Mathematics Chapterwise Practise Problems (CPP) for JEE (Main & Advanced)

Chapter - Matrices and Determinants

Level-1

que	SECTION - A Straight Objective Type a section contains multiple choice questions. Each stion has 4 choices (A), (B), (C) and (D) for its answer, of which ONLY ONE is correct.		is equal to	order 3, then $\left \frac{(A - A^{T})^{2013}}{2013} \right $ (B) $\frac{1}{(2013)^{2013}}$
1.	If <i>TrA</i> is trace of matrix $A = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 4 & 7 \\ 0 & 3 & 2 \end{bmatrix}$ then value		(C) $\frac{1}{(2013)^{2012}}$	(D) 0
	of $\sin^{-1}(\sin(TrA))$ is (A) $8 - 2\pi$ (B) $8 - 3\pi$ (C) $3\pi - 8$ (D) $2\pi - 8$	6.	If $\begin{vmatrix} x & 0 & x \\ x^2 & x & 2 \\ 5 & x^3 & x \end{vmatrix} = Ax^6 + Bx^4$ then A + G=	5 + Cx ⁴ + Dx ³ + Ex ² + Fx + G,
2.	A matrix <i>B</i> satisfies the relation $B^2 = 3B - 2I$, then B^{-1} is equal to		(A) 32 (C) 24	(B) 31 (D) 25
	(A) $15I - B^3$ (B) $\frac{15I - B^3}{14}$ (C) $B^3 - 15I$ (D) $\frac{B^3 - 15I}{14}$	7.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3.	If $A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{x}{3} & \frac{2}{3} & \frac{y}{3} \end{bmatrix}$ is an orthogonal matrix then		is equal to (A) 0 (C) 1	(B) $(a+b+c)^2 + 2abc$ (D) $a^3 + b^3 + c^3 - 3abc$
		8.	If $(I + A)^n + (1 - 2^n)A =$ of same order as of A t	<i>I</i> where <i>I</i> is the unit matrix hen <i>A</i> is
	x + y is (A) 2 (B) 1 (C) Zero (D) 3		(A) Orthogonal matrix(C) Idempotent matrix	(D) Involutory matrix
4.	If the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \end{bmatrix}$ satisfies the equation	9.	If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ and $f(x)$	·
	$\begin{bmatrix} 0 & 1 & 3 \end{bmatrix}$ $A^3 - 6A^2 + 11A - I = 0$, and if $A^{-1} = A^2 - kA + 11I$, then value of k is		$(A) \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$	$(B) \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$
	(A) 4 (B) 6 (C) -6 (D) 8		$(C) \begin{bmatrix} -2 & 3 \\ 1 & -2 \end{bmatrix}$	(D) $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$

- 10. The system of homogeneous equations tx + (t + 1)y + (t 1)z = 0, (t + 1)x + ty + (t + 2)z = 0, (t 1)x + (t + 2)y + tz = 0 has a non-trivial solution for
 - (A) exactly three real values of t
 - (B) exactly two real values of t
 - (C) exactly one real value of t
 - (D) infinite number of values of t
- 11. If A = $[a_{ij}]$ is a square matrix of even order such that $a_{ij} = i^2 j^2$, then
 - (A) A is skew-symmetric matrix
 - (B) A is a symmetric matrix and det A is a square
 - (C) A is a symmetric matrix and det A is zero
 - (D) None of these
- 12. Let A = $[a_{ij}]$ be a 3 x 3 matrix, where a_{ij} =

$$\lim_{x \to 0} \frac{(1+ix)^{\frac{1}{j}} - 1}{x} \text{ for all } 1 \le i, j \le 3. \text{ Then } A^2 \text{ equals}$$
(A) 4A (B) 3A

(C) 2A (D) A

13. Let A =
$$\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, B =
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and C = ABA^T,

then A^TC³ A is equal to

(A)
$$\begin{bmatrix} \sqrt{3} & 1 \\ 2 & 2 \\ 1 & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 0 \\ \sqrt{3} & 1 \\ \frac{\sqrt{3}}{2} & 1 \end{bmatrix}$
(C) $\begin{bmatrix} 1 & \frac{\sqrt{3}}{2} \\ 0 & 3 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$

14. Let
$$g(x) = \begin{vmatrix} f(x+\alpha) & f(x+2\alpha) & f(x+3\alpha) \\ f(\alpha) & f(2\alpha) & f(3\alpha) \\ f'(\alpha) & f'(2\alpha) & f'(3\alpha) \end{vmatrix}$$
, where
 α is a constant, then $\lim_{x\to 0} \frac{g(x)}{x}$ is equal to
(A) 0 (B) 1
(C)-1 (D) none of these

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

15. Equation of the plane perpendicular to the planes x - y + z = 10, x - z = 100 and passing through the point (1, 2, 3) is ax + by + cz = 8.

If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ a & b & c \end{bmatrix}$$
, then

(A)
$$det(A) = 6$$

(B) det(adj(adj A)) = 6⁴

(D)
$$\sin^{-1}a + \sec^{-1}b + \cos^{-1}c = \frac{3\pi}{6}$$

16. If the system of equations

$$ax + y + 2z = 0$$

 $x + 2y + z = b$
 $2x + y + az = 0$

has no solution then (a + b) can be equal to

5-

17. Let $D(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix} = \alpha x^3 + \beta x^2 + \gamma x + \delta$

then

(A)
$$\alpha + \beta = 0$$
 (B) $\beta + \gamma = 0$
(C) $\alpha + \beta + \gamma + \delta = 0$ (D) $\alpha + \beta + \gamma = 0$

- 18. If the system of equations
 - $(\sin \theta) x + (\sin 2\theta) y + (\sin 3\theta) z = 0,$ $(\sin \theta) x + (\cos \theta) y + (\sin \theta) z = 0,$ $(\cos \theta) x - (\sin \theta) y + (\cos \theta) z = 0,$

has non-zero solution, then θ can be equal to

(A)
$$\pi$$
 (B) $\frac{3\pi}{4}$

(C)
$$\frac{7\pi}{2}$$
 (D) $\frac{11\pi}{4}$

19. If
$$ax^3 + bx^2 + cx + d = \begin{vmatrix} x^2 & (x-1)^2 & (x-2)^2 \\ (x-1)^2 & (x-2)^2 & (x-3)^2 \\ (x-2)^2 & (x-3)^2 & (x-4)^2 \end{vmatrix}$$

then

(A) a = 0 (B) b = 0(C) c = 0 (D) d = -8

20. Let
$$\Delta = \begin{vmatrix} x^2 & (y+z)^2 & yz \\ y^2 & (z+x)^2 & zx \\ z^2 & (x+y)^2 & xy \end{vmatrix}$$
 which of the following

can be true?

- (A) Δ is divisible by x² + y² + z²
- (B) Δ = 0
- (C) Δ is divisible x + y + z
- (D) Δ is divisible by both (x y) and (x + y + z)
- 21. If A= $(a_{ij})_{3x3}$ is a skew symmetric, then
 - (A) $a_{ii} = 0 \forall i$ (B) A + A' is a null matrix
 - (C) |A| = 0 (D) A is not invertible.

SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 22 to 23

Let
$$A = \begin{bmatrix} a & 0 & 0 \\ 2a & a & 0 \\ 3a & 2a & a \end{bmatrix}$$
 and X_1, X_2, X_3 be three column

matrices such that

$$AX_1 = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, AX_2 = \begin{bmatrix} 2a \\ 3a \\ 0 \end{bmatrix}$$
 and $AX_3 = \begin{bmatrix} 2a \\ 3a \\ a \end{bmatrix}$ and let X be a

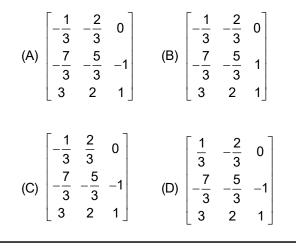
3 × 3 matrix

whose columns are X_1, X_2, X_3

22. Value of det X is

(A) – 2	(B) – 1
(C) 3	(D) 0

23. Inverse of matrix X is



SECTION-D

Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in **Column I** are labelled A, B, C and D, while the statements in **Column II** are labelled p,q,r,s. Four options A, B, C and D are given below. Out of which, only one shows the right matching

24. Suppose a,b,c are distinct and x,y,z are connected by the system of equations

$$x + ay + a^2z = a^3$$

$$x + by + b^2 z = b^3$$

$$x + cy + c^2 z = c^3$$

then

	Colu	umn	I			Column II
(A)	a +	b +	с		(p)	x
(B)	bc +	· ca	+ ab		(q)	-у
(C)	abc				(r)	Z
(D)	(b+c	;) (c+	·a) (a	a+b)	(s)	- (x + yz)
	Α	в	С	D		
(A)	r	q	р	S		
(B)	р	s	q	r		
(C)	s	r	q	р		
(D)	р	q	r	s		

25. Match the following

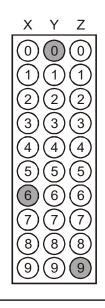
Column I					Column II
(A) a _{ij} =	= j ²	i ²	(p)	Symmetric	
(B) <i>a_{ij}</i> =	= i + j			(q)	Skew-symmetric
(C) a _{ij} =	=0∀	i>j		(r)	Lower triangular
(D) <i>a_{ij}</i> =	=0∀	i < j		(s)	Upper triangular
Α	В	С	D		
(A) r	S	q	р		
(B) p	S	q	r		
(C) s	r	q	р		
(D) q	р	s	r		

- 26. Match the following for the system of linear equations
 - $\lambda x + y + z = 1$ $x + \lambda y + z = \lambda$ $x + y + \lambda z = \lambda^{2}$ Column I
 (A) $\lambda = 1$ (b) unique solution
 (C) $\lambda \neq 1, \lambda \neq -2$ (c) model (c) $\lambda = -2$ (c) May be consistent

SECTION-E

Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :



27. If A is a square matrix of order n such that |adj (adj A)| = |A|⁹, then the value of n can be

28.	$\frac{1}{x}$ +	$\frac{2}{y}$ +	$\frac{1}{z} = 2,$
	3_	4_	<u>2</u> — = 1,
	Х	у	Z
	2+	5_	<u>2</u> <u>−</u> = 3,
	x	у	z ,

then the value of z is _____

solve the system for z by Cramer's rule

29. If
$$\Delta$$
 (x) = $\begin{vmatrix} e^x & \sin 2x & \tan x^2 \\ \ln(1+x) & \cos x & \sin x \\ \cos x^2 & e^x - 1 & \sin x^2 \end{vmatrix}$ = A + Bx + Cx²

+..... then B is equal to

30. If α , β , γ are the roots of $x^3 + ax^2 + b = 0$, then the

determinant
$$\Delta = \begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$$
 equals a^{λ} , then $\lambda =$

Level-2

SECTION - A Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

1. Let
$$P = \begin{bmatrix} \cos \frac{\pi}{9} & \sin \frac{\pi}{9} \\ -\sin \frac{\pi}{9} & \cos \frac{\pi}{9} \end{bmatrix}$$
 then the value of
 $|P^9 + P^{18}|$ is
(A) 1 (B) 2
(C) 3 (D) 0
2. $a \in R; M_{n \times n}$ is non zero; $M^2 = M$, if
(1. $aM)^{-1} = 1 = 3M; 2a = 1$

- (I aM)^{−1} = I 3M; 2a =
- (A) 1 (B) 2
- (C) 3 (D) 4
- 3. Let *P* and *Q* be two different matrices satisfying $P^3 = Q^3$ and $P^2Q = Q^2P$, then
 - (A) $det(P^2 + Q^2)$ must be zero
 - (B) det(P Q) must be zero
 - (C) $det(P^2 + Q^2)$ as well as det(P Q) must be zero
 - (D) At least one of $det(P^2 + Q^2)$ or det(P Q)must be zero
- 4. *A* is a square matrix of order 3×3 and *I* is a unit matrix of order 3×3 . If |A| = 2 and AA' = I then the determinant value of the matrix (A I) is equal to
 - (A) 1 (B) 2
 - (C) 0 (D) 3
- 5. *A* is a $n \times n$ matrix whose elements are all '1' and *B* is a $n \times n$ matrix whose diagonal elements are all 'n' and other elements are 'n r' then (B rl) $[B (n^2 nr + r)I]$ is
 - (A) / (B) /
 - (C) Null matrix (D) A

6. If A and P are different matrices of order n satisfying $A^3 = P^3$ and $P^2A = PA^2$ (where $|A| \neq |P|$) then $|A^2 + P^2|$ is equal to

(A) n	(B) 0
(C) A P	(D) A + P

7. Let matrix $A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$, where $x, y, z \in N$. If

 $|adj(adj(adj(adjA)))| = 4^{8}.5^{16}$, then the number of such matrix is

(A) 28 (B) 36

(C) 45 (D) 55

Matrices of order 3x3 are formed by using the elements of the set A = {-3,-2,-1,0,1,2,3} then probability that matrix is either symmetric or skew symmetric is

(A)
$$\frac{1}{7^6} + \frac{1}{7^3}$$

(B) $\frac{1}{7^9} + \frac{1}{7^3} - \frac{1}{7^6}$
(C) $\frac{1}{7^3} + \frac{1}{7^9}$

(D)
$$\frac{1}{7^3} + \frac{1}{7^6} - \frac{1}{7^9}$$

9. Let
$$C_k = {}^nC_k$$
 for $0 \le k \le n$ and $A_k = \begin{bmatrix} C_{k-1}^2 & 0 \\ 0 & C_k^2 \end{bmatrix}$

for
$$k \ge 1$$
 and $A_1 + A_2 + \dots + A_n = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$, then

(A)
$$k_1 = k_2$$
 (B) $k_1 + k_2 = {}^{2n}C_{2n} + 1$
(C) $k_1 = {}^{2n}C_{2n} - 1$ (D) $k_2 = {}^{2n}C_{n+1}$

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

10. If
$$A = \begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}$$
 then
(A) $A^2 = \begin{bmatrix} 5 & 2 \\ -8 & -3 \end{bmatrix}$ (B) $A^3 = \begin{bmatrix} 7 & 3 \\ -12 & -5 \end{bmatrix}$
(C) $A^{16} = \begin{bmatrix} 33 & 16 \\ -64 & -31 \end{bmatrix}$ (D) $A^6 = \begin{bmatrix} 12 & 6 \\ -24 & -12 \end{bmatrix}$
11. If $M = \begin{bmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $N = MAM^T$, then
(A) $M^T N^2 M = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
(B) $M^T N^{100} M = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix}$

(C)
$$MM^T = I$$

- (D) $M^{T}N^{99}M = \begin{bmatrix} 1 & 99 \\ 1 & 1 \end{bmatrix}$
- 12. If A and B are square matrix of order 3 and AB = B and BA = A, then

(A)
$$A^2-B^2=0$$
 (B) $A^2+B^2=A+B$
(C) $(A-B)^2=0$ (D) $(A+B)^2=A+B$

- 13. The maximum and minimum value of a third order determinant whose elements belong to the set $\{-3, -2, -1, 0, 1, 2, 3\}$ can be
 - (A) 108 (B) 81
 - (C) 81 (D) 108

14. Let A be a matrix of order 3×3 and matrices B, C, D are related such that B = adj. (A), C = adj.

(adj.A), D = (adj(adj(adj A)))

- if |(adj(adj(adj(adj(ABCD)))))| is $|A|^{k}$, then k
- (A) Is less than 256 (B) Has 20 divisors
- (C) Is a perfect square (D) Is an even number
- 15. In a set A = {3³, 7³, 11³, 15³,} if 9 elements are selected from set A and a matrix B of order 3×3 is made then, Det(B) must be divisible by
 - (A) 2 (B) 4 (C) 8 (D) 16
- 16. If A and B are 3 x 3 matrices and $|A| \neq 0$, then

(A)
$$|AB| = 0 \Rightarrow |B| = 0$$

- (B) AB = $0 \Rightarrow$ B is always null matrix
- (C) $|A^{-1}| = |A|^{-1}$

(D)
$$|2A| = 2|A|$$

17. If A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, then

(A) $A^3 - A^2 = A - I$ (B) Det $(A^{2010} - I) = 0$

	[1	0	0	[1	1	0]
(C) A ⁵⁰ =	25	1	0	(D) A ⁵⁰ = 25	1	0
	25	0	1	25	0	1

SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 18 and 19

Consider the determinant

$$\Delta = \begin{vmatrix} p & q & r \\ x & y & z \\ l & m & n \end{vmatrix}$$

 M_{ii} denotes the minor of an element in *i*th row and *j*th column and C_{ii} denotes the cofactor of an element in *i*th row and *j*th column.

- 18. The value of $p \cdot C_{21} + q \cdot C_{22} + r \cdot C_{23}$ is
 - (A) 0 (B) $-\Delta$ (D) Δ² (C) **Δ**
- 19. The value of $x \cdot C_{21} + y \cdot C_{22} + z \cdot C_{23}$ is

(A) 0 (B)
$$-\Delta$$

(C)
$$\Delta$$
 (D) Δ^2

Paragraph for Q.Nos. 20 to 22

	[1 0 0 ⁻		
Let A =	210	and U_1 , U_2 , U_3 are columns of a	3 × 3
	321		

matrix of U. If column matrices U₁, U₂, U₃ satisfy

$$AU_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, AU_{2} = \begin{bmatrix} 2\\3\\0 \end{bmatrix}, AU_{3} = \begin{bmatrix} 2\\3\\1 \end{bmatrix}$$

20. The value of U is

(A) 3	(B) – 3
(C) 3/2	(D) 2

21. The sum of the elements of U⁻¹ is

(C) 1 (D) 3

22.	The value of [3	2	0] $U\begin{bmatrix}3\\2\\0\end{bmatrix}$ is	
	(A) 5			(B) 5/2	
	(C) 4			(D) 3/2	

SECTION-D

Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in Column I are labelled A, B, C and D, while the statements in Column II are labelled p,q,r,s. Four options A,B,C and D are given below. Out of which, only one shows the right matching

23. Consider the matrix $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} a & 6 \\ 0 & 1 \end{bmatrix}$

Let P be any orthogonal matrix, Q = PAP^T,

 $R = P^{T}Q^{K}P$, $S = PBP^{T}$ and $T = P^{T}S^{K}P$.

Column - II

common ratio a

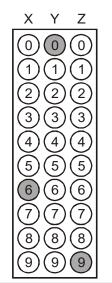
(A) If we vary K from 1 to (p) G.P. with 'n' then the elements at first row first column of R will form

Column - I

- (B) If we vary k from 1 to n, (q) A.P. with then the elements at common differsecond row second column ence 2 of R will form
- (C) If we vary k from 1 to n, (r) G.P. with then the elements at first common ratio '6' row first column of T will form
- (D) If we vary k from 3 to n, (s) A.P. with then the elements at first common differrow second column of T ence - 2 will represent the sum of

SECTION-E Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :



24. If
$$\begin{vmatrix} b_2c_3 - b_3c_2 & a_3c_2 - a_2c_3 & a_2b_3 - a_3b_2 \\ b_3c_1 - b_1c_3 & a_1c_3 - a_3c_1 & a_3b_1 - a_1b_3 \\ b_1c_2 - b_2c_1 & a_2c_1 - a_1c_2 & a_1b_2 - a_2b_1 \end{vmatrix} = 49$$
 and

$$a_1 \quad b_1 \quad c_1$$

 $a_3 \quad b_3 \quad c_3 = k$, then the value of |k| is_____
 $a_2 \quad b_2 \quad c_2$

25. Let
$$\begin{vmatrix} x & 2 & x \\ x^2 & x & 1 \\ x & x & 2 \end{vmatrix} = Ax^4 + Bx^3 + Cx^2 + Dx + E$$
 and

26. Let $A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$ be

three given matrices and tr(A) denotes the trace of

the matrix A, then $tr(A) + tr\left(\frac{1}{2}(ABC)\right) +$

$$\operatorname{tr}\left(\frac{1}{4}A(BC)^{2}\right) + \operatorname{tr}\left(\frac{1}{8}(A(BC)^{3})\right) + \dots \text{ to infinitely}$$

many terms is equal to _____.

27. The set of natural numbers M partitioned into arrays of rows and columns in the form of matrices

as
$$M_1 = \begin{bmatrix} 1 \end{bmatrix}, M_2 = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix},$$

 $M_3 = \begin{bmatrix} 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix}, \dots, M_n = \begin{bmatrix} \end{bmatrix}_{n \times n}$

and so on, where the sum of the elements of the principal diagonal in M_6 is (440 + $\lambda)$, then λ is

- 28. Let A and B be two non-singular square matrices such that $B \neq^1 I$ and $AB^2 = BA$. If $A^3 = B^{-1}A^3B^n$, then value of n is
- 29. If a,b,c, are the roots of $x^3 + 2x^2 + p = 0$, then the

30. If $|a_2 - a_3| = 6$, the maximum value of

$$f(x) = \begin{vmatrix} 2 & a_3 & a_2 \\ 2 & a_3 & 2a_2 - x \\ 2 & 2a_3 - x & a_2 \end{vmatrix} \text{ is } \lambda, \text{ then } \frac{\lambda}{6}$$

ANSWERS

CPP-04 SS JEE(M) & ADVANCED

LEVEL-1

1. (C)	2. (B)	3. (D)	4. (B)	5. (D)	6. (B)
7. (A)	8. (C)	9. (C)	10. (C)	11. (A)	12. (B)
13. (D)	14. (A)	15. (A, B, D)	16. (B, C, D)	17. (A, B, D)	18. (A, B, D)
19. (A, B, C, D)	20. (A, C, D)	21. (A, B, C, D)	22. (C)	23. (A)	24. (A)
25. (D)	26. (A-q,s B-p,s,r C	:-p,s D-r)	27. (4)	28. (3)	29. (0)
30. (3)					

LEVEL-2

1. (D)	2. (C)	3. (D)	4.(C)	5. (C)	6. (B)
7. (B)	8. (D)	9. (A)	10. (A, B, C)	11. (A, B, C)	12. (B, C)
13. (A, D)	14. (A, B, D)	15. (A, B, C, D)	16. (A, B, C)	17. (A, B, C)	18. (A)
19. (C)	20. (A)	21. (B)	22. (A)	23. (A-q B-s C-p D-p)	
24. (7)	25. (5)	26. (6)	27. (1)	28. (8)	
29. (8)	30. (3)				