + a2 = 0

Complementary Function of 
(1), or General Solution of (2)

Roots, real and distinct, say 
m1, m2

y = c1e
m1x + c2e

m2x

Roots, real and equal, say 
each equals m1

y = (c1 + c2 x)em1x

Roots, complex, say a ± ib y = ea x{c1cos bx + c2 sin bx}

Roots, complex and 
repeated, say m1 = m2 = a + 
ib and m3 = m4 = a – ib

y = e ax[(c1 + c2x) cos bx + (c3 + 
c4 x) sin b x

Example 23
Obtain the complementary function of the equation 

d y

dx

dy

dx
y x

2

2
47

6− + = .

Solution

d y

dx

dy

dx
y x

2

2
47 6− + =

⇒ (D2 – 7D + 6) y = x4

Auxiliary equation is m2 – 7m + 6 = 0
                      m = 1, 6.

∴ The complementary function of the given equation.

y = c
1
 ex + c

2
 e6x.
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Example 24
Obtain the general solution of the equation 
d y

dx

dy

dx
y

2

2
10 25 0− ⋅ + = .

Solution

Given: 
d y

dx

dy

dx
y

2

2
10 25 0− + =

⇒ (D2 – 10 D + 25)y = 0

Auxiliary equation is m2 – 10 m + 25 = 0

The roots are (m) = 5, 5

∴ The general solution of the equation is (c
1
 + c

2
x)e5x.

Example 25
Obtain the complementary function of the equation 

d y

dx

dy

dx
y e x

2

2
36 10− ⋅ + = .

Solution

Given: 
d y

dx

dy

dx
y e x

2

2
36 10− ⋅ + =

⇒          (D2 – 6D + 10)y = e3x

Auxiliary equation is m2 – 6m + 10 = 0

m
i

i=
± −

=
±

= ±
6 36 40

2

6 2

2
3

∴ The complementary function is given by y
c
 = e3x(c

1
cos x 

+ c
2
sin x).

To find a particular integral of Eq. (1) or to find a particular 
solution of the Eq. (1):

a
d y

dx
a

dy

dx
a y F x0

2

2 1 2+ + = ( )

We may write the above as (a
0
D2 + a

1
D + a

2
) y = F(x) or 

f (D) y = F(x) where f (D) stands for (a
0
D2 + a

1
D + a

2
). 

Particular integral y is that function of x independent of 
arbitrary constants such that f (D) on y or f (D) y yields F(x). 

This is symbolically represented as y
f D

F x=
1

( )
{ ( )}.

Case 1: F(x) = ekx where k is a constant. 

We have D(e 

kx) = kekx, D2(ekx) = k2ekx … or, in general, 
g(D) (ekx) = g(k) ekx where g(D) is a polynomial in D, in 

particular, f (D) {ekx} = f (k) ekx.

Since 
1

f D
ekx

( )
is that function of x which when oper-

ated by f (D) gives ekx, it is clear that 
1 1

f D
e

f k
ekx kx

( ) ( )
=

provided f (k) ≠ 0. f (k) reduces to zero when one or both 

the roots of the auxiliary equation a
0 
m2 + a

1
m + a

2
 = 0, is k.

 1. Suppose one of the roots is k. Then, f (D) = a
0
(D – k) 

(D – m
0
), where m

0
 ≠ k. Particular integral

=
− −

1

0 0a D k D m
ekx

( ) ( )

=
− −









1 1

0 0D k a D m
ekx

( )

=
− −
1 1

0 0a k m D k
ekx

( ) ( )

Let 
1

1
( )D k

e Xkx

−
=

Then ( )D k X e
dX

dx
kX ekx kx− = − =1

1
1 or 

This is a linear equation and the particular solu-
tion of the above equation is xekx. Therefore, particular  

integral =
−
1

0 0a k m
xekx

( )
.

 2. Suppose both the roots of the auxiliary equation are k. 
Then, particular integral 

=
−

1

0
2a D k

ekx

( )
[ ]

=
− −











1 1

0a D k D k
ekx

( ) ( )

=
−

1

0a D k
xekx

( )
[ ],

  Use the result in (1) . Now, let 
1

2
D k

xe Xkx

−
=( )

  We have, therefore, (D – k) X
2
 = xekx or 

dX

dx
kX xekx2

2− =

which is a linear equation.

  Particular solution is X
x

ekx
2

2

2
= or, particular inte-

gral in this case is given by y
x

ekx=
2

2
.

Example 26
Solve the differential equation:

(D2 + 5D + 6)y = e–4x

Solution
(D2 + 5D + 6)y = e–4x

Auxiliary equation is m2 + 5m + 6 = 0.

(m + 3) (m + 2) = 0.

∴ Roots are m = –3, –2.
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Complementary function is c
1
e–3x + c

2
e–2x.

Particular integral =
+ +

⋅ −1

5 62
4

D D
e x

=
− + − +

=−
−1

4 5 4 6 22
4

4

( ) ( )
e

ex
x

∴ General solution is 

y c e c e
ex x

x

= + +− −
−

1
3

2
2

4

2
.

Example 27
Solve (3D2 – D – 10)y = 6e2x

Solution
Given (3D2 – D – 10)y = 6e2x

Auxiliary equation 3m2 - m - 10 = 0

                       m = 2, 
−5

3
.

∴ Complementary function is 

CF = +
−

c e c ex x

1
2

2

5

3  

 PI =
− −
1

3 10
6

2
2

D D
e x

=
− +

1

2 3 5
6 2

( ) ( )D D
e x

=
− +






=

−
6

1

2

1

3 5
6

1

2

1

11
12 2

D D
e

D
ex x

( )

=
−

=
6

11

1

2

6

11
2 2

( )D
e xex x

∴ General solution is

y c e c e xex x x= + +
−

1
2

2

5

3 26

11
.

Example 28
Solve (D2 – 12D + 36)y = e6 x

Solution
Given: (D 2 – 12D + 36) y = e6 x

Auxiliary equation is m2 – 12m + 36 = 0.

m2 – 12m + 36 = 0.

m = 6, 6

Complementary function (CF) = (c
1
 + c

2
x)e6x

PI =
− +

=
−

1

12 36

1

62
6

2
6

D D
e

D
ex x

( )

=
x

e x
2

6

2!

∴ General solution is y = CF + PI

= + +( )
!

c c x e
x

ex x
1 2

6
2

6 0

2

Case 2: F(x) = sin kx or cos kx where k is a constant.

We have D{sin kx} = k cos kx

              D2{sin kx} = – k2 sin kx

Similarly, D2{cos kx} = – k2 cos kx

If g(D2) is a polynomial in D2, 

g(D2) {sin kx or cos kx} = g(–k2) sin kx or g(–k2) cos kx.

Hence, 
1 1

2 2g D
kx

g k
kx

( )
sin

( )
sin=

−
 and 

1
2g D

kx
( )

cos  

=
−
1

2g k
kx

( )
cos ,  provided g(–k2) ≠ 0.

We shall illustrate the above technique by considering 
two examples.

Example 29
Find the particular integral of the equation (D2 + 16)y 
= cos 3x.

Solution

PI =
+

=
− +

1

16
3

1

3 16
3

2 2D
x xcos

( )
cos =

cos3

7

x

Example 30
Find the particular integral of the equation (D2 – 5D + 6) y 
= sin 3x.

Solution

PI =
− +

1

5 6
3

2D D
xsin

=
− − +

1

3 5 6
3

2 D
xsin

1

5 3
3

− −D
xsin

= −
−

+ −
5 3

5 3 5 3
3

D

D D
x

( ) ( )
sin

=
−

− −
=

−
× − −

( )

( )
sin

( )
sin

5 3

25 9
3

3 5

25 9 9
3

2

D

D
x

D
x

=
−

−
1

234
3 5 3[( )sin ]D x

=
−

−
1

234
3 3 5 3[ sin (sin )]x D x

=
−

−
1

234
3 3 15 3[ sin cos ]x x

 PI = −
15 3

234

3 3

234

cos sinx x
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Suppose g(– k2) = 0.
Let us discuss the technique of finding particular inte-

gral in this case.

Suppose we have to find 
1

2 2D k
kx

+
[sin ].

By Euler’s formula, eikx = cos kx + i sin kx or sin kx 
= imaginary part of eikx.

Particular integral =
+
1

2 2D k
kx[sin ].

= Imaginary part of 
1

2 2D k
eikx

+
( )

= Imaginary part of 
1

( ) ( )D ik D ik
eikx

− +

= Imaginary part of 
1

2D ik

e

ik

ikx

−










= Imaginary part of 
xe

ik

ikx

2

= Imaginary part of x

ki
kx i kx

2
(cos sin )+

=  Imaginary part of 
x

k
i kx kx

2
( cos sin )− +  

=
− x kx

k

cos
.

2

NOTE

Similarly, if we have to find 
1

2 2D k
kx

+
[cos ].

We write it as the real part of 
1

2 2D k
eikx

+
( )

= Real part of 
1

( )( )
( )

D ik D ik
eikx

− +

= Real part of 
x

k
i kx kx

2
( cos sin )− +

=
x kx

k

sin
.

2

1

22 2D k
kx

x

k
kx

+
=
−

sin cos

1

22 2D k
kx

x

k
kx

+
=cos sin

Example 31
Solve the equation (D2 + 16) y = sin 4x.

Solution
Given: (D2 + 16) y = sin 4x

Auxiliary equation is m2 + 16 = 0
m = ± 4i

∴ CF = c
1
 cos 4x + c

2
 sin 4x

 PI =
+
1

16
4

2D
xsin .

 
= −

⋅
x

x
2 4

4cos

∵
1

22 2D k
kx

x

kx
kx

+
= −






sin cos

= −
x

x
8

4cos

General solution is y = CF + PI

= + −c x c x
x

x1 24 4
8

4cos sin cos .

Cauchy’s Homogeneous Linear Equations
An equation of the form 

  x
d y

dx
p x

d y

dx
p y Q xn

n

n
n

n

n n+ + =−
−

−1
1

1

1
� ( )  (1)

where p
1
, p

2
, . . ., p

n
 are constants is called Cauchy’s linear 

equation. To convert the above equation into linear differen-
tial equation with constant co-efficients, we substitute x = ez 
or z = log x.

∴ z = log x, 

⇒ =
dz

dx x

1

dy

dx

dy

dz

dz

dx
= ⋅

dy

dx

dy

dz x
= ⋅

1

dy

dz
x

dy

dx
=

d y

dx

d

dx

dy

dx

d

dx x

dy

dz

2

2

1
= 






 = ⋅








=
−

+ 







=
−

+ 







1 1

1 1

2

2

x

dy

dz x

d

dx

dy

dx

x

dy

dz x

d

dz

dy

dz

dz

dx

d y

dx x

dy

dz x

d y

dz

2

2 2 2

2

2

1 1
=
−

+

x
d y

dx

d y

dz

dy

dz

d

dz

dy

dz
y2

2

2

2

2
= − = −





Let
dy

dz
y x

dy

dx
y x

d y

dx
y= ⇒ = , = ( −1)θ θ θ θ2

2

2
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Similarly x
d y

dx
y3

3

3
= ( −1) − 2θ θ θ( ) ,  and so on.  

Then Eq. (1) is changed into a linear differential equation. 

We solve this by methods discussed earlier.

Example 32

Solve x
d y

dx
x

dy

dx
y2

2

2
3 3 0+ − =

Solution

Let x = ez or z = log x

Then x
dy

dx
y x

d y

dx
y= = ( −1)θ θ θ;  2

2

2

The above equation becomes 

[θ θ θ( −1) + − 3] =3 0y

θ θ2 + − 3  =2 0y

Auxiliary equation is m2 + 2m – 3 = 0

⇒ (m + 3)(m – 1) = 0
⇒ m = –3, 1

∴   y = c
1
e–3z + c

2
ez

= c
1
x–3 + c

2
x.

Example 33

Solve  x
d y

dx
x

d y

dx

dy

dx
y x x3

3

3
2

2

2
26 8 2+ + + = log .

Solution
Put x = ez or z = log x. Then 

x
dy

dx
y x

d y

dx
y= = ( −1)θ θ θ, ,2

2

2

x
d y

dx
y3

3

3
2= ( −1) −θ θ θ( )

The given equation becomes 

[q(q – 1) (q – 2) + 6q(q – 1) + 8q + 2]y = e2z ⋅ z
(q 3 + 3q 2 + 4q + 2)y = e2z ⋅ z

  AE = m3 + 3m2 + 4m + 2 = 0

(m + 1)(m2 + 2m + 2) = 0

m = – 1 or m = –1 ± i

CF = C
1
e–z + e–z (C

2
cos z + C

3
sin z )

PI =
+ + + 2

⋅
3 2

1

3 4
2

θ θ θ
e zz

=
+ 2 + + 2 + + 2 +

e zz2
3 2

1

3 4 2( ) ( ) ( )θ θ θ

=
+ + + 30

⋅
3 2

e zz2 1

9 28θ θ θ

e
z

z2 1

30
1

9 28

30
+

+ +









3 2 −
θ θ θ

= −
+ +









3 2e
z

z2

30
1

9 28

30

θ θ θ

= −
e

z e
z

z
2

2
2

30

28

30( )

y = CF + PI

= C
1
e–z + e–z(C

2
 cos z + C

3 
sin z) + −

e
z e

z
z

2

2
2

30

28

30( )

= + +
C

x x
C x C x1

2 3
1

( cos(log ) sin(log ))+ −
x x

x
2

2

30

28

900

log

Example 34

Solve ( ) ( ) ( )2 1 2 2 1 100 32 2 1
2

2
2x

d y

dx
x

dy

dx
y x− + − − = −

Solution
Let 2x – 1 = u

2 =
du

dx

dy

dx

dy

du

du

dx

dy

du
= ⋅ = 2

d y

dx

d

dx

dy

dx

d

dx

dy

du

2

2
2= 






 =









= 





 ⋅ =2 22

2

2

d

du

dy

du

du

dx

d y

du

∴ The given equation becomes 

2 2 2 100 322 2
2

2
2u

d y

du
u

dy

du
y u+ ⋅ − =

 
u

d y

du
u

dy

du
y u2

2

2
225 8+ − =

Let  u e u
dy

dx
x

d y

dx
z= = = ( −1), ;0 2

2

2
θ θ

[ ]θ θ θ( −1) + − 25 =y e z8 2

θ 2 −  =25 8 2y e z

AE = m2 – 25 = 0 ⇒ m = ±5

CF = C
1
e–5z + C

2
e5z

PI =
−

⋅ =
−

=
−

2

1

25
8 8

1

2 25

8

21
2 2

2
2

θ
e e ez z z.

y = CF + PI = C
1
e5z + C

2
e5z –

8

21
2e z

= + −−C u C u u1
5

2
5 28

21
 where u = (2x – 1).
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Method of Variation of Parameters

An equation of the form 
d y

dx
P x

dy

dx
Q x y R x

2

2
+ + =( ) ( ) ( ),  

where P(x), Q(x) and R(x) are real valued functions of x, is 
called the linear equation of the second order with variable 
co-efficients.

The above equation is solved by the method of variation 
of parameters.

The method is explained below:

 1. Find the solution of 
d y

dx
P

dy

dx
Qy

2

2
0+ + =  and let the 

solution be y
c
 = C

1
U(x) + C

2
V(x)

 2. Write particular solution as follows:

  y
p
 = AU(x) + BV(x)

  where A
VR

W
dx=

−
∫

  and B
UR

W
dx= ∫

  where W
U V

dU

dx

dV

dx

U
dV

dx
V

dU

dx
= = −  is called the 

Wronskian of U and V.

 3. Then the solution is y
c
 + y

p

  i.e., y = C
1
U(x) + C

2
V(x) + AU(x) + BV(x)

Example 35
Solve the differential equation (D2 + 4)y = sec 2x by varia-
tion of parameters.

Solution
Given (D2 + 4)y = sec 2x

AE = m2 + 4 = 0 ⇒ m = ±2i

       CF = y
c
 = C

1
cos 2x + C

2
 sin 2x

∴ U(x) = cos 2x; V(x) = sin 2x

y
p
 = AU(x) + BV(x)

W U
dV

dx
V

dU

dx
= −

= − ⋅cos (sin ) sin (cos )2 2 2 2x
d

dx
x x

d

dx
x

= 2cos2 2x + 2 sin2 2x = 2

 
A

VR

W
dx= −∫ = −

⋅
∫

sin sec2 2

2

x x
dx

= − =∫
tan

log(cos )
2

2

1

4
2

x
dx x

    
B

UR

W
dx= ∫ =

⋅
=∫

cos sec2 2

2

1

2

x x
dx x

∴ = ⋅ +y x x x xp
1

4
2 2

1

2
2[log(cos )] cos sin

∴ = + = + +y y y C x C xc p 1 22 2cos sin

1

4
2 2

1

2
2[log(cos )]cos sin .x x x x+

Example 36
Solve the differential equation y″ + 4y′ + 4y = x3e2x

Solution
Given equation 

(D2 + 4D + 4) y = x3 e2x

The auxiliary equation is
m2 + 4m + 4 = 0

(m + 2)2 = 0 ⇒ m = –2
y

C
 = C

1
 e–2x + C

2
xe–2x

Let U(x) = e–2x and V(x) = xe–2x

 y
p
 = AU(x) + BV(x)

A
VR

W
dx B

UR

W
dx= − =∫ ∫,  

W u
dv

dx
v

du

dx
e

d

dx
xe xe

d

dx
ex x x x= − = −− − − −2 2 2 2( ) ( )

= −  + =− − − − − −e e xe xe e ex x x x x x2 2 2 2 2 42 2

A
UR

udv

dx

vdu

dx

dx
xe x e

e
dx

x e dx

x x

x

x

= −
−

= −
⋅

= −

∫ ∫

∫

−

−

2 3 2

4

4 4

= − + − +
×

−
×

x
e x e x e xe ex x x x x

4
4 3 4 2 4 4 4

4 4
3

16
6

16 4
6

16 16

B
UR

W
dx

e x e

e
dx x e dx

x x

x
x= = =

−

−∫∫ ∫
2 3 2

4
3 4

= − − +








x

e
x

e xe ex x x x
3

4
2

4 4 4

4

3

4 4
2

16 32

y = y
c
 + y

p
 = AU(X) + BV(x) + C

1
e–2x + C

2
xe–2x

= C
1
e–2x + C

2
xe–2x – x4 

e x e x ex x x2 3 2 2 2

4 4

3

16
+ −

+ − + −
6

64

3

3128 4

3

16

2 2 4 2 3 2xe e x e x ex x x x

+ −
3

32

3

128
2 2 2x e x ex x

= + −− −C e C xe x ex x x
1

2
2

2 3 21

16
− − +

3

32

9

128 128

9

128
2 2

2
2x e

xe
ex

x
x

Laplace Transforms
Let f(t) be a given function defined for all t ≥ 0. The Laplace 
transform of F(t) is denoted by L{f(t)} or L{f} and is defined 

as L{f(t)} = e f t dt F sst−
∞

∫ =( ) ( ).
0

Here L is Laplace transform operator. f(t) is the deter-
mining function depends on it. F(s) is the function to be 
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determined called generating function. e st− is called kernel 
of the transform. 

Some standard results of Laplace transforms are given 
below.

 1. L e
s a

s aat{ } =
−

>
1

,

 2. L e
s a

at−{ } =
+
1

,

 3. (a) Let k be a constant L k
k

s
{ } =

  (b) L
s

s1
1

0{ } = >,

 4. L t
n

s
sn

n{ } = >
+

!
,

1
0

 5. L at
s

s a
scos ,{ } =

+
>

2 2
0

 6. L at
a

s a
ssin ,{ } =

+
>

2 2
0

 7. L at
s

s a
s acosh ,{ } =

−
>

2 2

 8. L at
a

s a
s asinh ,{ } =

−
>

2 2

 9. L t e
n

s a
n Zn at

n
{ }

!

( )
,⋅ =

−
∈

+
+

1

 10. L
t

f t F s ds
s

1
( ) ( )








=
∞

∫

Example 37
Find the Laplace transform of the function 

f x e ex x( ) = + −5 72 3

Solution

L f x L e ex x{ ( )} ( )= + −5 72 3

                = 5L(e2x) + 7L(e–3x)

L f t
s s

{ ( )} = ⋅
−

+ ⋅
+

5
1

2
7

1

3

                =
−

+
+

⋅
5

2

7

3s s

Example 37
Find L{f (t)} where

 f (t) = 0, 0 < t < 1

 = 1, 1 < t <2

 = t, t > 2.

Solution
As the given function is not defined at t = 0, 1 and 2

L f t e F t dtst{ ( )} ( )= ⋅−
∞

∫
0

               = e dt e dt e tdtst st st− − −
∞

∫ ∫ ∫⋅ + ⋅ + ⋅
0

1

1

2

2

0 1

               = e dt e tdtst st− −
∞

∫ ∫+ ⋅
1

2

2

=
−

+ ⋅
−

−
−

⋅
− − ∞ ∞ −

∫ ∫ ∫
e

s
t

e

s

e

s
dt

st st st

] ]
1

2

2 2

= − + + +
−




− − − − ∞
e

s

e

s

e

s s

e

s

s s s st2 2

2

2 1

=
−

+ + +
− − −

−e

s

e

s

e

s s
e

s s s
s

2 2

2
22

1

= +





 +

− −e

s s

e

s

s s2

1
1

.

Example 39
Find the Laplace transform of the function

f     (t) = sin 2t, 0 < t < p  =
−

+ ⋅
−












−

−
⋅

− − −∞∞

∫ ∫∫
e

s
t

e

s

e

s
dt

st st st

1

2

22

                  = 0, t > p

Solution

              L{f (t)} = e f t dtst−
∞

∫
0

( )

= ⋅ + ⋅− −
∞

∫ ∫e tdt e dtst st

0

2 0
π

π

sin

= −∫ e tdtst sin 2
0

π

=
+

− −
−e

s
s t t

st

2 04
2 2 2[ sin cos ]]π

=
−
+

−2 1

42

( )
.

e

s

sπ

Example 40
Find the Laplace transform of the function f (t) = (sin t + cos t)2

Solution
L{(sint + cost)2} = L{1 + sin2t} = L{1} + L{sin2t} = 

1 2

42s s
+

+
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Some important (theorems) properties of Laplace 
transforms:

 1. Linear property: Let f and g be any two functions of 
t and a

1
, a

2
 are constants, then L{a

1
f(t) + a

2
g(t)} = a

1
L 

{f(t)} + a
2
L{g(t)}

 2. First shifting property: If L {f(t)} = F(s) then L {eat 

f (t) = F(s – a)

Example: L {eat cos ct} = 
s a

s a c

−
− +( )2 2

 3. Change of scale property: If L{ f(t)} = F(s) then 

L{f(at)} =








1

a
F

s

a
Example: We know 

  L e
s a

F sat{ } ( )=
−

=
1

  Then L be
b

F
s

b b s

b
a b

b

s ab
at{ }

| |
= 






 =

−
= ⋅

−
1 1 1 1

 4. Differentiation theorem: If derivatives of f(t) are 
continuous and L{f(t)} = F(s) then L {f ′(t)}= sF(s) – 
f(0) and 

  L{f  n(t)} = snF(s) – sn – 1 f(0) – sn–3 f ″(0)…. f  n–1(0) = 

snF(s) – s fn r

r

n
r− −

=

−

∑ ⋅1

0

1

0( ) (  f  r represents rth derivative 

of f)

 5. Multiplication theorem: If L{f(t)} = F(s) then L{t ⋅ 
f(t)} = –F ′(s)

  and L{tn ⋅ f (t)} = ( ) ( )− [ ]1 n
n

n

d

ds
F s

 6. Division theorem: If L{f(t)} = F(s), then L
t

f t
1

( )







=

F s ds
s

( )
∞

∫

 7. Transforms of integrals (theorem)

  If L{f(t)} = F(s), then L f u du
s
F s

t

{ ( ) } ( )=∫
1

0

Example 41
Find the Laplace transform of te–2t sin2t.

Solution

L t L t
s

s

s
{sin } { cos }2

2

1

2
1 2

1

2

1

4
= − = −

+








∴      L t t
d

ds s

s

s
{ sin } ( )⋅ = − −

+
















2

2
1

1

2

1

4

(using multiplication theorem)

           L{t sin2t} = 
− −

−
+ −

+










1

2

1 4 2

42

2

2s

s s s

s

( ) ( )

( )

                         = +
−
+

1

2

4

2 42

2

2 2s

s

s( )

L e t t
s

s

s
t{ sin }

( )

( )

[( ) ]
− ⋅ =

+
+

− +
+ +

2 2
2

2

2 2

1

2 2

4 2

2 2 4

(using shifting property)

=
+

−
+

+ +
1

2 2

4

2 4 82

2

2 2( ) ( )
.

s

s s

s s

Example 42

Find the Laplace transform of 
sin cos2 2t t

t

−
.

Solution

L {sin2t – cos2t} = 
2

4 42 2s

s

s+
−

+

L
t t

t
{
sin cos

}
2 2−

 =
+

−
+









∞

∫
2

4 42 2s

s

s
ds

s

(using division property)

= 





 − +−
∞

∞2

2 2

1

2
41 2tan [log( )]

s
s

s
s

= − + +−π
2 2

1

2
41 2tan log( )

s
s

= + +−cot log( ).1 2

2

1

2
4

s
s

Example 43

Find the Laplace transform of ⋅∫
sin

.
2

0

u

u
du

t

Solution

L u
s

u

u s
ds

s

{sin }

sin

2
2

4

2 2

4

2

2

=
+








=

+

∞

∫and

(using division theorem)

2

2 2 2 2 2
1 1 1tan tan cot−

∞
− −


= − =

s s s

s

π

∴              L
u

u
du

s

st sin
cot

2 1

2
0

1∫











= −

(using transform of integral theorem).
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Inverse Laplace Transforms
If F(s) is the Laplace transform of the function f(t) i.e., L 
{f(t)} = F(s) then f(t) is called the inverse Laplace transform 
of the function F(s) and is written as f(t) = L–1{F(s)}. Here 
L–1 is called inverse Laplace transformation operator.

Some important standard results for inverse Laplace 
transform. 

 1. L
s

− 




 =1 1

1

 2. L
s

t

nn

n
−

+






 =1

1

1

!
where n is a positive integer

  or L
s

t

nn

n
−

−





 = −

1
11

1( )!

 3. L
s a

eat−

−






 =1 1

 4. L
s a

e t

nn

at n
−

−

−








 = −

1
11

1( ) ( )!

 5. L
s a a

at−

+






 =1

2 2

1 1
sin

 6. L
s

s a
at−

+






 =1

2 2
cos

 7. L
s

s a
at−

−






 =1

2 2
cosh

 8. L
s a a

at−

−






 =1

2 2

1 1
sin h

 9. L
s a b b

e btat−

− +








 =

1
2 2

1 1

( )
sin

 10. L
s a

s a b
e btat− −

− +







=1

2 2( )
cos

 11. L
s a a

−

+







=1

2 2 2 3

1 1

2( )
 (sin at – at cos at)

 12. L
s

s a a
−

+







=1

2 2 2

1

2( )
t sin at

To find the inverse Laplace transform we use the following 
methods.

 1. Using the following properties 

  (a) If L F s f t L F s a e f tat− −= − =1 1{ ( )} ( ), { ( )} ( )than

  (b) If L F s f t f− = =1 0 0{ ( )} ( )) ( ) ;and  then

     (i) L sF s
d

dt
f t− =1{ ( )} ( ( ))

       (ii)  L s F s
d

dt
f tn

n

n
− =1{ ( )} ( ( ))  if f (0) = f 1(0) =  

f (n-1)(0) = 0

  (c) If then

(i)

L F s f t

L
F s

s
f t dt

t

−

−

=








= ∫

1

1

0

{ ( )} ( ),

( )
( )

       (ii) L
F S

s
f t dt dt

t t
− 






= ∫ ∫






1

2 0 0

( )
( )

 2. Convolution theorem: Let f(t) and g(t) be two 
functions and 

  L F s f t L G s f t− −= =1 1{ ( )} ( ) { ( )} ( ),and  then 

L F s G s f x g t x dx
t

− ⋅ = −∫1

0

{ ( ) ( )} ( ) ( )

  It is denoted by f(t) * g(t) here * represents convolution. 

 3. Unit step function: This function is defined as  

u(t – a) = H(t – a) = 
0

1

t a

t a

<
≥





 the Laplace transform 

of H(t – a) = L {H(t – a)} 

= − =−
∞ −

∫ e u t a dt
e

s
st

as

0

( )

This is also called as Heavisides unit function
NOTE

 4. Periodic function: If f(t) is a periodic function with 
period a i.e., f (t + a) = f(t), then

  L{ f(t)} = 

e f t dt

e

st
a

sa

−

−

∫
−

( )
0

1

 5. Using partial fractions: If F(s) is of the from 
G s

H s

( )

( )

where G and H are polynomials in S then break F(s) 
into partial fractions and manipulate term by term.

 6. Heavisides expansion formula: Let F(s) and G(s) 
be two polynomials in ‘s’ where F(s) has degree less 
than that of G(s). If G(s) has n distinct zeros a

r
, r = 1, 

2, 3, …., n 

  i.e., G(s) = (s – a
1
)(s – a

2
)…(s – a

n
), then 

L
F S

G S

F

G
e rr

r

t

r

n
−

=









 = ′∑1

1

( )

( )

( )

( )

α
α

α

Transform of Special Functions

 7. Bessel function:

  J
0
 (x) = 1 - 

x x x2 4

2 2

6

2 2 22 2 4 2 4 6
+

⋅
−

⋅ ⋅
+�

  then L {J
 0
 (x)} = 

1

12s +
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 8. Error function: Error function is denoted as er f (t)

  er f ( )x = −∫
2 2

0π
e dtt

x

,

  then L {er f ( )x =
+

1

1s s

 9. Complex inversion (theorem) formula: If f(t) has a 
continuous derivative and is of exponential order and 
L{f(t)} = F(s) then L-1 {F(s)} is given by

f (t) =
− ∞

+ ∞

∫
1

2π i
e F s dsst

r i

r i

( ) ,  t > 0 and f (t) = 0 for t < 0

 1.  The above result is also known as Bromwich’s 
integral formula

 2.  The integration is to be performed along a line 
s = r in the complex plane where s = x + iy. The 
real number r is chosen so that p = r lies to the 
right of all the singularities.

NOTES

 10. The Gamma function: If n > 0, then the gamma 

function is defined by G (n) = u e dun u−
∞

∫ 1

0

 11. Exponential Integral: The exponential integral is 
denoted by 

E
i
(t) = =

−∞

∫
e

u
du

u

t

Example 44

Evaluate L
e

s

s
−

−

+








1
2 3

5 22( ) /

Solution
We have

L
s

e L
s

t− − −

+







= 








1
5 2

2 1
5 2

1

2

1

( ) / /

                           =







=−

− −
e

t t et
t

2

5

2
1

3

2 2

5

2

4

3Γ π

∴               L
e

s
e L

e

s

s s
−

−
−

−

+







=

+








1
2 3

5 2
2 1

3

5 22 2( ) ( )/ /

= 
4

3
3 33 2 2 4

π
( ) ( )/ ( )t e H tt− ⋅ −− −

(when expressed in terms of Heaviside’s unit step function)

Example 45

Evaluate L-1
3 7

2 32

s

s s

+
− −









Solution

L
s

s
− − +

− −








1
2

3 1 10

1 4

( )

( )

=
−

− −
+

− −








−L
s

s s
1

2 2

3 1

1 4

10

1 4

( )

( ) ( )

=
−

− −








 + − −









− −3
1

1 4
10

1

1 4
1

2
1

2
L

s

s
L

s( ) ( )

=
−








+

−








− −3
2

10
1

2
1

2 2
1

2 2
e L

s

s
e L

s
t t .

= 3et cosh 2t + 5et sinh 2t = 4e3t - e-t

Example 46

Evaluate L
s s

−

+








1
2 2

1

4( )

Solution

L
s

s

s
− ⋅

+








1
2 2 2

1

4( )

Let F
1
(s) = 

1
2s

 and F
2
(s) =

+
s

s( )2 24
 so that 

 L-1 {F
1
(s)} = L-1

1
2s









 = t = f
1
(t)

and L-1{F
2
(s)} = L-1

s

s2 2
4+( )












 

 = =
⋅

=
t t

f t
sin

( )
2

4
2 (say) 

∴By convolution theorem, we have

L
s

s

s
L F s F s− −⋅

+







= ⋅1

2 2 2
1

1 2
1

4( )
{ ( ) ( )}

= − = 





 −∫ ∫f x f t x dx

x
x t x dx

t t

2

0

1

0 4
2( ) ( ) sin ( )

= −∫ ∫
t

x xdx x xdx
t t

4
2

1

4
2

0

2

0

sin sin  

= − +







t x
x x

t

4 2
2

1

4
2

0
cos sin

    − − + +








1

4 2
2

2
2

1

4
2

2

0

x
x

x
x x

t

cos sin cos

= − −( )1

16
1 2 2t t tsin cos
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Application of Laplace transforms to solutions of dif-
ferential equations: Solution of ordinary differential equa-
tions with constant co-efficients:

Consider a linear differential equation with constant 
co-efficients 

(Dn + C
1
Dn-1 + C

2
Dn-2 +…+ (C

nt
)y = F(t) (1) 

where F(t) is a function of the independednt variable t
Let y(0) = A

1
, y1 (0) = A

2
,..., y n-1 (0) = A

n-1
 (2) 

be the given initial or boundary conditions where A
1
, A

2
 ... 

A
n-1

 are constants.
By taking the Lapalce transform on both sides of (1) and 

using the conditions (2), we obtain an algebraic equation 
known as subsidiary equation from which y(s) = L {y(t)} is 
determined. The required solution is obtained by finding the 
inverse Laplace transform of y(s).

Example 47
Solve (D + 3)2 y = 9e-3t, y(0) = -1 and y′(0) = 9.

Solution
The given equation can be written as

(D2 + 6D + 9)y = 9e-3t 

applying Laplace transform we get

∴ L{y″} + 6L{y′} + 9L{y} = 9L{e-3t}

or s2L{y} - sy(0) - y′(0) + 6[sL{y} - y (0)] + 9L{y} = 
9

3s +
 

or s2L{y} + s - 9 + 6s L{y} + 6 + 9L{y} =
+
9

3s

⇒ (s2 + 6s + 9) L{y} = 
9

3
3

s
s

+
− +

( ) { }s L y
s

s
+ =

−
+

3
18

3
2

2

            L y
s

s
{ }

( )
=

−
+

18

3

2

3

∴                  y L
s s

s
=

− + + +
+









−1
2

3

9 3 6 3

3

( ) ( )

( )

                     =
− +








− −e L
s s

s
t3 1

2

3

9 6

                     =







− 






+ 


















− − − −e L
s

L
s

L
s

t 1
3

1 1
2

9 1
6

1

                  y e
t

tt= ⋅ − +






−3

2

9
2

1 6
!

∴ The required solution is 

y
e

t t
t

= + −( )
−3

2

2
9 12 2 .

Exercises

 1. The order and degree of the DE
d y

dx

2

2  = n2y respectively 
are

 (A) 1, 2 (B) 1, 1
 (C) 2, 2 (D) 2, 1

 2. The differential equation whose solution is y = mx + 
4

m
,  where ‘m’ is parameter is

 (A) x
dy

dx
y

dy

dx

dy

dx







 − + =

2

4 0.

 (B) 
dy

dx

dy

dx







 − + =

2

4 0.

 (C) x
dy

dx
y− + =4 0.  

 (D) x
dy

dx

dy

dx







 + + =

2

4 0.

 3. If y = c
1
 log x + c

2
 log c

3
 + c

4
 ex + c

5
 is the general solu-

tion of a homogeneous linear differential equation, then 
the order of the equation is

 (A) 2 (B) 3
 (C) 4 (D) 5

 4. Find the solution of tan y sec2 x dx + tan x sec2ydy = 0 

when x = y = 
π
4

. ⋅

 (A) tan x tan y = 1

 (B) cot x tan y = 1

 (C) tan x cot y = 1

 (D) cot x cot y = 1

 5. The general solution of the DE, (ex + 1)ydy = (y + 1)
exdx is 

 (A) log (ex + 1) - log (y + 1) + c = 0

 (B) log (ex + 1) = y - log (y + 1) + c 

 (C) log (ex - 1) + log (y + 1) + c = 0

 (D) log 
e

y
c

x

+








 =

1
 

 6. Solve 
dy

dx
x= | |

 (A) y
x

c= +
2

2
 (B) y

x
x c= + +

2

2

 (C) y
x x

c=
−

+
| |

2
 (D) y

x x
c= +

| |

2
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 7. Solve ( ) .x y
dy

dx
k+ − =2 2

 (A) y = tan–1 (x + y)

 (B) y = sin–1 
x y

k
c

+





 +  

 (C) y = k tan–1 
x y

k
c

+





 +  

 (D) y = cot–1 
x y

k
c

+





 +

 8. The general solution of the DE, 
dy

dx
x y= + +( )3 1 2  is

 (A) sec-1 (3x + y + 1) = x + c

 (B) 
1

3
 tan-1 

3 1

3

x y
x c

+ +







 = +  

 (C) tan-1 (3x + y + 1) = x + c

 (D) 
2

3
 tan-1 

2 1

3

x y
x c

− +







 = +  

9. The general solution of 
dy

dx

x y

x y
=

−
+

 is

 (A) x2 + xy + y2 = k (B) x2 - y2 = k
 (C) x2 - 2xy - y2 = k (D) x2y2 = k

 10. The general solution of 
dy

dx

x y

x y
=

− +
− +

2 1

2 4 3
 is

 (A) x2 - 4xy - 6y = c
 (B) x2 - 4xy + 4y2 + 2x - 6y = c
 (C) x2 + 4xy + 4y2 + 2x - 6y = c
 (D) x2 + 4xy - x + 6y = c

 11. The solution of the differential equation 2xy dy + (x2 + 
y2 +1)dx = 0 is 

 (A) x3 + xy2 + 3x = c

 (B) x3 + 3xy2 + x = c

 (C) 
x3

3
+ xy2 + x = c

 (D) 3x2 + y2 + 2x = c

 12. The general solution of yexydx + (xexy + 2y)dy = 0 is
 (A) ex + y2 = c (B) exy + y2 = c

 (C) e y2

+ xy = c (D) ey + xy = c

 13. The solution of the differential equation (3xy + 2y2)dx 
+ (x2 + 2xy)dy = 0 is

 (A) x3y + x2y = c (B) x3y + x2y2 = c
 (C) x2y +xy2 = c (D) 2xy(x + y) = c

 14. The integrating factor of the equation (x2 + xy - y2)dx + 
(xy - x2)dy = 0 is

 (A) 
1
2x

 (B) 
1
3x

 (C) x2 (D) x3

 15. The solution of (1 + x)
dy

dx
 - xy = 1 - x satisfying the 

initial conditions at x = 0 and y = 1 is

 (A) 1 + x = y + ex (B) y(1 + x) = x + ex

 (C) x + y = ex (D) x(1 + y) = cex

Direction for questions 16 to 17:

Consider the differential equation 
dy

dx
y x y x+ =cot sin2

 16. The integrating factor of the above equation is 
 (A) cosec x (B) sin x
 (C) cos x (D) sec x

 17. The solution of the above equation when x =
π
2

, ⋅ y = 1 is

 (A) y cosec x - x = 
π + 2

2

 (B) 
cosec x

y
x+ =

+π 2

2

 (C) y cosec x + x = 
π − 2

2

 (D) 
cosec x

y
x− =

+π 2

2

 18. The general solution of x 
dy

dx
 + y = y2logx is  

 (A) y = log x + cx (B) y = x + c log x

 (C) 
1

y
 = 1 + cx (D) 

1

y
 = 1 + cx + log x

 19. Consider the differential equation cos y
dy

dx
x+ 3 2  sin y 

= x2.

  To convert the above equation into linear form the sub-
stituted variable is 

 (A) z = cos y (B) z = cosec y

 (C) z = sin y (D) z = sec y

 20. The solution of (aD2 + bD + c) y = 0 whose auxiliary 
equation has its discriminant as zero and has 5 as one 
of its roots is

 (A) y = c
1
e5x + c

2
e5x (B) y = c

1
ex+ c

2
ex

 (C) y = (c
1
 + c

2
x)e5x (D) y = c

1
 + c

2
 x

 21. Find the general solution of 
d y

dx

d y

dx

3

3

2

2
3+  - 4y = 0.

 (A) y = (c
1
 + c

2
x)ex + c

3
e–2x

 (B) y = (c
1
 + c

2
x)e–2x + c

3
ex

 (C) y = (c
1
 + c

2
x)e2x + c

3
e–x

 (D) y = (c
1
 + c

2
x)e–x + c

3
e2x

Chapter 02.indd   53 5/31/2017   12:39:59 PM



2.54 | Part II ■ Engineering Mathematics

 22. The general solution of the differential equation  

d x

dt

d x

dt
x

4

4

2

2
13 36 0+ + = is ______.

 (A) x = (c
1
 + c

2
t) cos2t + (c

3
 + c

4
t) sin 3t 

 (B) x = c
1
e2t + c

2
e-2t + c

3
e3t + c

4
e-3t

 (C) x = (c
1
 + c

2
t) e2t + (c

3
 + c

4
t) e3t

 (D) x = c
1
 cos 2t + c

2
 sin 2t + c

3
cos 3t + c

4
 sin 3t

 23. The particular integral of (D2 - 4D + 3)y = e3x is

 (A) 
xe x3

2
 (B) e3x

 (C) 
1

2
e3x (D) xe2x

 24. The particular integral of (D3 - 4D2)y = 6 is

 (A) x2 (B) 
3

4
x2

 (C) -
3

4
x2 (D) 

−x2

4

 25. The particular of integral of (D2 + 3D + 2)y = cos 2x is

 (A) 3 sin 2x - cos 2x (B) 
3 2 2

20

sin cosx x−
 

 (C) 
cos sin2 3 2

10

x x−
 (D) 

cos sinx x− 2

40
 

 26. The particular integral of (D2 - D) y = x2 - 2x + 4 is

 (A) x3 - 8x + 4 (B) -x3 + 4x - 4

 (C) 
x3

3
 + 8x - 4 (D) 

−x3

3
- 4x - 4

 27. If y
1
 = e2x and y

2
 = xe2x are two solutions of a second 

order linear differential equation, then the Wronskian 
W of y

1
 and y

2
 is _______.

 (A) e4x (B) xe4x 

 (C) 2e4x (D) 2xe4x

 28. The complementary function of the differential equa-

tion 
d y

dx

dy

dx
y

2

2
5 6+ +  = 5e3x is y

c
 = c

1
e–2x + c

2
e–3x using 

the method of variation of parameters, its particular is 
found to be y

p
 = A(x) e–2x + B(x) e–3x. Then A(x) = 

 (A) 5e5x (B) e5x

 (C) 
1

5
e–5x (D) e–5x

 29. The solution of the DE (D2 + 1)y = 0 given x = 0, y 

= 2 and x =
π
2

,  y = - 2 is

 (A) y = sin x - cos x (B) y = 2(cos x - sin x)

 (C) y = 2cos x sin x  (D) y = 2(ex + e-x)

 30. Solve the equation 

 3 2
2

2
2x

d

dx
x

dy

dx
y x+ − = .  

 (A) y = C
1
x–3 + C

2
 x–1 + x3/7

 (B) y = C
1
x3 + C

2
x + x2/7

 (C) y = C
1
x1/3 + C

2
x-1 + x/7

 (D) y = C
1
x–1/3 + C

2
x + x2/7

 31. Laplace transform of 2sin2 2t = ______.

 (A) 
1 1

162s s
+

+
 (B) 

s

s2 16+
 

 (C) 
1 1

162s s
−

+
 (D) 

1 1

162s s
+

+
 32. The Laplace transform of (t + 1)3 is ______.

 (A) 
6 6 3 2 3

3

− + −s s s

s
 (B) 

6 6 3 2 3+ + +s s s

s

 (C) 
6 1 2 3

4

( )+ + +s s s

s
 (D) 

6 6 3 2 3

4

+ + +s s s

s

 33. The value of L {sinh 3tcos 3t} ______.

 (A) 
s

s

2

4

18

81

+
+

 (B) 
s

s

2

4

18

324

+
+

 

 (C) 
3 18

324

2

4

( )s

s

−
+

 (D) 
3 18

324

2

4

( )s

s

+
−

 34. The value of L{t2cos 3t} is ______.

 (A) 
s

s

2

2 4

27

9

−
+( )

 (B) 
2 27

9

2

2 3

s s

s

( )

( )

−
+

 

 (C) 
s

s

3

2 4

27

9

−
+( )

 (D) 
s s

s

( )

( )

3

2 3

27

9

−
+

 

 35. Laplace transform of 
cos 4t

t
 ______.

 (A) 
64

162s +
 (B) 

16

162 2( )s +

 (C) 
8

162 2( )s +
 (D) Does not exist

 36. The Laplace transform of the function defined by 

f t
t

t
( )

,

,
=

< <
>

2 0 1

1 1
 is ______.

 (A) 
2− −e

s

s

 (B) 
2

2

− −e s

 (C) 
2+ −e

s

s

 (D) 
2

2

+ −e s
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 37. If f (t) = t; 0 < t < 3 and f (t + 3) = f (t), then L{ f (t)} is

 (A) 
1

1
1

2 3
3 3

s e
e e

s
s s

( )
[ ]

−
+ +

−
−  

 (B) 
1

1
1

3
3 3

s e
e se

s
s s

( )
[ ]

−
− +

−
− −

 (C) 
1

1
1 3

2 3
3 3

s e
e se

s
s s

( )
[ ]

−
− −

−
− −

 (D) 
1

1
1

3
3 3

s e
e se

s
s s

( )
[ ]

−
− −

−
− −  

 38. The value of 
e e

t
dts

t t− −∞ −
∫

4 8

0

is ______.

 (A) log 2 (B) log 4

 (C) log 8 (D) log 6

 39. t e tdtt⋅ −
∞

∫ 2

0

3sin  = ______.

 (A) 
5

169
 (B) 

10

169

 (C) 
6

169
 (D) 

12

169
 

 40. The inverse Laplace transform of 
1
9 2S /







  is ______.

 (A) 
16

105

7t

π
⋅ (B) 

8

15

5t

π
⋅ 

 (C) 
16

35

t

π
⋅ (D) 

8

105

7t

π
⋅ 

 41. The value of L-1
8

3 2

4 2

16 252s

s

s−
−

+
−









is ______.

 (A) 
8

3

5

4

5

4
sin cosh ht t

−  

 (B) 
8

3

5

4

5

4
2 3e

t tt/ sin cos− −h h  

 (C) 
8

3

1

5

5

4

1

8

5

4
2 3e

t tt/ sin cos− −h h  

 (D) None of these

 42. The inverse Laplace transform of
1

8 202s s− +
is _____.

 (A) 
e

t
t2

2
2sin  (B) 

e
t

t4

2
2sin  

 (C) e4t sin 2t (D) e4t sin 4t

43. The inverse Laplace transform of 
1

43 2s s( )+
 is

 (A) 
1

16
2 2 12( cos )t t+ −  (B) 2t2 - cos2t - 1

 (C) 
1

16
1 2 4 2( cos )− −t t  (D) 

1

8
2 2 4 2( cos )+ −t t

 44. The inverse Laplace transform of 
e

s

s−

−

3

54( )
 when 

expressed in terms of Heaviside unit step function is 
______.

 (A) 
1

16
4 4 3t e t( )− H(t - 3)

 (B) 
1

24
3 34 4( ) ( )t e H tt− −  

 (C) 
1

24
3 34 4 3( ) ( )( )t e H tt− −−  

 (D) 
1

24
34 4t e H tt ( )−  

 45. The value of L
s

s
− −

+








1 4

3
log is

 (A) e et t4 3− −  (B) 
1 4 3

t
e et t( )− −

 (C) 
1 3 4

t
e et t( )− −  (D) t e et t( )− −3 4  

 46. Using convolution theorem, the value of sin x
t

0
∫ ⋅cos 

(t - x)dx is _______.

 (A) 
1

2
cos t  (B) 

t
t

2
sin  

 (C) t sin 
t

2
 (D) t cos 

t

2
 

 47. Solve (D4 - 16)y = 1, y = y′ = y″ = y″′ = 0.

 (A) y =
−

−
1

16
[cos sin ]h2t+ h2t  

 (B) y t t= − +
1

32
1 2 2( cos cos )h  

 (C) y t t=
−

+ −
1

16

1

32
2(cos sin )h  

 (D) y t t=
−

+ +
1

16

1

32
2 2(cos cos )h  
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 48. Solve (D2 - 5D + 6)y = 1 - e-2t, y = 1, y′ = 0 when t = 0.

 (A) y e e et t t= + −−1

20

11

4

59

30
2 2 3  

 (B) y e e et t t= − + −−1

6

1

20

11

4

28

15
2 2 3  

 (C) y e e et t t= − + +−1

6

1

20

11

4

59

30
2 2 3  

 (D) y e e et t t= − − +−1

6

1

20

11

4

59

30
2 2 3  

 1. The solution for the differential equation 
dy

dx
 = x2y 

with the condition that y = 1 at x = 0 is [GATE, 2007]

 (A) y = e x

1

2  (B) ln(y) = 
x3

3
 + 4

 (C) ln(y) = 
x2

2
 (D) y = e

x3

3

 2. The general solution of 
d y

dx
y

2

2
+  = 0 is  

 [GATE, 2008]

 (A) y = P cos x + Q sin x

 (B) y = P cos x

 (C) y = P sin x

 (D) y = P sin2x

 3. Solution of 
dy

dx

x

y
= − at x = 1 and y = 3 is 

 [GATE, 2008]
 (A) x - y2 = -2 (B) x + y2 = 4
 (C) x2 - y2 = -2 (D) x2 + y2 = 4

 4. Solution of the differential equation 3 2y
dy

dx
x+ = 0 

represents a family of  [GATE, 2009]
 (A) ellipses  (B) circles
 (C) parabolas (D) hyperbolas

 5. Laplace transform for the function f (x) = cosh(ax) is
 [GATE, 2009]

 (A) 
a

s a2 2−
 (B) 

s

s a2 2−

 (C) 
a

s a2 2+
 (D) 

s

s a2 2+

 6. The order and degree of the differential equation 

d y

dx

dy

dx
y

3

3

3
24 0+ 






 + =  are respectively 

 [GATE, 2010]

 (A) 3 and 2 (B) 2 and 3

 (C) 3 and 3 (D) 3 and 1

 7. The solution to the ordinary differential equation

d y

dx

dy

dx
y

2

2
6 0+ − =  is [GATE, 2010]

 (A) y = c
1
ex + c

2
e–2x

 (B) y = c
1
e3x + c

2
e2x

 (C) y = c
1
e–3x + c

2
e2x

 (D) y = c
1
e–3x+ c

2
e–2x

 8. The solution of the differential equation 
dy

dx

y

x
x+ = ,  

with the condition that y = 1 at x = 1, is  
 [GATE, 2011]

 (A) y
x

x
= +

2

3 32  (B) y
x

x
= +

2

1

2

 (C) y
x

= +
2

3 3
 (D) y

x

x
= +

2

3 3

2

 9. The solution of the ordinary differential equation 
dy

dx
+ 2y = 0 for the boundary condition, y = 5 at x = 1 is
 [GATE, 2012]

 (A) y = e–2x

 (B) y = 2e–2x

 (C) y = 10.95e–2x

 (D) y = 36.95e–2x

 10. The integrating factor for the differential equation 
dp

dt
 + k

2
P = k

1
L

0
ekt is  [GATE, 2014]

 (A) e k t− 1  (B) e k t− 2

 (C) e k t− 1  (D) ek t2

11. Consider the following differential equation:

 x(ydx + xdy)cos
y

x
= y(xdy - ydx) sin

y

x

  Which of the following is the solution of the above 
equation (c is an arbitrary constant)? [GATE, 2015]

Previous Years’ Questions

Chapter 02.indd   56 5/31/2017   12:40:16 PM



Chapter 2 ■ Ordinary Differential Equations | 2.57

 (A) 
x

y

y

x
Ccos =  (B) 

x

y

y

x
Csin =

 (C) xy cos
y

x
C=  (D) xy sin

y

x
= C

 12. Consider the following second order linear differen-

tial equation 
d y

dx

2

2
= -12x2 + 24x - 20.

  The boundary conditions are: at x = 0, y = 5 and at x = 
2, y = 21

 The value of y at x = 1 is ________. [GATE, 2015]

 13. The respective expressions for complimentary func-
tion and particular integral part of the solution of the 
differential equation are  [GATE, 2016]

 (A)  c c x c x c x1 2 3 43 3+ + +



sin cos  and 

3 124 2x x c− + 

 (B)  c x c x c x2 3 43 3+ +



sin cos  and 

5 124 2x x c− + 

 (C)  c c x c x1 3 43 3+ +



sin cos  and 

3 124 2x x c− + 

 (D)  c c x c x c x1 2 3 43 3+ + +



sin cos  and 

5 124 2x x c− + 

Answer Keys

Exercises
 1. D 2. A 3. B 4. A 5. B 6. D 7. C 8. B 9. C 10. B
 11. C 12. B 13. B 14. B 15. B 16. A 17. B 18. D 19. C 20. C
 21. B 22. D 23. A 24. C 25. B 26. D 27. A 28. B 29. B 30. D
 31. C 32. D 33. C 34. B 35. D 36. A 37. C 38. A 39. D 40. A
 41. C 42. B 43. A 44. C 45. C 46. B 47. D 48. B

Previous Years’ Questions
 1. D 2. A 3. D 4. A 5. B 6. A 7. C 8. D 9. D 10. D
 11. C 12. 18 13. A
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