CHEMICAL BONDING

CHEMISTRY

1. Which starred carbon atom in the following molecules does not show sp² hybridisation:

- (A) CH₃C*HO
- (B) CH₂C*OCl
- $(C) (C^*H_3)_3 N \rightarrow O$
- (D) CH₃C*OCH₂C*OOC₂H₅

2. In which of the following 'N' atom is sp² hybridised

- (A) NH₃
- (B) NH_4^+
- (C) NH.
- (D) $B_3N_3H_6$

Carbon atoms in $C_2(CN)_2$ are : 3.

(A) All sp-hybridised

(B) sp³, sp², sp—hybridised

(C) sp², sp, sp³—hybridised

(D) sp, sp³, sp²—hybridised.

4. $BF_3 + F^- \rightarrow BF_4^-$

What is the hybridiation state of B in BF_3 and BF_4^- ?

- (A) sp^2 , sp^3
- (B) sp^3 , sp^3
- (C) sp^2 , dsp^2
- (D) sp^2d , sp^2

In a change from $PCl_3 \longrightarrow PCl_5$, the hybrid state of P changes from 5.

- (A) sp^2 to sp^3
- (B) sp^3 to sp^2
- (C) sp^3 to sp^3d
- (D) sp^3 to dsp^2

6. In which of the following process hybridisation of the central atom changes -

(A)
$$H_2O + H^+ \longrightarrow H_3O^+$$

(B)
$$NF_3 + F^+ \longrightarrow NF_4^+$$

(C)
$$BF_3 + F^- \longrightarrow BF_4^-$$

(D)
$$NH_3 + H^+ \longrightarrow NH_4^+$$

7. Match the species in column (I) with that geometry in column (II)

Column-I

(P) BH₄-

Column-II

(1) 2 bond pair and 3 lone pair

(Q) ICl,+

(2) 4 bond pair and no lone pair

(R) ICl,-

(3) 3 bond pair and 1 lone pair

(S) IC1,-

(4) 2 bond pair and 2 lone pair

(A) P = 2; Q = 4; R = 3; S = 1

(5) 4 bond pair and 2 lone pair

(B) P = 2; Q = 4; R = 1; S = 5

(C)
$$P = 2$$
; $Q = 1$; $R = 5$; $S = 4$ (D) $P = 2$; $Q = 1$; $R = 3$; $S = 4$

Dipole Moment.

Which bond angle θ would result in the maximum dipole moment for the triatomic molecule XY₂ shown below 10.

- (A) $\theta = 90^{\circ}$
- (B) $\theta = 120^{\circ}$
- (C) $\theta = 0^{\circ}$
- (D) $\theta = 180^{\circ}$

11. Which of the following molecule is/are non polar

- (A) XeF,
- (B) PCl₃F₂
- (C) XeF₄
- (D) All

Which of the following molecule will not show zero dipole moment: 12.

- (A) CH₄
- (B) CCl₄
- $(C) CO_{2}$
- (D) CHCl₃

The dipole moments of the given molecules are such that: **13.**

- (A) $BF_3 > NF_3 > NH_3$ (B) $NF_3 > BF_3 > NH_3$ (C) $NH_3 > NF_3 > BF_3$
- (D) $NH_3 > BF_3 > NF_3$.

14.	Arrange in order of incr	easing dipole moment : B	F ₃ , H ₂ S, H ₂ O.									
15.	In which type of molecule, the dipole moment may be non zero.											
	$(A) AB_2L_2$	$(B) AB_2 L_3$	$(C) AB_4 L_2$	$(D) AB_4$								
	Where A – Central ato	m, B – Bonded atom, L –	- Lone pair									
16.	A polar molecule AB have dipole moment 3.2 D (Debye) while the bond length is 1.6 Å. Find the percentage ionic character in the molecule.											
	(A) 31%	(B) 41.6%	(C) 39.6%	(D) None of these								
17.	Column-I		Column-II									
	(a) XeO_4^{2-}		(p) sp ³ with zero dipole moment									
	(b) PCl ₂ F ₃		(q) sp³d with nonzero dipole moment									
	(c) XeO_2F_2		(r) Shows resonance stability									
	(d) SO_4^{2-}		(s) No lone pair on central atom									
18.	• Which of the following species is non polar with presence of polar bond and lone pair of electron											
	(A) CO ₂	(B) SF ₄	(C) XeF ₄	(D) CF ₄								
19.	Which of the following	molecule is planer as well	l as polar :									
	(A) PCl ₃	(B) SF ₄	(C) ClF ₃	(D) None of thes								
Hydr	ogen bond											
20.	The order of strength of	hydrogen bond is:										
	(A) Cl-HCl > N-HN > O-HO > F-HF (B) N-HN > Cl-HCl > O-HO > F-HF											
	(C) O-HO > N-HN > Cl-HCl > F-HF (D) F-HF > O-HO > N-HN > Cl-HCl											
21.	Which one among the following does not have hydrogen bonds?											
	(A) boric acid (solid)	(B) N ₂ H ₄ (liquid)	(C) H ₂ O ₂ (liquid)	(D) C ₆ H ₆ (liquid)								
22.	Which of the following substances does not exhibit H-bonding with water?											
	(A) CH ₃ CH ₂ OH	O (B) CH ₃ – C – OH	(C) $CH_3 - CH_2 - CH_3$	II .								
23.	3113											
	II. Due to open cage like structure, ice has a relatively large volume for a given mass of liquid water.											
	III. In ice, there are four water molecules attached tetrahedrally.											
	Which of the above statement is/are true.											
	(A) I, II and III	(B) I and III	(C) II and III	(D) II only								
24.	Which of the following conditions is required for the formation of the hydrogen bond											
	(A) Hydrogen atom should be bonded to a highly electronegative atom											
	(B) The size of electronegative atom should be small											
	(C) There should be a lone pair of electron on the electronegative atom.											
	(D) All of the above	D) All of the above										

25.	Assertion :- Acetyle	ne is not soluble in H ₂ O bu	t is highly soluble in aceto	one.									
	Reason :- Acetylene	Reason: Acetylene forms intermolecular H-bond with acetone easily but not with H ₂ O as water molecules themselves											
		l through intermolecular H-		<u> </u>									
	(A) A	(B) B	(C) C	(D) D									
26.	Match the column :-												
	Column-I		Column-II	Column-II									
	(a) Chloral hydrate		(P) Form Zig-zag chain										
	(b) HF		(Q) Form 2–D–sheet s	(Q) Form 2–D–sheet structure									
	(c) H_3BO_3		(R) Have low volatility	(R) Have low volatility									
	(d) H_2SO_4		(S) Intramolecular H-l	bond									
			(T) Inter molecular H-	-bond									
27.	The maximum possi	ble number of hydrogen bo	onds in which H ₂ O ₂ molec	ule can participate:-									
	(A) 6	(B) 4	(C) 5	(D) 8									
28.	• •	ng point of HF is lesser tha	n water.	•									
	Statement 2 :- Hydro	Statement 2:- Hydrogen bond strength is stronger in water.											
	(A) Statement-1 and	Statement-2 are true, State	ement-2 is a correct explan	nation of Statement-1.									
	(B) Statement-1 and	(B) Statement-1 and Statement-2 are true, Statement-2 is not the correct explanation of Statement-1.											
	(C) Statement-1 is tr	rue and Statement-2 is false											
	(D) Statement-1 is fa	alse and Statement-2 is true	.										
29.	Which of following statement is incorrect:-												
	(A) Boiling point of H_2O_2 is greater than that of H_2O												
		B) Ethylene glycol is less viscous than glycerol											
		(C) o-nitrophenol can be separated from its meta and para isomer using its steam volatile property											
31.	(D) In ice each 'O' atom is tetrahedrally arranged by four H-atom which are all covalently bonded.												
J1.	When two ice cubes are pressed over each other, they unit to form one cube. Which of the following force is responsible for holding them together												
	(A) Vander Waal's fo	-	(B) Hydrogen bond										
	(C) Covalent attracti	on	(D) Dipole-dipole attra	(D) Dipole-dipole attraction.									
32.	Arrange the following gases in the increasing order of their intermolecular forces of attraction (CO_2 , H_2O , H_2):												
22		(B) $H_2O < CO_2 < H_2$		(D) $H_2O < H_2 < CO_2$.									
33.	Which is incorrect (A) HF > HCl > HB	order for net dipole momen		(B) $CH_3 - F > CD_3 - F$									
	(C) $SO_3 > SO_2$	ı > пі	3	(D) $CH_3 - CH = CHCl$ (cis) $> CH_3 - CH = CHCl$ (trans)									
34.	J _	$(D) \text{ CH}_3 - \text{ CH} - \text{ CHC} \text{ (cis)} > \text{ CH}_3 - \text{ CH} - \text{ CHC} \text{ (trails)}$ ssify the type of force of attraction existing in the sample of following compounds:											
	(i) CH ₃ — O — CH ₃	_	(iii) ice	(iv) CH ₃ CO CH ₃									
	(v) CH ₃ — OH		(vii) gold	(viii) $CH_3 - NH_2$									
	(ix) H ₂ S	(x) (aq.) Na+	(xi) CCl ₄	(xii) diamond									
	(xiii) Cl ₂	(xiv) NH ₄ Cl	(xv) HCl and Cl ₂	(xvi) Ar									

Answers

RACE # 14

1.	(C)	2.	(D)	3.	(A)	4.	(A)	5.	(C)	6.	(C)	7.	(B)	10.	(C)	11.	(D)	12.	(D)
	(-)		(-)		()		()		(-)	•	(-)		(-)		(-)		(-)		(-)

13. (C) **14.**
$$H_2O > H_2S > BF_3$$
 15. (A) **16.** (B) **17.** a-qr, b-qs, c-q, d-prs **18.** (C) **19.** (C)

(iv) dipole-dipole

28. (C) **29.** (D) **31.** (B) **32.** (A) **33.** (A)

34. (i) diple-dipole (ii) H-bonding (iii) H-bonding

(v) H-bonding (vi) dipole-dipole (vii) Metallic (viii) H-bonding

(ix) dipole-dipole (x) ion-dipole (xi) London-forces (xii) co-valent bond

(xiii) London forces (xiv) Ionic (xv) dipole-induced dipole (xvi) London forces