		on / Thinking	13.	(c) Borate A precipitate of calcium ox	(d) alate will no	Lead salt ot dissolve in	
		ary minking		(\mathbf{z}) HCl	(b)	HNO	[CPMT 1971]
		Objective Questions		(a) IICi	(d)	Acetic acid	
			14.	Sodium sulphite on heating	with dilute	HCl liberates a	gas which[NCERT 197
	Drolimi		. 1.	(a) Turns lead acetate pap	per black		gas miner[
_	Prelimi	hary lest		(b) Turns acidified potass	ium dichror	nate paper green	
	1. h h J			(c) Burns with a blue flam (1)	ne		
Ι.	(a) Meta borate	(b) Tetra borate	15 NI 2002	(d) Smells like vinegar Starch-iodide paper is used	for the test	t of	
	(c) Double oxide	(d) Ortho borate	13.	(a) lodine	(b)	lodide ion	
2.	The metal that does not give	the borax-bead test is		(c) Oxidising agent	(d)	Reducing agent	
		[MP PMT 1999]	16.	Which of the following sa	lt gives wh	ite precipitate wit	h AgNO3
	(a) Chromium	(b) Nickel		solution and dil. H_2SO_4	solution an	d gives green flam	e test
	(c) Lead $y_1 = y_2 = y_1 = y_2 = y_2 = y_1 = y_2 = y_2 = y_1 = y_2 = y_2 = y_2 = y_1 = y_2 = y_2 = y_1 = y_2 = y_2 = y_2 = y_1 = y_2 = y$	(d) Manganese		(a) $CuCl_2$	(b)	$BaCl_2$	
3.	which of the following is colo	IBCECE 2005		(c) $PhCl_{2}$	(d)	$C_{\mu}(NO_{\alpha})_{\alpha}$	
	(a) CuF_2	(b) <i>Cul</i>	17.	Two gases when mixed give	e white den	se fumes, the gases	are
	(a) end (b) ($(1) \qquad M \in C I$.,.	(a) NH_2 and SO_2	(b)	SO_2 and steam	
	(c) NaCl	(d) $MgCl_2$		(c) NH and HCl	(-) (d)	NH and N ()
4.	The composition of 'Golden s	Dangles' is[CBSE PMT 1990]	19	$\frac{(c)}{R} = \frac{1}{R} \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \frac{1}{2} \frac{1}{3} = \frac{1}{3} $	(u) Lucith	WII 3 and W ₂ C	·
	(a) $PbCrO_4$	(b) PbI_2	10.	blue bolax beau is obtained	1 WICH	[MADT Bihar 1982; /	VP PET 1995]
	(c) As_2S_3	(d) $BaCrO_4$		(a) <i>Zn</i>	(b)	Cobalt	-
5.	The alkaline earth metal that	t imparts apple green colour to the		(c) Chromium	(d)	Fe	
	bunsen flame when introduce	d in it in the form of its chloride is[EAMC	ET 1997,9]	Which of the following imp	oarts green o	colour to the burn	er flame[DCE 2004]
	(a) Barium	(b) Strontium (d) Magnesium		(a) $B(OMe)_3$	(b)	Na(OMe)	
6.	Which gives violet coloured b	ead in borax bead test		(c) $Al(OPr)_3$	(d)	$Sn(OH)_2$	
		[BHU 1988; MP PET 1997]	20.	In laboratory burners, we u	ise		[DCE 2004]
	(a) Fe^{2+}	(b) Ni^{2+}		(a) Producer gas	(b)	Oil gas	
	(c) Co^{2+}	(d) Mn^{2+}	21.	A colourless gas with the si	(u) mell of rotte	en fish is	
7	Sodium horate on reaction w	(\mathbf{u}) (\mathbf{u}) (\mathbf{conc}) and $(\mathbf{C} + \mathbf{U})$					[AFMC 2005]
<i>/</i> ·	gives a compound 'A' which l	purps with green flame. The compound		(a) H_2S	(b)	PH_3	
	'A' is [MP PET 1994]	and the green name the compound		(c) SO_2	(d)	None of these	
	(a) $H_2B_4O_7$	(b) $(C_2H_5)_2B_4O_7$	22.	Which BLUE LIQUID is ob	otained on r	eacting equimolar	amounts of
	(c) $H_2 BO_2$	(d) $(C_2H_5)_2BO_2$		two gases at -30°C?			[IIT 2005]
8	On mixing two colourless ga	ses a deep brown colour is observed		(a) NO	(b)	NO	
0.	The gases are	[CPMT 1977]	22	(c) $N_i U_i$ $M_{in} O_i$ and $H_i S O_i$ and	(D) Maata M	$N_{i}O_{i}$	vallaw gas
	(a) N_2O and O_2	(b) NO and O_2	23.	liberated is			gas IFF 2005]
	(c) $N_2 O_2$ and O_2	(d) None of these		(a) Cl_{1}	(b)	NH .	ssa jee 2005j
0	Which one of the following n	(d) None of these		(a) \mathcal{U}_2	(0)	111 3	
9.	heated with Na_2CO_3 solid	and $Co(NO_3)_2$ on a charcoal piece[MNI	R 1987]	(c) N ₂	(d)	H ₂	
	(a) <i>Cu</i>	(b) <i>Mg</i>		Wet Test f	for acid	radical	
	(c) <i>Al</i>	(d) <i>Zn</i>					
10.	The metal that does not give	the borax bead test is	1.	Which of the following sta	tement(s) i	s(are) correct whe	n a mixture
		[BHU 1987; AFMC 1995; MHCET 2003]		of $NaCl$ and $K_2Cr_2O_7$	is gently w	armed with conc.	$H_2 SO_4$ [11T 1998; CP
	(a) <i>Cr</i>	(b) Ni				M	P PMT 2002]
	(c) Na	(d) Mn		(a) A deep red vapour is a	evolved		
11.	When concentrated H_2SO	$_4$ is added to dry KNO_3 , brown		(b) The vapour when pas	sed into N	<i>aOH</i> solution gi	ves a yellow
	rumes evolve. These tumes are (a)	e [CPMT 1988; ITT 1987]		solution of Na_2CrO_2	4		
	(a) SO_2	(b) SO_3		(c) Chlorine gas is evolved	d.		
	(c) <i>NO</i>	(d) NO_2	-	(d) Chromyl chloride is fo	ormed	.1. 1	(Top) in
12.	Which one of the following s	alt give green coloured flame when the	2.	Starch can be used as an in	dicator for	the detection of tr	aces of[CPMT 1992]
	(a) Barjum salt	(b) Calcium salt		(b) Proteins in blood	nation		
	(-) <u>ann ban</u>	(-)					

	 (c) Iodine in aqueous solution (d) Urea in blood 		(a) PbCl ₂	(b)	PbSO ₄
2	(d) which of the following combines with $F\rho$ (11) ions to form a brown		(c) $AgCl$	(d)	$CaCO_3$
J.	complex [AIIMS 1982, 87; AFMC 1988;	15.	Nitrates of all the metals are		[DPMT 1983, 89]
	CBSE PMT 2000; Pb. PMT 2000; MP PET 2000, 01]		(a) Coloured	(b)	Unstable
	(a) N_2O (b) NO		(c) Soluble in water	(d)	Insoluble in water
	(c) N_2O_3 (d) N_2O_5	10.	due to the formation of	test. Th	e brown colour of the ring is
4.	Sodium nitroprusside, when added to an alkaline solution of sulphide ions, produces purple colour ion due to the formation of[IIT 199	5]	[EA	MCET 197 MP PMT	79; AFMC 1981, 88, 90; RPET 1999; 2000; MP PET 2002; CPMT 2004]
	(a) $Na[Fe(H_2O)_5 NOS]$ (b) $Na_2[Fe(H_2O)_5 NOS]$		(a) Ferrous nitrite	(b)	$FeSO_4NO$
	(c) $Na_3[Fe(CN)_5 NOS]$ (d) $Na_4[Fe(CN)_5 NOS]$		(c) $FeSO_4NO_2$	(d)	Ferrous nitrate
5.	In the chromyl chloride test, the reagent used is [AMU 1983]	17.	Which of the following prec	ipitate d	oes not dissolve even in large
	(a) $K_2 CrO_4$ (b) CrO_3		excess of NH_4OH		[MP PMT 1991]
	(c) $K_2 C r_2 O_7$ (d) $(NH_4)_2 C r_2 O_7$		(a) $AgCl$	(b)	AgBr
6.	Which of the following will not produce a precipitate with $AgNO_3$		(c) AgI	(d)	None of these
	solution [MP PMT 1990]	18.	Aqueous solution of a salt	when tro	eated with $AgNO_3$ solution
	(a) F^- (b) Br^-		gives a white precipitate, w	hich dis	solves in NH_4OH . Radical
	(c) CQ_2^{2-} (d) PQ_4^{3-}		present in the salt is		
-	When a mixture of solid $NaCl$ solid $K Cr Q$ is heated with		(a) Cl^-	(b)	Br^{-}
/.	when a mixture of solid <i>ivact</i> , solid $K_2C_2C_7$ is neared with cons. H.S.O., orange red vapours are obtained of the compound (CPM)	T 1074	79(C) 90 DDMT 1092 90.	(d)	NO_3^-
	NCEPT 1077, AEMC 1082, AMIL 1084]	11 1974, 19.	When CO_2 is passed into 1	ime wate	er it turns milky. When excess
	(a) Chromous chloride (b) Chromyl chloride	-	of CO_2 is passed, milkyness	disappea	ars because
	(c) Chromic chloride (d) Chromic sulphate		(a) Reaction is reversed		
8.	Chromyl chloride vapours are dissolved in NaOH and acetic acid		(b) Water soluble <i>Ca</i> (<i>HCC</i>	Da)a is fo	ormed
	and lead acetate solution is added, then		(c) Vaporisable calcium deri	vative is	formed
	(a) The solution will become dark green		(d) None of these		
	(c) A yellow solution will be obtained	20.	A mixture when heated with	conc.	H_2SO_4 with MnO_2 brown
	(d) A yellow precipitate will be obtained		fumes are formed due to		
9.	Which of the following gives black precipitate when H_2S gas is		(a) Br^-	(b)	NO_3^-
	passed through its solution [CPMT 1974]		(c) Cl^{-}	(d)	<i>I</i> ⁻
	(a) Acidic $AgNO_3$ (b) $Mg(NO_3)_2$	21	A substance on treatment w	ith dil <i>I</i>	4. SQ liberates a colourless
	(c) Ammonical $BaCl_2$ (d) Copper nitrate	21.	gas which produces (i) turb	idity wit	h baryta water and (ii) turns
10.	A salt gives violet vapours when treated with conc. H_2SO_4 . It contains [DPMT 1981; CPMT 1971]		presence of	n green.	. The reaction indicates the [11T 1992]
	(a) Cl^- (b) l^-		(a) CO_3^{2-}	(b)	S ²⁻
	(c) Br^- (d) NO_2^-		(c) SO_{2}^{2-}	(d)	NO_{2}^{-}
11.	When Cl_2 water is added to a salt solution containing chloroform,	22.	In the test of sulphate radic soluble in	al, the w	thite precipitate of sulphate is
	CPMT 1982		(a) Conc. HCl	(b)	Conc. H_2SO_4
	(a) <i>Cl</i> ⁻ (b) <i>I</i> ⁻		(c) Conc HNO_{2}	(b)	None of these
	(c) NQ_{2}^{-} (d) S^{2-}				· 11.1.· 11.1.1
12	A salt is heated first with dil H_2SO_2 and then with conc	23.	odourless gas is evolved. The	п ₂ SO	4 is added in cold; colourless,
12.	H SO No reaction takes place it may be [CDMT 1078]		ououness gas is evolved. The	mixture	[AMU 1982]
	(a) Nitrate (b) Subbide		(a) Sulphite	(b)	Acetate
	(a) Sulphate (b) Sulphate		(c) Nitrite	(d)	Carbonate
13.	Phosphate radical with ammonium molybdate gives precipitate of which colour	24.	Which reagent is used to rem	ove SO	$\frac{1}{4}$ and Cl^{-}
	(a) Violet (b) Pink			(1)	[Pb. PMT 2002]
	(c) Canary yellow (d) Green		(a) $BaSO_4$	(b)	NaOH
14.	Which compound is soluble in NH_4OH [AFMC 1987]		(c) $Pb(NO_3)_2$	(d)	КОН

25.	is formed when	potassium iodide is heated with conc.	37.	Na_2CO_3 cannot be used	to identify [BVP 2004]
	11_250_4			(a) CO_3^{2-}	(b) SO_3^{2-}
	(a) <i>HI</i>	(b) I_2		(c) S^{2-}	(d) SO_4^{2-}
	(c) HIO_3	(d) KIO_3	38.	The number of hydroxide	ions, produced by one molecule of sodium
26.	Chromyl chloride test is	performed for the confirmation of the		carbonate (Na_2CO_3) on P	nydrolysis is [Pb. CET 2002]
	presence of the following	IN A MIXTURE		(a) 2	(b) 1
	(a) Sulphate	(b) Chromium		(c) 3	(d) 4
	(c) Chloride	(d) Chromium and chloride	39.	Gas A is bubbled throug	h slaked lime when a white precipitate is
27.	A reagent that can disting	uish between a chloride and a peroxide is		heating[EAMCES [1976] solut	tion, the white precipitate reappears with
	(a) Water	(b) Dil. H_2SO_4		the evolution of gas B . The evolution of gas B .	ne gases A and B respectively are
	(c) KOH solution	(d) NaCl		(a) CO_2 and CO	(b) CO and CO_2
28.	Which reagent below we	ould enable you to remove sulphate ions		(c) CO and CO	(d) CO_2 and CO_2
	from a solution containing	g both sulphate and chloride ions[NCERT 1975	; CP446, 19	979 B §1 passing H_2S gas in a	cidified $KMnO_4$ solution, we get
	(a) Sodium hydroxide	(b) Barium hydroxide			[MP PET 1997]
	(c) Barium sulphate	(d) Potassium hydroxide		(a) K_2S	(b) <i>S</i>
2 9 .	Ozone when reacts with product, which turns sta	potassium iodide solution liberates certain arch paper blue. The liberated substance		(c) $K_2 SO_3$	(d) MnO_2
	is [Orrisa JEE 2002]	F-F	41.	Which of the following	doesn't give a ppt. with silver nitrate
	(a) Oxygen	(b) Iodine		solution.	[] & K 2005]
	(c) Hydrogen iodide	(d) Potassium hydroxide		(a) Ethyl bromide	(b) Sodium bromide
30.	When <i>KBr</i> is treated w	ith conc. H_2SO_4 a reddish-brown gas is		(c) Calcium chloride	(d) Sodium chloride
	evolved. The evolved gas i	s [EAMCET 1978]			
	(a) Bromine			Wet Test f	or Basic radical
	(b) Mixture of bromine a	and <i>HBr</i>			
	(c) HBr		1.	Which sulphide is soluble i	$n (NH_4)_2 CO_3$
	(d) NO_2			(a) SnS	(b) As_2S_3
31.	A solution of a salt in dilu with starch iodine solution	ite sulphuric acid imparts deep blue colour n it confirms the presence of which of the		(c) Sb_2S_3	(d) CdS
		in it commune the presence of which of the		2 5	
	following		2	When acetic acid and K	Fe(CN), is added to a conner salt a
	following	[MP PET 2003; NCERT 1974; CPMT 1977]	2.	When acetic acid and K_{i} chocolate precipitate is obt	$_4Fe(CN)_6$ is added to a copper salt, a animal of the compound
	following (a) NO_2^-	[MP PET 2003; NCERT 1974; CPMT 1977] (b) <i>I</i> ⁻	2.	When acetic acid and <i>K</i> , chocolate precipitate is obt (a) Copper cyanide	$_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide
	following (a) NO_2^- (c) NO_3^-	[MP PET 2003; NCERT 1974; CPMT 1977] (b) <i>I</i> ⁻ (d) <i>CH</i> ₃ <i>COO</i> ⁻	2.	 When acetic acid and K, chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate 	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide
32.	following (a) NO_2^- (c) NO_3^- Ammonia reacts with exce	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form	2. 3.	When acetic acid and <i>K</i> , chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is
32.	following (a) NO_2^- (c) NO_3^- Ammonia reacts with exce	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000]	2. 3.	 When acetic acid and <i>K</i>, chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of 	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when <i>HCl</i> is stannous sulphide (<i>SnS</i>) in yellow
32.	following (a) NO_2^- (c) NO_3^- Ammonia reacts with exce (a) N and HCI (b) $NCI = 1 MCI$	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_CI and NCI	2. 3.	When acetic acid and <i>K</i> , chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974]
32.	following (a) NO_2^- (c) NO_3^- Ammonia reacts with exce (a) <i>N</i> and <i>HCl</i> (c) <i>NCl</i> and <i>HCl</i> A brown ring annears in the	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_iCl and NCl_i (d) N and NH_iCl	2. 3.	 When acetic acid and K, chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS 	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2}
32. 33.	following (a) NO_2^{-} (c) NO_3^{-} Ammonia reacts with exce (a) N and HCl (c) NCl and HCl A brown ring appears in t [EAM	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_CI and NCI_c (d) N and NH_CI the test for CET 1978; KCET 1991; Bihar CEE 1995;	2. 3.	When acetic acid and K , chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$
32. 33.	following (a) NO_2^- (c) NO_3^- Ammonia reacts with exce (a) <i>N</i> and <i>HCI</i> (c) <i>NCI</i> and <i>HCI</i> A brown ring appears in t [EAMO	$[MP \text{ PET 2003; NCERT 1974; CPMT 1977}]$ (b) I^- (d) CH_3COO^- ess of chlorine to form $[DPMT 2000]$ (b) NH_iCl and NCl_i (d) N_i and NH_iCl the test for $CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999]$	2. 3. 4.	When acetic acid and K_1 chocolate precipitate is obt(a) Copper cyanide(c) Basic copper sulphateA precipitate of the folloadded to a solution ofammonium sulphide(a) SnS (c) Sn_2S_2 When H_2S is passed to	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ chrough in 11 group sometimes solution
32. 33.	following (a) NO_2^- (c) NO_3^- Ammonia reacts with exce (a) N_1 and HCl (c) NCl and HCl A brown ring appears in t [EAMon (a) Nitrate (b) P_1 = 11	$[MP \text{ PET 2003; NCERT 1974; CPMT 1977}]$ (b) I^- (d) CH_3COO^- ess of chlorine to form $[DPMT 2000]$ (b) NH_CI and NCI (d) N and NH_CI the test for CCT 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999] (b) Nitrite (b) Nitrite	2. 3. 4.	When acetic acid and K_1 chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of
32. 33.	 following (a) NO₂⁻ (c) NO₃⁻ Ammonia reacts with exce (a) N and HCl (c) NCl and HCl A brown ring appears in the [EAMCle] (a) Nitrate (c) Bromide Which of the following or set of the following or se	[MP PET 2003; NCERT 1974; CPMT 1977] (b) <i>I</i> ⁻ (d) <i>CH</i> ₃ <i>COO</i> ⁻ ess of chlorine to form [DPMT 2000] (b) <i>NH</i> ₁ <i>Cl</i> and <i>NCl</i> ₁ (d) <i>N</i> ₁ and <i>NH</i> ₁ <i>Cl</i> the test for CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron	2. 3. 4.	When acetic acid and K , chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when <i>HCl</i> is stannous sulphide (<i>SnS</i>) in yellow [CPMT 1977; NCERT 1974] (b) <i>SnS</i> ₂ (d) (<i>NH</i> ₄) ₂ <i>SnS</i> ₃ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidizing agent
32. 33. 34.	 following (a) NO₂⁻ (c) NO₃⁻ Ammonia reacts with exce (a) N and HCI (c) NCI and HCI A brown ring appears in t [EAMedian (c) Bromide Which of the following ar solution 	$[MP \text{ PET 2003; NCERT 1974; CPMT 1977}]$ (b) I^- (d) CH_3COO^- ess of chlorine to form $[DPMT 2000]$ (b) $NH_Cl \text{ and } NCl$ (d) N and NH_Cl the test for $CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999]$ (b) Nitrite (d) Iron ations would decolourise acidified $KMnO_4$	2. 3. 4.	When acetic acid and K_1 chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates (a) Acidic salt (c) Thiosulphate	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent
32. 33. 34.	following (a) NO_2^{-} (c) NO_3^{-} Ammonia reacts with exce (a) N and HCl (c) NCl and HCl A brown ring appears in t [EAM((a) Nitrate (c) Bromide Which of the following ar solution (a) SO_2^{2-}	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_CI and $NCI_{,}$ (d) N and NH_CI the test for CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron thoms would decolourise acidified $KMnO_4$	2. 3. 4.	When acetic acid and K_1 chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates (a) Acidic salt (c) Thiosulphate Conc. HNO_2 is added	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent
32. 33. 34.	 following (a) NO₂⁻ (c) NO₃⁻ Ammonia reacts with exce (a) N and HCl (c) NCl and HCl A brown ring appears in t [EAM (a) Nitrate (c) Bromide Which of the following ar solution (a) SO₄²⁻ 	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_Cl and NCl_{cl} (d) N and NH_Cl the test for CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron atoms would decolourise acidified $KMnO_4$	2. 3. 4.	When acetic acid and K , chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates (a) Acidic salt (c) Thiosulphate Conc. HNO_3 is added members. This is to	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent before proceeding to test for group 111 [NCERT 1974]
32. 33. 34.	following (a) NO_2^{-} (c) NO_3^{-} Ammonia reacts with exce (a) <i>N</i> and <i>HCI</i> (c) <i>NCI</i> and <i>HCI</i> A brown ring appears in the [EAMO (a) Nitrate (c) Bromide Which of the following arr solution (a) SO_4^{2-} (c) NO_3^{-}	$[MP \text{ PET 2003; NCERT 1974; CPMT 1977}]$ (b) I^- (d) CH_3COO^- ess of chlorine to form $[DPMT 2000]$ (b) $NH_Cl \text{ and } NCl$ (d) N and NH_Cl the test for $CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999]$ (b) Nitrite (d) Iron ations would decolourise acidified $KMnO_4$ (b) S^{2-} (d) CH_3COO^-	2. 3. 4.	When acetic acid and K_1 chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates (a) Acidic salt (c) Thiosulphate Conc. HNO_3 is added members. This is to (a) Oxidise any remaining	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent before proceeding to test for group 111 [NCERT 1974] g $H_{2}S$
32. 33. 34.	following (a) NO_2^{-} (c) NO_3^{-} Ammonia reacts with exce (a) <i>N</i> and <i>HCI</i> (c) <i>NCI</i> and <i>HCI</i> A brown ring appears in the [EAMO] (a) Nitrate (c) Bromide Which of the following arr solution (a) SO_4^{2-} (c) NO_3^{-} The gas which is absorbed by the parameters of the relation by the relation by the relation by the parameters of the relation by the relati	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_CI and $NCI_{(d)}$ (d) N and NH_CI the test for CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron thoms would decolourise acidified $KMnO_4$ (b) S^{2-} (d) CH_3COO^- the d by ferrous sulphate solution giving	2. 3. 4.	When acetic acid and K_1 chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates (a) Acidic salt (c) Thiosulphate Conc. HNO_3 is added members. This is to (a) Oxidise any remaining (b) Convert ferrous ion in	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent before proceeding to test for group 111 [NCERT 1974] g $H_{2}S$ nto ferric ion
32. 33. 34.	following (a) NO_2^{-} (c) NO_3^{-} Ammonia reacts with exce (a) <i>N</i> and <i>HCI</i> (c) <i>NCI</i> and <i>HCI</i> (c) <i>NCI</i> and <i>HCI</i> A brown ring appears in the [EAM4 (a) Nitrate (c) Bromide Which of the following arr solution (a) SO_4^{2-} (c) NO_3^{-} The gas which is absorblackish brown colour is (a) <i>NO</i>	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_Cl and NC_1^l (d) N_1 and NH_Cl the test for CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron tions would decolourise acidified $KMnO_4$ (b) S^{2-} (d) CH_3COO^- the by ferrous sulphate solution giving [AMU 1999] (b) CO	2. 3. 4.	When acetic acid and K_1 chocolate precipitate is obt(a) Copper cyanide(c) Basic copper sulphateA precipitate of the follo added to a solution of ammonium sulphide(a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates(a) Acidic salt(c) ThiosulphateConc. HNO_3 is added members. This is to(a) Oxidise any remaining (b) Convert ferrous ion in (c) Form nitrates which g	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent before proceeding to test for group 111 [NCERT 1974] g $H_{2}S$ nto ferric ion give granular ppts
32. 33. 34.	following (a) NO_2^{-} (c) NO_3^{-} Ammonia reacts with exce (a) <i>N</i> and <i>HCI</i> (c) <i>NCI</i> and <i>HCI</i> (c) <i>NCI</i> and <i>HCI</i> A brown ring appears in the [EAMO (a) Nitrate (c) Bromide Which of the following arr solution (a) SO_4^{2-} (c) NO_3^{-} The gas which is absorblackish brown colour is (a) <i>NO</i> (c) <i>NO</i>	$[MP \text{ PET 2003; NCERT 1974; CPMT 1977}]$ (b) I^- (d) CH_3COO^- ess of chlorine to form $[DPMT 2000]$ (b) $NH_Cl \text{ and } NCl$ (c) $N, \text{ and } NH_Cl$ the test for $CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999]$ (b) Nitrite (d) Iron ations would decolourise acidified $KMnO_4$ (b) S^{2-} (d) CH_3COO^- thed by ferrous sulphate solution giving $[AMU 1999]$ (b) CO (d) NH	2. 3. 4.	When acetic acid and K_1 chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates (a) Acidic salt (c) Thiosulphate Conc. HNO_3 is added members. This is to (a) Oxidise any remaining (b) Convert ferrous ion in (c) Form nitrates which g (d) Increase ionisation of	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent before proceeding to test for group 111 [NCERT 1974] g $H_{2}S$ nto ferric ion give granular ppts ammonium hydroxide
32. 33. 34. 35.	following (a) NO_2^{-} (c) NO_3^{-} Ammonia reacts with exce (a) N and HCl (c) NCl and HCl A brown ring appears in the second seco	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_CI and $NCI_{,}$ (d) N and NH_CI the test for CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron b) Nitrite (d) Iron b) Nitrite (d) Iron b) Nitrite (d) Iron b) S^{2-} (d) CH_3COO^- bed by ferrous sulphate solution giving [AMU 1999] (b) CO (d) $NH_{,}$ wing anions is not easily removed from ipitation [IIT 1995]	2. 3. 4. 5.	When acetic acid and K_1 chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates (a) Acidic salt (c) Thiosulphate Conc. HNO_3 is added members. This is to (a) Oxidise any remaining (b) Convert ferrous ion in (c) Form nitrates which g (d) Increase ionisation of A salt gives bright red color presence of	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when <i>HCl</i> is stannous sulphide (<i>SnS</i>) in yellow [CPMT 1977; NCERT 1974] (b) <i>SnS</i> ₂ (d) (<i>NH</i> ₄) ₂ <i>SnS</i> ₃ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent before proceeding to test for group 111 [NCERT 1974] g <i>H</i> ₂ <i>S</i> nto ferric ion give granular ppts ammonium hydroxide pur to the flame. This colour indicates the
32. 33. 34. 35.	following (a) NO_2^- (c) NO_3^- Ammonia reacts with exce (a) N and HCl (c) NCl and HCl (c) NCl and HCl A brown ring appears in the [EAM4 (a) Nitrate (c) Bromide Which of the following arrow solution (a) SO_4^{2-} (c) NO_3^- The gas which is absorblackish brown colour is (a) NO (c) N Which one of the following arrow solutions by preceived by the following arrow of the	[MP PET 2003; NCERT 1974; CPMT 1977] (b) I^- (d) CH_3COO^- ess of chlorine to form [DPMT 2000] (b) NH_CI and $NCI_{(d)}$ (d) N and NH_CI the test for CET 1978; KCET 1991; Bihar CEE 1995; AIIMS 1996; DCE 1999] (b) Nitrite (d) Iron tions would decolourise acidified $KMnO_4$ (b) S^{2-} (c) CH_3COO^- bed by ferrous sulphate solution giving [AMU 1999] (b) CO (c) $NH_{(d)}$ wing anions is not easily removed from ipitation [IIT 1995] (b) NO_3^-	2. 3. 4. 5.	When acetic acid and K_1 chocolate precipitate is obt (a) Copper cyanide (c) Basic copper sulphate A precipitate of the follo added to a solution of ammonium sulphide (a) SnS (c) Sn_2S_2 When H_2S is passed to becomes milky. It indicates (a) Acidic salt (c) Thiosulphate Conc. HNO_3 is added members. This is to (a) Oxidise any remaining (b) Convert ferrous ion in (c) Form nitrates which g (d) Increase ionisation of A salt gives bright red color presence of (a) Ba^{2+}	${}_{4}Fe(CN)_{6}$ is added to a copper salt, a ained of the compound (b) Copper ferrocyanide (d) Basic copper cyanide wing would be obtained when HCl is stannous sulphide (SnS) in yellow [CPMT 1977; NCERT 1974] (b) SnS_{2} (d) $(NH_{4})_{2}SnS_{3}$ through in 11 group sometimes solution the presence of [MP PMT 1995] (b) An oxidising agent (d) A reducing agent before proceeding to test for group 111 [NCERT 1974] g $H_{2}S$ nto ferric ion give granular ppts ammonium hydroxide our to the flame. This colour indicates the (b) Sr^{2+}

7.	The compound insoluble in acetic a	cid is		(d)	None of these			
		[CPMT 1989]	18.	The	ion that cannot be precip	itated by	both <i>HCl</i> an	id H_2S is [11T 1982; C
	(a) Calcium oxide ((c) Calcium oxalate (d) Calcium carbonate d) Calcium hydroxide		(a)	Pb^{2+}	(b)	Cu ⁺	
8.	Which of the following give white	precipitate when HCl is added		(c)	Ag^+	(d)	Sn^{2+}	
	to its aqueous solution		19.	Pb(C	CH_COO), givescolour wi	ith <i>HS</i>	[DPMT 2000]	
	(a) Hg^+ (b) Mg^{++}		(a)	Orange	(b)	Red	
	(c) Zn^{++} (4)	d) Cd^{++}		(c)	Black	(d)	White	
9.	Of the following sulphides which o	ne is insoluble in dilute acids but	20.	Fe ⁻ io	on can be distinguished b	y <i>Fe</i> ion	by	[DPMT 2000]
	soluble in alkalies	[CPMT 1990]		(a)	NH ₄ SCN	(b)	$AgNO_3$	
	(a) PbS ((a) PbS) = (a) PbS ((a) PbS) ((a) P	b) CdS		(c)	$BaCl_2$	(d)	None of these	
	(c) FeS (r	d) Sb_2S_3	21.	Whic	ch of the following chang	e the col	our of the aque	eous solution of
10.	Reagent used in the qualitative anal	ysis of 1Vth group is		FeC	Cl_3		[Roorkee	Qualifying 1998]
	(a) HCl (b) H_2S (alkaline)		(a)	$K_4 \left[Fe(CN)_6 \right]$	(b)	H_2S	
	(c) $(NH_4)_2 S$ (4)	d) None of these		(c)	NH , CNS	(d)	KCNS	
11.	Which of the following radicals wi	ll not be precipitated by passing	22.	Whie	h of the following sul	hstances	are soluble i	n concentrated
	H_2S in concentrated acid solution	n [BHU 1986]		HN	O_3	ootaneeo	[Roorkee	Qualifying 1998]
	(a) Copper (b) Antimony		(a)	BaSO	(b)	CuS	
	(c) Arsenic (d) Cadmium		(u)		(0)		
12.	Which of the following pairs would when solution are mixed	be expected to form precipitate		(c)		(d)	Hgs	
	(a) $K^+ SO^{2-}$	b) $Ma^+ S^{2-}$	23.	Whic	ch of the following cannot	t give ioc	lometric titratio	AllMS 1007
	(a) K , SO_4 (b) Iva ,5		(a)	E_{2}^{3+}	(b)	Cu^{2+}	[/ 11/10 1997]
	(c) Ag^+, NO_3^- (e)	d) Al^{3+}, OH^{-}		(a)	re Dl ²⁺	(0)	Cu	
13.	H_2S will precipitate the sulphi	des of all the metals from the		(c)	Pb ²	(d)	Ag	
	solution of chlorides of Cu, Zn an	d <i>Cd</i> , if	24.	Whic	ch of the following mixtur	re is chro	mic acid	[Ph PMT 2000]
		[MP PMT 1985]		(a)	KCrO and HCl			[FD. FMT 2000]
	(a) The solution is aqueous			(b)	KSO and conc. HSO			
	(b) The solution is acidic			(c)	KCrO and conc. HSO			
	(c) The solution is dilute acidic (d) Any of these solutions is press	nt		(d)	HSO and HCl			
14.	Addition of solution of oxalate to a	n aqueous solution of mixture of	25.	Whic	ch of the following compo	ounds is	brown coloured	1
	Ba^{++} , Sr^{++} and Ca^{++} will preci	pitate		(a)	$E_{a}[E_{a}(CN)]$	(b)	Fe[Fe(CN)]	[AFMC 2001]
	,~	[MP PMT 1985]		(a) (c)	Fe[Fe(CN)]	(d)	KEe[Fe(CN)]	
	(a) Ca^{++} (f)	b) Ca^{++} and Sr^{++}	26	1£ Å	Va^+ ion and S^{2-} ion is	(-)	than Cl^{-} ion	which of the
	(c) Ba^{++} and Sr^{++} (d) All the three	20.	follo	wing will be least soluble	in water	[AMU (Engg.) 19	9999]
15	(c) Du and Sr (c) Which one among the following pair	rs of ions cannot be separated by		(a)	MgS	(b)	NaCl	
	H_2S in dilute hydrochloric acid []	IT 1986]		(c)	Na ₂ S	(d)	MgCl	
	$() \mathbf{p}^{3+} \mathbf{S}^{4+} \mathbf{C}^{4+}$	$1) A I^{3+} I I_{2}^{2+}$	27.	An	aqueous solution of an	inorganio	salt on treatr	nent with <i>HCl</i>
	(a) Dl , Sh ($Al, \Pi g$	-,.	gives	a white precipitate. This	solution	contains	
	(c) Zn^{2+}, Cu^{2+} (e)	d) Ni^{2+}, Cu^{2+}				<i>(</i> 4),		[MP PMT 2001]
16.	Distinguishing reagent between silv	er and lead salts is		(a)	Hg: Z=	(b)	Hg	
		[MADT Bihar 1984]	28	(c) 1 ead	zit sulphate is soluble	(a)	Ca	[MP PFT 1000]
	(a) H_2S gas		20.	(a)	In conc. nitric acid			[//// / 0/ /999]
	(b) Hot dilute <i>HCl</i> solution			(b)	In conc. hydrochloric aci	d		
	(c) NH_4Cl (solid) + NH_4OH	solution		(c)	In a solution of ammonia	um aceta	te	
	(d) NH_4Cl (solid) + $(NH_4)_2Cl$	O_3 solution		(d)	In water			
17.	Group reagent for the precipitation	of group 11 basic radicals for the	29.	Whic	ch one of the following su	ılphides i	s yellow	
-	qualitative analysis table is	[MADT Bihar 1982]		(a)	Zinc sulphide	(b)	Cadmium culo	[MP PMT 1999] bhide
	(a) Dil. $HCl + H_2S$			(a) (c)	Nickel sulphide	(d)	Lead sulphide	
	(b) NH_4Cl (solid) + NH_4OH	solution + H_2S	30.	Whe	n <i>HS</i> gas is passed t	hrough	the HCl conta	aining aqueous
	(a) (NH) CO colution	-		solut	ions of <i>CuCl, HgCl, BiC</i>	and Co	Cl, which does	not precipitate
	(1) (1)			out	[MF FNI 2002]			

	(a) (b)	ngo
	(c) BiS (d)	CoS
31.	Group reagent for analytic group IV is	
		[Kurukshetra CET 2002]
	(a) NH Cl + NH OH	
	(b) $NHCl + NHOH + HS$	
	(c) $NHOH + (NH) CO$	
	(d) $HCl + HS$	
32.	When HS is passed through HgS we g	et [AIEEE 2002]
	(a) HgS (b)	HgS + HgS
	(c) $HgS + Hg$ (d)	HgS
33.	How do we differentiate between <i>Fe</i> an	d Cr in group 111
		[AIEEE 2002]
	(a) By taking excess of <i>NHOH</i> solution	n
	(b) By increasing <i>NH</i> ion concentration	on
	(c) By decreasing OH^- ion concentration	ation
	(d) Both (b) and (c)	
34.	$[X] + HSO \rightarrow [Y]$ a colourless gas with	th irritating smell
	$[Y] + K C P O + H S O \rightarrow \text{green solution}$	
		[III-JEE (Screening) 2003]
	(a) SO_3^2 , SO_2 (b)	CI^{-},HCI
	(c) $S^{2-}, H_2 S$ (d)	<i>CO</i> ₃ ^{2–} , <i>CO</i> ₂
35.	In the analysis of basic radicals, th	e group reagent HS gas is
	generally used in the groups	[MP PMT 2003]
	(a) I and II groups (b)	II and III groups
36.	A mixture of two salts is not water so	luble but dissolves completely
•	in dilute hydrochloric acid to form a co could be	blourless solution. The mixture [Pb. PMT 1998]
	(a) $AgNO_3$ and KBr (b)	$BaCO_3$ and ZnS
	(c) $FeCl_3$ and $CaCO_3$ (d)	$Mn(NO_3)_2$ and $MgSO_4$
37.	Which of the following is not precipita	ted as sulphide by passing <i>HS</i>
	in presence of conc. <i>HCl</i> [MP	PMT 2000]
	(a) Copper (b)	Arsenic
28	(c) Cadmium (d) Concentrated sodium bydroxide can se	Lead
30.	concentrated souldin hydroxide can se	[MP PMT 2000]
	(a) <i>Zn</i> and <i>Pb</i> (b)	Al and Zn
	(c) Cr and Fe (d)	Al and Cr
39.	AgCl dissolves in ammonia solution g	giving
		[MP PMT 1989; MP PET 2001]
	(a) Ag^+, NH_4^+ and Cl^- (b)	$Ag(NH_3)^+$ and Cl^-
	(c) $Ag_2(NH_3)^+$ and Cl^- (d)	$Ag(NH_3)_2^+$ and Cl^-
40.	What product is formed by mixing th	e solution of $K_4[Fe(CN)_6]$
	with the solution of $FeCl_3$ [Root	rkee 1989]
	(a) Ferro-ferricyanide (b) (c) Ferri-ferricyanide (d)	Ferric-ferrocyanide None of these
41.	In fifth group, $(NH_{\star})_{a} CO_{a}$ is a	dded to precipitate out the
	carbonates We do not add Na CO	hecause
	a_1 constants, we do not add m_2 c_3	[A11MC 1082]
	(a) $CaCO_2$ is soluble in Na_2CO_2	

(b) $H_{\alpha}S$

(a) Cus

- (b) Na_2CO_3 increases the solubility of fifth group carbonates
- (c) $MgCO_3$ will be precipitated out in fifth group
- (d) None of these

- **42.** Al^{3+} , Fe^{3+} , Zn^{2+} and Ni^{2+} ions are present in an acidic solution. Excess of ammonium chloride solution is added followed by addition of ammonium hydroxide solution. The available precipitate will contain [MP PMT 1996]
 - (a) $Zn(OH)_2$ and $Ni(OH)_2$ (b) $Al(OH)_3$ and $Fe(OH)_3$ (c) $Zn(OH)_2$ and $Al(OH)_3$ (d) $Ni(OH)_2$ and $Fe(OH)_3$ When HS is passed through a mixture containing Cur, Nr, Zn in acidic solution then ion will precipitate [RPMT 2002] (a) Cur, Nr (b) Nr (c) Cur, Zn (d) *Cu* In the precipitation of the iron group in qualitative analysis, ammonium chloride is added before adding ammonium hydroxide to [AIIMS 198 CPMT 1971, 73, 77,78, 80, 81, 83, 86; KCET 1999] (a) Decrease concentration of OH^- ions (b) Prevent interference by phosphate ions (c) Increase concentration of Cl^- ions (d) Increase concentration of NH_4^+ ions Ferric ion forms a prussian blue coloured ppt. due to [CPMT 1980; BHU 1980; MP PET 1995; Kurukshetra CEE 1998; RPET 1999; MP PMT 2001] (b) $Fe_4[Fe(CN)_6]_3$ (a) $K_4 Fe(CN)_6$ (c) $KMnO_4$ (d) $Fe(OH)_3$ When H_2S gas is passed into a certain solution, it reacts to form a white precipitate. The solution referred to contains ions of [EAMCET 1979] (a) Lead (b) Zinc (c) Copper (d) Nickel A precipitate of would be obtained on adding HCl to a solution of (Sb_2S_3) in yellow ammonium sulphide [CPMT 1979]
 - (a) Sb_2S_3 (b) Sb_2S_5 (c) SbS (d) SbS_2

(c) *Hg, Cu* and *Fe* (d) *Cu, Sr* and *Fe*

49. Which of the following gives a ppt. with $Pb(NO_3)_2$ but not with $Ba(NO_3)_2$ [CPMT 1979; MP PET 1997]

(a) NaCl

43.

44.

45.

46.

47.

- (b) Sodium acetate
- (c) Sodium nitrate
- (d) Sodium hydrogen phosphate
- 50. On adding excess of ammonium hydroxide to a copper sulphate solution [MP PMT 1995]
 - (a) Blue precipitate of copper hydroxide is obtained
 - (b) Black precipitate of copper oxide is obtained
 - (c) A deep blue solution is obtained
 - $(d) \quad \text{No change is observed} \\$

51.	A black sulphide is formed by th	ne acti	on of H_2S on
			[IIT 1978]
	(a) Cupric chloride	(b)	Cadmium chloride
	(c) Zinc chloride	(d)	Sodium chloride
52	An aqueous solution contains t	ha ion	$h = h a^{2+} H a^{2+} P h^{2+}$
52.	and Cd^{2+} The addition of dil	ite IOII	Cl(6N) presidintates
	and Ca . The addition of $dim}$		
	(a) Hg_2Cl_2 only	(b)	$PbCl_2$ only
	(c) $PbCl_2$ and $HgCl_2$	(d)	Hg_2Cl_2 and $PbCl_2$
53.	In the group III radicals, in place	e of <i>N</i>	NH_4Cl which of the following
	can be used		[A11MS 1980, 82; MP PMT 1985]
	(a) $NH_4 NO_3$	(b)	$(NH_4)_2 SO_4$
	(c) $\left(NH_4\right)_2 CO_3$	(d)	NaCl
54.	When HCl gas is passed thro	ugh sa	aturated solution of $BaCl_2$, a
	white ppt. is obtained. This is d	ue to	2
			[CPMT 1979]
	(a) Impurities in $BaCl_2$	(b)	Impurities in HCl
	(c) Precipitation of $BaCl_2$	(d)	Formation of complex
55.	Which compound does not disso	olve in	hot dilute HNO2
	,		[IIT 1996]
	(a) HgS	(b)	PbS
	(c) CuS	(d)	CdS
56	The ion that can be precipitated	hv <i>F</i>	HCL as well as $H_{a}S_{b}$ is
JU.	The foir that can be precipitated	ΓΟΥ Τ. ΓΑ	AD DET 1006: 11DMER (Med.) 2002]
	$()$ $\mathbb{D}l^{2+}$	יא <u>ן</u> ער	T 3+
	(a) Pb^{-1}	(b)	Fe
	(c) Zn^{2+}	(d)	Cu^{2+}
57.	Which of the following sulphate	15 1115	oluble in water
	(a) $CuSO$	(b)	CdSO 4
	(c) $PhSO$	(d)	$B_{i}(SO_{i})$
E Q	(c) 1050_4	(u)	$Bi(SO_4)_3$
30.	complex. The metal present is	unneu	[AFMC 1982; BHU 1979]
	(a) Ni	(b)	V
	(c) <i>Co</i>	(d)	Mn
59.	When bismuth chloride is pour	ed int	o a large volume of water, the
	white precipitate produced is		[MP PMT 1985; CPMT 1979]
	(a) $Bi(OH)_3$	(b)	Bi_2O_3
	(c) BiOCl	(d)	Bi_2OCl_3
60.	Mark the compound which turn	s blac	k with NH_4OH
			[AFMC 1981; MP PMT 1995]
	(a) Lead chloride	(b)	Mercurous chloride
_	(c) Mercuric chloride	(d)	Silver chloride
61.	Colour of cobalt chloride solution $()$ \mathbf{P}^{-1}	n is	[AFMC 1981]
	(a) Pink (c) Colourless	(d)	Green
62.	Sodium carbonate cannot be us	ed in	place of ammonium carbonate
	for the precipitation of the fifth	group	radicals because
	(a) Sodium ions interfere with	the d	etection of fifth group radicals
	(b) Concentration of carbonate	e ions	is very low
	(c) Sodium will react with acid (d) Magnesium will be precipit	nc rad	ncais
63.	Nessler's reagent is used to dete	ct	
-0.			

	(a) CrO_4^{2-}	(b)	PO_{4}^{3-}
	(c) MnO_4^-	(d)	NH_4^+
64.	A light greenish coloured salt was	s solul	ble in water. On passing H_2S
•	into the solution a black precipita	te was	s obtained which dissolve readily
	in <i>HCluTh995]</i> etal ion present is	[BH	U 1981]
	(a) Co^{+2}	(b)	Fe^{2+}
	(c) Ni^{+2}	(d)	Mn^{+2}
65.	Yellow ammonium sulphide sol separation of	ution	is a suitable reagent for the [BHU 1987]
	(a) HgS and PbS	(b)	PbS and Bi_2S_3
	(c) Bi_2S_3 and CuS	(d)	CdS and As_2S_3
66.	$Fe(OH)_3$ can be separated fro	m A	$l(OH)_3$ by addition of
			[BHU 1981]
	(a) Dil. HCl	(b)	NaCl solution
	(c) $NaOH$ solution	(d)	${\it NH}_4{\it Cl}$ and ${\it NH}_4{\it OH}$
67.	The reagents ${\it NH}_4 {\it Cl}$ and aque	eous	NH_3 will precipitate
			[IIT 1991]
	(a) Ca^{2+}	(b)	Al^{+3}
	(c) Mg^{2+}	(d)	Zn^{2+}
68.	The aqueous solutions of the fo	llowin	g salts will be coloured in the [IIT 1990]
	(a) $Zn(NO_3)_2$	(b)	LiNO ₃
	(c) CrCl ₃	(d)	Potash alum
69.	A mixture containing Cu^{2+} identification by	and	Ni^{2+} can be separated for [MP PMT 1994]
	(a) Passing H_2S in acid medi	ium	
	(b) Passing H_2S in alkaline n	nediui	n
	(c) Passing H_2S in neutral m	nedium	n
	(d) Passing H_2S in dry mixtu	ire	
70.	Addition of $SnCl_2$ to $HgCl_2$	gives	ppt [BVP 2003]
	(a) White turning to red	(b)	White turning to gray
	(c) Black turning to white	(d)	None of these
71.	When dilute aqueous solution solution, positively charged sol. adsorption of ion	of A Partie	gNO ₂ (excess) is added to KI cles of AgI are formed due to [BHU 2003]
	(a) NO_3^-	(b)	O_2^{-}
	(c) Ag^+	(d)	K^+
72.	Heamoglobin is a complex of	(4)	[CPMT 2003]
	(a) Fe^{3+}	(b)	Fe^{2+}
	$() \mathbf{E}_{-}^{4+}$	(d)	Cu^{2+}

[CPMT 1989; AIIMS 1997; MP PET 1999]

A colourless crystalline salt 'X is soluble in dilute *HCl*. On adding *NaOH* solution, it gives a white precipitate which is insoluble in excess of *NaOH*. 'X is [KCET 2003] (a) A(A) = [KCET 2003] (b) *ZnSO* 73. (c) MgSO (d) SnCl

Precipitate of group IV cations takes place when $\,H_2S$ is 74.

				[RPET 2003]
(a)	Highly ionised	(b)	Less ionised	
(c)	Not ionised	(d)	None of these	

- In Nessler's reagent for the detection of ammonia the active species 75. [Kerala (Med.) 2003] is
 - (b) Hg^{2+} (a) Hg_2Cl_2
 - (d) HgI_4^{2-} (c) Hg_2I_2
- On addition of aqueous NaOH to a salt solution, a white 76. gelatinous precipitate is formed, which dissolves in excess alkali. The salt solution contains [MP PMT 1994] (a) Chromium ions (b) Aluminium ions
 - (c) Barium ions (d) Iron ions
- A solution prepared in conc. *HCl* sometimes gives white turbidity 77. even in the absence of 1' group, when water is added to it. It is due to the presence of
 - (b) Sb^{3+} (a) Hg^{2+}
 - (c) Ag^{3+} (d) Sb^{3+} or Bi^{3+} or both
- Which of the following pairs of ions when mixed in dilute solutions 78. may give precipitate

[CPMT 1976; NCERT 1987; Kurukshetra CEE 1998]

- (a) Na^+, SO_4^{2-} (b) NH_4^+, CO_3^{2-} (d) Fe^{3+}, PO_4^{3-}
- (c) Na^+, S^{2-}
- Which one of the following sulphides is only completely precipitated 79. when the acidic solution is made dilute

(a)	HgS	(b)	PbS	
(c)	CdS	(d)	CuS	

A reagent used to test the presence of $\ {Fe}^{2+}$ ion is 80

- (b) $NH_{4}CNS$ (a) H_2S
- (d) $K_3 Fe(CN)_6$ (c) $K_4 Fe(CN)_6$
- 81. Identify the statement which is not correct regarding copper [UPSEAT 2001] sulphate
 - (a) It reacts with KI to give iodine
 - (b) It reacts with KCl to give CuCl
 - (c) It reacts with NaOH and glucose to give CuO
 - (d) It gives CuO on strong heating in air
- Mark the correct statement 82.
 - (a) 1 group basic radicals precipitate as chlorides
 - (b) IV group basic radicals precipitate as sulphides
 - (c) V group basic radicals precipitate as carbonates
 - (d) All of these statement are correct
- 83. The following four solutions are kept in separate beakers and copper metal is put in each of them. Which solution will become blue after some time [MP PMT 2003] (b) Zn(NO) solution (a) AgNO solution
 - (c) Ba(NO), solution (d) NaNO solution
- ${\it Cu}^{2+}$ ions will be reduced to ${\it Cu}^+$ ions by the addition of an 84. aqueous solution of [AIIMS 1992] () VEVC

	(a) N(a)	(b) $\mathbf{A}\mathbf{C}\mathbf{l}$
	(c) KI	(d) KOH
85.	Which radicals are precipita	ated in (<i>NH</i>) <i>CO</i> in presence of alkali
	(a) Ca, Ba, Sr	(b) <i>Mg</i>
	(c) Both	(d) None
86.	Which of the following is se	oluble in yellow ammonium sulphide
	(a) CuS	(b) CdS

- (d) *PbS* (c) SnS
- Which mixture is separated by conc. aqueous solution of sodium 87. hydroxide [UPSEAT 1999] (b) Al and Fe (a) Al and Sm

(a)	Ag	(b)	Zn
(c)	Си	(d)	None of these
The	presence of NH_4Cl in the	ne tes	t solution while precipitating
grou	ıp 111-A hydroxides (in qualita	itive in	norganic analysis) helps in
(a)	Lowering OH^{-}	(b)	Lowering $\left[NH_4 OH \right]$
(c)	Increasing $\left[OH^{-}\right]$	(d)	Increasing $\left[NH_4 OH \right]$
On	saturating aqueous solution	of Ci	r (II), Pb (II) and Zn (II) ions
with	H_2S will precipitate		
(a)	Only CuS	(b)	Only PhS
(4)	elliy ello	(\mathbf{U})	
(c)	Both CuS and PbS	(d)	CuS, PbS and ZnS
(c) A cl plati catio	Both <i>CuS</i> and <i>PbS</i> hloride dissolves appreciably num wire in Bunsen flame, r on could be present	(d) in c no dis	CuS, PbS and ZnS old water when placed on a tinctive colour is noted, which [Pb. PMT 1998]
(c) A cl plati catio (a)	Both CuS and PbS hloride dissolves appreciably num wire in Bunsen flame, r on could be present Mg^{2+}	(d) in c no dis (b)	CuS, PbS and ZnS old water when placed on a tinctive colour is noted, which [Pb. PMT 1998] Ba^{2+}
 (c) A cl plati catic (a) (c) 	Both <i>CuS</i> and <i>PbS</i> hloride dissolves appreciably num wire in Bunsen flame, r on could be present Mg^{2+} Pb^{2+}	(d) (d) (b) (b) (d)	CuS, PbS and ZnS old water when placed on a tinctive colour is noted, which [Pb. PMT 1998] Ba^{2+} Ca^{2+}
 (c) A cliplatii catici (a) (c) A soo a soo heat 	Both <i>CuS</i> and <i>PbS</i> hloride dissolves appreciably num wire in Bunsen flame, r on could be present Mg^{2+} Pb^{2+} lid (<i>A</i>) which has photograph dium salt (<i>B</i>) to give a pal- ing gives brown vapour. Iden	(d) r in c no dis (b) (d) hic eff le yell tify A	CuS, PbS and ZnS old water when placed on a tinctive colour is noted, which [Pb. PMT 1998] Ba^{2+} Ca^{2+} fect reacts with the solution of low ppt. (C). Sodium salt on , B and C.
 (c) A cliplatic catic (a) (c) A soon a soon a	Both <i>CuS</i> and <i>PbS</i> hloride dissolves appreciably num wire in Bunsen flame, r on could be present Mg^{2+} Pb^{2+} lid (<i>A</i>) which has photograph dium salt (<i>B</i>) to give a pal- ing gives brown vapour. Iden $AgNO_3, NaBr, AgBr$	(d) in c no dis (b) (d) hic eff hic eff tify A (b)	CuS, PbS and ZnS old water when placed on a tinctive colour is noted, which [Pb. PMT 1998] Ba^{2+} Ca^{2+} fect reacts with the solution of low ppt. (C). Sodium salt on , B and C. AgNO ₃ , NaCl, AgCl ₂

(d) Zn and Pb

 H_2S is passed through an acidified solution of Ag, Cu and

- In qualitative analysis, in order to detect second group basic radical, 93. H_2S gas is passed in the presence of dilute *HCl* to
 - [KCET 2004]

[BHU 1998]

(a) Increase in dissociation of H_2S

(c) AI and Zn

Zn. Which forms precipitate

88.

89.

90.

91.

92.

94.

[MP PET 2000]

[KCET 1998]

[MP PMT 2002]

- (b) Decrease the dissociation of salt solution
- (c) Decrease the dissociation of H_2S
- (d) Increase the dissociation of salt solution
- H_2S gas when passed through a solution of a contains HCl precipitate the cations of group of qualitative analysis but not those belonging to the fourth group. It is because

[CBSE PMT 2005]

- (a) Presence of HCl decreases the sulphide ion concentration
- (b) Presence of HCl increases the sulphide ion concentration
- Solubility product of group 11 sulphides is more than that of (c) group IV sulphides
- (d) Sulphides of group IV Cations are in HCl
- A metal nitrate reacts with KI to give a black precipitate which on 95. addition of excess of KI convert into orange colour solution. The cation of the metal nitrate is

[IIT-JEE (Screening) 2005]

- (a) Hg^{2+} Bi^{3+} (b) (c) Pb^{2+} (d) Cu^+
- Which of the following basic radicals will not be precipated by H_2S [Pb. PMT 2001] [Pb. CET 2003] 96.
 - (a) Mn^{2+} Ni^{2+} (b) (c) CaMP+PET 1994, 97] (d) Ca^{2+}
- On passing H_2S black ppt. of 11 group is obtained. The mixture 97. may not contain [CPMT 1989]
 - Pb^{++} (b) *Cd*⁺⁺ (a) Hg^{++} (c) (d) Cu ++

98.	8. Ferrous and ferric ions in solution may be distinguished by using (a) Silver nitrate solution (b) Lead acetate solution (c) Acidified solution of potassium permanganate (d) Sodium chloride solution 9. Solution of 11 A group precipitate in dil. HNO_3 when treated with NH_4OH becomes blue because of the presence of (a) Mg (b) Cd (c) Bi (d) Cu 90. When calomel react with NH_4OH solution the compound formed is (c) $Hg(NH_3)_2Cl_2$ (d) $Hgc_1_2NH_3$ (c) $Hg(NH_3)_2Cl_2$ (d) $HgCl_2NH_3$ (e) $Cu(CN)_4$ (f) $K_3[Cu(CN)_4]$ (g) $K_2[Cu(CN)_4]$ (h) $CuCN$ (c) $Cu(CN)_2$ (d) $K_2[Cu(CN)_4]$ 101. Copper sulphate solution react with KI to give a black precipitate which on addition of excess of KI convert into orange colour solution. The cation of the metal nitrate is (a) Hg (b) Bi (c) Pb (d) Cu 102. A metal nitrate reacts with KI to give a black precipitate which on addition of excess of KI convert into orange colour solution. The cation of the metal nitrate is (a) Hg (b) Bi (c) Pb (d) Cu 117 2005 (a) Hg (b) Bi (c) Pb (d) Cu 125 gas when p		(a) (c)		
	(d) Sodium chloride solution		0	5.	A A
99.	Solution of II A group precipitat	te in c	lil. HNO_3 when treated with		30
	NH_4OH becomes blue because	e of th	e presence of	5. 6. 2005] 7. 8. 9. 10. 11.	by
	(a) Mg	(b)	Cd		re
	(c) <i>Bi</i>	(d)	Си		,
100.	When calomel react with NH_4	OH s	solution the compound formed		(â
	is		[BCECE 2005]	~	(0
	(a) $NH_2 - Hg - Cl$	(b)	$Hg_2Cl_2NH_3$	6.	lr tł
	(c) $Hg(NH_3)_2 Cl_2$	(d)	HgCl ₂ NH ₃		(i
101.	Copper sulphate solution react v	with	KCN[BCECI	E 2005]	(0
	(a) $K_3[Cu(CN)_4]$	(b)	CuCN	7.	1f
	(c) $Cu(CN)_2$	(d)	$K_2[Cu(CN)_4]$		m (-
102.	A metal nitrate reacts with KI	to give	e a black precipitate which on		(ā ()
	addition of excess of <i>KI</i> convection of the metal nitrate is	rt into	o orange colour solution. The [11T 2005]	8.	N.
	(a) Hg	(b)	Bi		11 S(
100	(c) PD	(a)	Cu		(;
103.	precipitates the cations of gro those belonging to the fourth gr	oup of oup. It	f qualitative analysis but not		(0
	00000	•	[CBSE PMT 2005]	9.	8
	(a) Presence of <i>HCl</i> decrease(b) Presence of <i>HCl</i> increases t	s the he sul	sulphides ion concentration ophide ion concentration		1
	(c) Solubility product of grou group IV sulphides	pll s	ulphides is more than that of		(ä (d
	(d) Sulphides of group IV catio	ns are	e in <i>HCl</i> .	10.	R
104.	Sodium nitroprusside when add ions produce a	ed to a	an alkaline solution of sulphide [AFMC 2005]		Γ
	(a) Red colouration	(b)	Blue colouration		(a
	(c) Purple colouration	(d)	Brown colouration		(0
-	Volumetric	Ana	alvsis	11.	15 ac
1.	What weight of sodium hydroxic 0.1 $N - HCl$	de is r	equired to neutralise 100 <i>ml</i> of [MP PMT 1994]		(ä (d
	(a) 4.0 <i>gm</i>	(b)	0.04 <i>gm</i>	12.	20
	(c) 0.4 <i>gm</i>	(d)	2.0 <i>gm</i>		to
2.	The range of methyl orange as a	n indi	cator is in between pH		[CPM
	(a) $6 - 8$	(b)	8 - 9		(0
	(c) 3 – 5	(d)	2 - 4	13.	10
3.	Phenolphthalein is not a good in	dicato	r for titrating	.0.	 T
			[NCERT 1977]		(-

(a) NaOH against oxalic acid

(b) Ferrous sulphate against $KMnO_4$

(c) NaOH against HCl

- (d) NaOH against H_2SO_4
- **4.** 15 *ml* of N/10 NaOH solution completely neutralises 12 *ml* of H_2SO_4 solution. The normality of H_2SO_4 solution will be

(a) N/5 (b) N/10

(c) N/8 (d) N

16 *ml*

A 100 *ml* solution of 0.1 N - HCl was titrated with 0.2 N - NaOH solution. The titration was discontinued after adding 30 *ml* of NaOH solution. The remaining titration was completed by adding 0.25 N - KOH solution. The volume of KOH required for completing the titration is

[MP PMT 1997] (b) 32 *ml*

- (c) 35 ml(d) 70 mlIn 1gram of a metal oxide, metal precipitated is 0.68gram. what is
the equivalent weight of metal [JIPMER 2002]
 - (a) 17
 (b) 34

 (c) 68
 (d) 52

If 20 *ml* of 0.25 *N* strong acid and 30 *ml* of 0.2 *N* of strong base are mixed, then the resulting solution is [KCET 2002]

(a) 0.25 *N* basic (b) 0.2 *N* acidic

(c) 0.25 *N* acidic (d) 0.2 *N* basic

- What volume at *N.T.P.* of gaseous *NH* will be required to be passed into 30 *ml* of *NHSO* solution to bring down the acid strength of this solution to 0.2 *N* [UPSEAT 2001]
 - (a) 357.2 *ml* (b) 444.4 *ml*
 - (c) 537.6 *ml* (d) 495.6 *ml*
- 9. 8 *ml* of $\frac{N}{10}$ *HCl* are required to neutralize 20 *ml* solution of

 $\mathit{Na_2CO_3}$ in water. Normality of $\mathit{Na_2CO_3}$ solution is

(a)	0.40 N	(b)	0.040 N
(c)	4.0 N	(d)	1.4 N

0. Required amount of crystalline oxalic acid (eq. wt. = 63) to prepare N/10 250 *ml* oxalic acid solution is

			-	'
[MP PMT 1996]				
	1.575 <i>g</i>	(b)	0.158 g	(a)
	6.3 <i>g</i>	(d)	15.75 g	(c)

15 *ml* of 0.2 *N* alkali is required to complete neutralization of 30 *ml* acid solution. Concentration of the acid solution is

			[NCERT 1985; CPMT 1986]
(a)	0.1 <i>N</i>	(b)	0.3 N
(c)	0.15 N	(d)	0.4 N

12. 200 ml 0.6 N H_2SO_4 and 100 ml of 0.3N HCl are mixed together. Acidic normality of the resultant solution is

	[CPMT 1084]		[DPMT 1991]
	(a) $0.5 N$	(b) 0.9 N	
	(c) 0.3 <i>N</i>	(d) 0.6 N	
13.	10 ml of 10 M H_2SO_4	s mixed to 100 <i>ml</i> 1 <i>M</i>	1 NaOH solution.
	The resultant solution will	be [NCERT 1971]	
	(a) Acidic	(b) Neutral	
	(c) Weakly alkaline	(d) Strongly a	alkaline
14.	Volume of 0.1 $M H_2SO$	required to neutral	ize 30 <i>ml</i> of 0.2 <i>N</i>
	NaOH is	[EAMCE	T 1978; MP PMT 2001]
	(a) 30 <i>ml</i>	(b) 15 <i>ml</i>	
	(c) 40 <i>ml</i>	(d) 60 <i>ml</i>	

15. $5N H_2SO_4$ was diluted from 1 *litre* to 10 *litres*. Normality of the solution[MBtBETet995]

(a)	10 N	(b)	5 N
(c)	1 <i>N</i>	(d)	0.5 N

16. 0.45 g of an acid (mol wt. = 90) required 20 ml of 0.5 N KOH for complete neutralization. Basicity of acid is

(a)	1	(b) 2
(c)	3	(d) 4

17.	Equivalent weight of c	rystaline oxalic acid is	[MP PMT 1995]
	(a) 12	(b) 63	
	(c) 53	(d) 40	

18. Volume of $\frac{N}{10}H_2SO_4$ required to neutralize 10 *ml* 5 *N* Na_2CO_3 is

(a)	100 <i>ml</i>	(b)	50 ml

(c) 500 *ml* (d) 1000 *ml*

19. The equivalent weight of *KMnO* in alkaline medium will be

(a)	31.60	(b)	52.66
(c)	79.00	(d)	158.00

20. An aqueous solution of 6.3g oxalic acid dehydrate is made up to 250 ml. The volume of 0.1N NaOH required to completely neutralize 10 ml of this solution is

[IIT-JEE (Screening) 2001]

[MP PMT 2001]

[CPMT 1979]

(a)	40 <i>ml</i>	(b)	20 <i>ml</i>
(c)	10 <i>ml</i>	(d)	4 <i>ml</i>

21. In the standardization of NaSO using KCrO by iodometry, the equivalent weight of KCrO is

[IIT-JEE (Screening) 2001]

- (a) (Molecular weight)/2
- (b) (Molecular weight)/6
- (c) (Molecular weight)/3
- (d) Same as molecular weight
- 25 *ml* of a solution of *NaCO* having a specific gravity of 1.25 required 32.9 *ml* of a solution of *HCl* containing 109.5 *grams* of the acid per litre for complete neutralization. Calculate the volume of 0.84 *N HSO* that will be completely neutralized by 125 *grams* of the *NaCO* solution[**UPSEAT 2001**]_{2.}
 (a) 460 ml

(a)	400 <i>mi</i>	(B)	540 mi
(c)	480 <i>ml</i>	(d)	470 <i>ml</i>

23. The volume of 0.05 M H_2SO_4 required to neutralise 80 ml of 0.13 N NaOH will be [CPMT 1989]

(a)	104 <i>ml</i>	(b)	52 ml	
(c)	10 / ml	(b)	26 ml	

()	10.4 111			(u)	20 111
		-	 		

 24. How many grams of NaOH will be required to prepare 250 ml of 0.1 M solution
 [EAMCET 1978]

 (a) 1 gm
 (b) 4 gms

(4)	· g	(5)	+ 5
(c)	40 <i>gms</i>	(d)	10 <i>gms</i>

25. Molecular weight of oxalic acid is 126. The weight of oxalic acid required to neutralise 100 cc of normal solution of NaOH is

(a)	6.3 <i>gm</i>	(b)	126 <i>gm</i>
(c)	530 gm	(d)	63 gm

- 26. Concentrated HCl is 10 N, 1000 cc of 1N HCl can be obtained by diluting [EAMCET 1978]
 - (a) 1 cc of conc. HCl to 1000 cc
 - (b) 10 cc of conc. HCl to 1000 cc
 - (c) 20 cc of conc. $HCl\,$ to 1000 cc
 - (d) 100 cc of conc. HCl to 1000 cc

- **27.** The equivalent weight of an acid is equal to
 - (a) Molecular weight \times acidity
 - (b) Molecular weight \times basicity
 - $(c) \quad \mbox{Molecular weight / basicity} \\$
 - $(d) \quad \text{Molecular weight / acidity} \\$
- **28.** A metal oxide is reduced by heating it in a stream of hydrogen. It is found that after complete reduction, 3.15 *g* of the oxide have yielded 1.05 of the metal. We may deduce that
 - (a) The *eq.* weight of the metal is 8
 - $(b) \ \ \, \mbox{The atomic weight of the metal is 8}$
 - (c) The atomic weight of the metal is 4
 - (d) The *eq.* weight of the metal is 4
- 29. The molecular weight of a tribasic acid is *M*. What will be its equivalent weight [CPMT 1974, 79; MP PMT 2003]

(a)
$$\frac{M}{2}$$
 (b) M

(c)
$$\frac{M}{3}$$
 (d) $\sqrt{\frac{M}{3}}$

30. Which of the following plot represents the graph of *pH* against volume of alkali added in the titration of *NaOH* and *HCl*

31. Phenolphthalein is not suitable for the titration of

[MP PMT 2003]

[AIIMS 1997]

- (a) NaOH vs (COOH) (b) KOH vs HSO
- (c) KCO vs HCl (d) None of these

In order to prepare one *litre* normal solution of *KMnO* how many *gm* of *KMnO* are required, if the solution is to be used in acid medium for oxidation [MP PET 2002]

- (a) 158 gm (b) 31.60 gm
- (c) 62.0 gm (d) 790 gm
- **33.** 20 *ml* of a solution of a weak monobasic acid neutralizes 22.18 *ml* of a solution of *NaOH* and 20 *ml* of *N*/10 *HCl* neutralizes 21.5 *ml* of the same *NaOH* solution. The normality for the acid is nearly[**MP PET 2002**]
 - (a) 10 N (b) 1 N
 - (c) 0.10 N (d) 100 N
- **34.** How many *ml* of 1 (*M*) H_2SO_4 is required to neutralise 10 *ml* of 1(*M*) *NaOH* solution
 - [NCERT 1973] [MP PET 1997; MP PMT 1999] (a) 2.5 (b) 5.0
 - (c) 10.0 (d) 20.0

35. The maximum amount of $BaSO_4$ precipitated on mixing $BaCl_2$ (0.5*M*) with H_2SO_4 (1*M*) will correspond to

- (a) 0.5 *M* (b) 1.0 *M*
- (c) 1.5 *M* (d) 2.0 *M*

[AIIMS 1998]

36.	How many grams of $NaOH$ are equivalent to 100 ml of 0.1 N oxalic acid
	(a) 0.2 (b) 2.0
	(c) 0.4 (d) 4.0
37.	How much of <i>NaOH</i> is required to neutralize 1500 <i>cm</i> of 0.1 <i>N HCl</i> (At. <i>wt</i> . of <i>Na</i> = 23) [KCET (Med.) 2001]
	(a) $4 g$ (b) $6 g$
	(c) 40 g (d) 60 g
38.	0.126 g of an acid requires 20 ml of 0.1 N NaOH for complete
	neutralization. The equivalent weight of the acid is
	[MP PET 2001]
	(a) 45 (b) 53
	$ \begin{array}{cccc} (c) & 40 \\ \hline \end{array} \\ (d) & 63 \\ \hline \end{array} $
39.	The ratio of amounts of HS needed to precipitate all the metal ions from 100 <i>ml</i> of 1 <i>M</i> AgNO and 100 <i>ml</i> of 1 <i>M</i> CuSO is
	(a) 1:2 (b) 2:1
	(c) Zero (d) Infinity
40.	The equivalent weight of a divalent metal is 31.82. The weight of a single atom is [MH CET 2000]
	(a) 63.64 (b) $\frac{63.64}{6.02 \times 10^{23}}$
	(c) $32.77 \times 6.02 \times 10^{23}$ (d) $63.64 \times 6.02 \times 10^{23}$
41.	For the preparation of sodium thiosulphate by "Springs reaction", the reactants used are [EAMCET 2003]
	(a) $NaS + NaSO + Cl$
	(b) $NaS + SO$
	(c) $NaSO_{1} + S$
	(d) $Na_{3}S + Na_{3}SO_{3} + I_{2}$
42.	Phenolphthalein is most suitable indicator for the titration of
	[MP PMT 2000]
	(a) CH COOH and NH OH
	(b) CH COOH and NaOH
	(c) HCl and NHOH
	(d) HCO and NHOH
43.	The simplest formula of a compound containing 50% of element X (at. w <i>t</i> . 10) and 50% of element Y (at. <i>wt</i> =20) is
	[DPMT 2000]
	(a) $X_i Y_i$ (b) XY_i
	(c) $X_i Y$ (d) XY
44.	chloride is 59.25. Its atomic weight is [DPMT 2000]
	(a) 12 (b) 8
	(c) 36 (d) 24
45	Indicator for the titration of HCl and $Na_{2}CO_{2}$ would be
10.	
	(a) $K_4 Fe(CN)_6$ (b) $K_3 Fe(CN)_6$
_	(a) $K_4 Fe(CN)_6$ (b) $K_3 Fe(CN)_6$ (c) Phenolphthalein (d) Methyl orange
46.	(a) $K_4 Fe(CN)_6$ (b) $K_3 Fe(CN)_6$ (c) Phenolphthalein (d) Methyl orange 20 <i>ml</i> of a <i>N</i> solution of <i>KMnO</i> just reacts with 20 <i>ml</i> of a solution of oxalic acid. The weight of oxalic acid crystals in 1 <i>N</i> of the solution is [JIPMER 1999]
46.	(a) $K_4 Fe(CN)_6$ (b) $K_3 Fe(CN)_6$ (c) Phenolphthalein (d) Methyl orange 20 ml of a N solution of KMnO just reacts with 20 ml of a solution of oxalic acid. The weight of oxalic acid crystals in 1N of the solution is [JIPMER 1999] (a) 31.5 g (b) 126 g
46.	(a) $K_4 Fe(CN)_6$ (b) $K_3 Fe(CN)_6$ (c) Phenolphthalein (d) Methyl orange 20 ml of a N solution of KMnO just reacts with 20 ml of a solution of oxalic acid. The weight of oxalic acid crystals in 1N of the solution is [JIPMER 1999] (a) 31.5 g (b) 126 g (c) 63 g (d) 6.3 g
46. 47.	(a) $K_4 Fe(CN)_6$ (b) $K_3 Fe(CN)_6$ (c) Phenolphthalein (d) Methyl orange 20 ml of a N solution of KMnO just reacts with 20 ml of a solution of oxalic acid. The weight of oxalic acid crystals in 1N of the solution is [JIPMER 1999] (a) 31.5 g (b) 126 g (c) 63 g (d) 6.3 g 0.53 gm of Na_2CO_2 has been dissolved in 100 ml of a sodium

(a)	<u>N</u>	(b)	N
()	5		2

(c) $\frac{N}{10}$ (d) N

48. 2 N - HCl will have the same molar concentration as

(a)
$$0.5 \ N - H_2 SO_4$$
 (b) $1.0 \ N - H_2 SO_4$
(c) $2 \ N - H_2 SO_4$ (d) $4 \ N - H_2 SO_4$

49. Which of the following pair does not distinguish by passing H_2S

(a)	Hg, Pb	(b) <i>Cc</i>	l, Pb
(c)	As, Cu	(d) Zn	ı, Mn

- 50. If 100 ml of 1 N sulphuric acid were mixed with 100 ml of 1 M sodium hydroxide, the solution will be [MP PET 1999]
 - (a) Acidic (b) Basic (c) Neutral (d) Slightly acidic
- **51.** 100 cm^3 of 0.1 *N HCl* solution is mixed with 100 cm^3 of 0.2 N *NaOH* solution. The resulting solution is

[MP PET 1996]

[CPMT 1996]

- (a) 0.1 *N* and the solution is basic
- (b) 0.05 *N* and the solution is basic
- (c) 0.1 N and the solution is acidic
- (d) ~~ 0.05 $\it N$ and the solution is acidic
- 52. For preparing 0.1 N solution of a compound from its impure sample, of which the percentage purity is known, the weight of the substance required will be [MP PET 1996]
 - $(a) \quad \text{More than the theoretical weight} \\$
 - (b) Less than the theoretical weight
 - (c) Same as theoretical weight
 - (d) None of these
- **53.** The equivalent weight of Zn(OH) in the following reaction is equal to its, $[Zn(OH) + (NO) \rightarrow Zn(OH)(NO) + H_iO]$

[MH CET 1999]

- (a) $\frac{\text{Formula wt.}}{2}$ (b) $\frac{\text{Formula wt.}}{1}$
- (c) $3 \times \text{formula wt.}$ (d) $2 \times \text{formula wt.}$

54. In the titration of strong acid and weak base, the indicator used is

(a)	Thymol blue	(b)	Phenolphthalein
(c)	Thymolphthalein	(d)	Methyl orange

55. To neutralize 25 *ml* of 0.25 *M* Na_2CO_3 solution how much volume of 0.5 *M HCl* is required [MP PET 1994]

- (a) 12.5 *ml* (b) 25 *ml*
- (c) 37.5 *ml* (d) 50 *ml*

56. 0.16 gm of a dibasic acid required 25 ml of decinormal NaOH solution for complete neutralization. The molecular weight of the acid is [CPMT 1989; MP PET 1993]
(a) 32 (b) 64

(c) 128 (d) 256

57. When 100 ml N - NaOH solution and 10 ml of 10 N sulphuric acid solution are mixed together, the resulting solution will be[DPMT 1982; MP 1

- (a) Alkali (b) Weakly acidic
- (c) Strongly acidic (d) Neutral
- 58. Cosin [MPCPMT 1996] ct end point of precipitation titration by adsorption is called [KCET (Med). 2000]
 - (a) Absorption indicator (b) Adsorption indicator
 - (c) Chemical indicator (d) Normal indicator

59.	0.1914g of an organic acid is dissolved in approx. 20 ml of water. 25
	ml of 0.12 N NaOH required for the complete neutralization of the
	acid solution. The equivalent weight of the acid is

(a)	65	(b)	64
(c)	63.80	(d)	62.50

Molecular weight of a tribasic acid is *W*, its equivalent weight is 60.

(a) 2W (b) V	W/3
----------	------	-----

(d) *W* – 3 (c) 3W

Approximate atomic weight of an element is 26.89. If its equivalent 61. weight is 8.9, the exact atomic weight of element would be

(a)	26.89	(b)	8.9
(c)	17.8	(d)	26.7

1 gm of hydrogen is found to combine with 80 gms of bromine. 1 62 gm of calcium (valency 2) combines with 4 gms of bromine. The equivalent weight of calcium is

(a)	10	(b)	20
(c)	40	(d)	80

- 4.0 gram caustic soda is dissolved in 100 cc solution. The normality 63. of solution is [MP PMT 1995] (a) 1.0 (b) 0.1
 - (c) 0.5 (d) 4.0
- 64. Which of the following is required to neutralize 1 litre N - NaOH

(a)
$$1 \ l - N - H_2 SO_4$$
 (b) $1 \ l - M - H_2 SO_4$
(c) $1 \ l - 2N - H_2 SO_4$ (d) $1 \ l - 0.5N - H_2 SO_4$

What will be the volume of CO at S.T.P., obtained by heating 9.85 g 65. of *BaCO* (Atomic number of Ba = 137)

			[MP PMT 2003]
(a)	1.12 <i>litre</i>	(b) 0.	.84 <i>litre</i>
(c)	2.24 <i>litre</i>	(d) 4	.06 <i>litre</i>

- 66. Which indicator can be used in the titration of strong acid and [CBSE PMT 1988] strong base
 - (a) Only phenolphthalein (b) Only methyl orange
 - (c) Either of the two (d) Red litmus
- 67. The indicator used in titrating weak acid (e.g. oxalic acid) with a strong base (e.g. caustic soda) solution is

[IIT-IEE 1985; CPMT 1990; MNR 1980;

- NCERT 1973, 77; MP PMT 1994] (a) Methyl orange (b) Methyl red
- (c) Fluorescein (d) Phenolphthalein
- 68. The pink colour of phenolphthalein in alkaline medium is

[CPMT 1990]

- (a) Due to negative form
- (b) Due to positive form
- (c) Due to OH^- ions
- (d) Due to neutral form
- 69. Phenolphthalein does not act as an indicator for the titration between [NCERT 1976]
 - (a) KOH and H_2SO_4
 - $Ba(OH)_2$ and HCl(b)
 - NaOH and acetic acid (c)
 - (d) Oxalic acid and $KMnO_4$

70. If we use phenolphthalein as an indicator in a titration of Na_2CO_3 with HCl, the usual result is [MP PET 2000] (a) No visible change will occur [CBSE PMT 1989] (a) (b) The indicator reacts with the acid (c) The indicator reacts with the base [CPMI 1936d79h chloride and carbonic acid will be formed Methyl orange gives red colour in [NCERT 1972] Sodium carbonate solution (a) Sodium chloride solution (b) Hydrochloric acid solution (c) [DPMT 1984] Potassium hydroxide solution (d) 72. A 0.1 N solution of Na_2CO_3 is titrated with 0.1 N HCl solution. The best indicator to be used is [NCERT 1971; DPMT 1983; AFMC 1992; CPMT 1983, 97] (a) Potassium ferricyanide (b) Phenolphthalein (c) Methyl red (d) Litmus paper When $KMnO_4$ solution is titrated with a solution containing 73. Fe^{2+} ion, the indicator used in this titration is

(a) Phenolphthalein (b) Methyl orange

- (c) $K_3[Fe(CN)_6]$ (d) None of these
- The strength of a solution (S) in gram/litre, is related to its 74. normality (N) and equivalent weight of solute (e) by the formula

(a)
$$S = \frac{N}{E}$$

(b) $S = \frac{E}{N}$
(c) $S = N.E$
(d) All of these

The normality of 1 M solution of H_3PO_4 will be 75.

[A]]MS 1983, 91]

[MNR 1985; UPSEAT 2000]

[CPMT 1989; AIIMS 1996]

(a)	1 <i>N</i>	(b)	0.5 N
(c)	2 N	(d)	3 N

In the reaction $I_2 + 2S_2O_3^- \rightarrow 2l^- + S_4O_6^{2-}$; the equivalent 76. weight of iodine will be equal to

(a) Molecular weight

71.

[NCERT 1982]

- (b) 1/2 the molecular weight
- (c) 1/4 the molecular weight
- (d) Twice the molecular weight
- To what extent must a given solution of concentration of 40 mg 77. silver nitrate per *ml* be diluted to yield a solution of concentration of 16 $mg AgNO_3$ per ml[NCERT 1977]
 - (a) Each *ml* must be diluted to 2.5 *ml*
 - (b) To each *ml* of solution 2.5 *ml* of water should be added
 - (c) To 2.5 *ml* of solution 2 *ml* of water should be added
 - (d) To 1.5 ml of solution 1.5 ml of water should be added
- 10 ml of conc. H_2SO_4 (18 molar) is diluted to 1 litre. The 78. approximate strength of dilute acid could be [CPMT 1971] (a) 0.18 N (b) 0.36 N
 - (d) 18.00 N (c) 0.09 N
- For preparing one litre N/10 solution of H_2SO_4 , we need 79. H_2SO_4 [DPMT 1982]
 - (a) 98 gms (b) 10 gms (c) 100 gms (d) 4.9 gms
- 80. What is the concentration of nitrate ions if equal volumes of 0.1 M
 - AgNO3 and 0.1 M NaCl are mixed together
 - [NCERT 1981; CPMT 1983] (a) 0.1 N (b) 0.2 *M*

	(c) 0.05 <i>M</i>	(d)	0.25 M
81.	To neutralise 10 ml of $M/5$ Λ	laOH	the volume of $M/20$ HCl
	required is		[EAMCET 1980]
	(a) 10 <i>ml</i>	(b)	15 <i>ml</i>
	(c) 40 <i>ml</i>	(d)	25 ml
82.	To change the strength of 25 quantity of water that is to be a	<i>ml</i> of idded is	0.15 <i>M HCl</i> to 0.1 <i>M</i> the [EAMCET 1979]
	(a) 37.5 <i>ml</i>	(b)	12.5 <i>ml</i>
	(c) 25.0 <i>ml</i>	(d)	18.75 <i>ml</i>
83.	The volume of 0.1 M H_2S	O_4 the	nat is needed to completely
	neutralise 40 <i>ml</i> of 0.2 <i>M</i> NaC	OH is	[EAMCET 1979]
	(a) 10 <i>ml</i>	(b)	20 <i>ml</i>
	(c) 40 <i>ml</i>	(d)	80 <i>ml</i>
84.	What volume of water is to	be add	led to 50 <i>ml</i> of 4 <i>N NaOH</i>
	solution to obtain a 1 N solution	1	[MP PET 2002]
	(a) 100 <i>ml</i>	(b)	150 <i>ml</i>
	(c) 200 <i>ml</i>	(d)	250 <i>ml</i>
85.	In alkaline condition <i>KMnO</i> , rea	cts as f	ollows,
	$2KMNO + 2KOH \rightarrow 2KMnO$	+ <i>H</i> _. <i>O</i> +	<i>O</i> .
	The <i>eq. wt.</i> of <i>KMnO</i> is		[DPMT 2000]
	(a) 79	(b)	31.6
	(c) 158	(d)	52.7
86.	When a standard solution of Na	<i>OH</i> is 1	eft in the air for a few hours,
	(a) A precipitate will form.		
	(b) Strength will decrease.		
	(c) The concentration of Na^+	ions v	vill decrease.
	(d) All are wrong.		
87.	In the iodometric estimation in ?	laborat	ory, which process is involved [Orissa JEE 2004]

(a)
$$Cr^2 O_7^{2-} + H^+ + \Gamma \rightarrow 2Cr^{3+} + I_2,$$

 $I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + \Gamma$

(b) $MnO_4^- + H^+ + I^- \rightarrow MnO_2 + I_2$

$$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + I$$

(c) $MnO_4^- + OH^- + \Gamma \rightarrow MnO_2 + I_2$ $I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} + \Gamma$

(d)
$$Cr_2 O_7^{2-} + OH^- + \Gamma \rightarrow 2Cr^{3+} + I_2$$

$$V_2 + S_2 O_3^{2-} \to S_4 O_6^{2-} + \Gamma$$

What is the volume of 0.1 N-HCl required to react completely with 88. 1.0 *gm* of pure calcium carbonate.

[DPMT 2004]

(a)	$100 cm^3$	(b)	$150 cm^3$
-----	-------------	-----	-------------

(c)
$$250 \, cm^3$$
 (d) $200 \, cm^3$

- The weight of a residue obtained by heating 2.76 g of silver 89. carbonate is [Pb. PMT 2004] (a) 2.76 g (b) 2.98 g
 - (c) 2.16 g (d) 2.44 g
 - What is the molarity of H_2SO_4 solution if 25 ml is exactly
- 90. neutralised with 32.63 ml of 0.164 M, NaOH [DCE 2003] (a) 0.107 M
 - (b) 0.126 M (c) 0.214 M (d) -0.428 M
- Weight of $Ca(OH)_2$ needed to prepare 250 ml of solution with pH 91. = 13 [BVP 2004]

(a)	0.925 <i>g</i>	(b)	0.0125 g

	(c) 0.25 g	(d)	1 <i>g</i>
92.	What will be the volume of a 12 / <i>ml</i> 18 <i>M</i> solution	U solı [BVP	ution, if it is equivalent to 240 ? 2004]
	(a) 6 <i>litre</i>	(b)	600 <i>litre</i>
	(c) 400 <i>litre</i>	(d)	0.36 <i>litre</i>
93.	The volume of $\frac{N}{10}$ <i>NaOH</i> require	re to	neutralise 100 <i>ml</i> of $\frac{N}{25}$ <i>HCl</i>
	is		[Pb. CET 2000]
	(a) 30 <i>ml</i>	(b)	100 <i>ml</i>
	(c) 40 <i>ml</i>	(d)	25 ml
94.	The volume of 0.6 <i>M NaOH</i> requ <i>M HCl</i> is	uired	to neutralise 30 cm^3 of 0.4 [Pb. CET 2001]
	(a) 40 cm^3	(b)	30 cm^3
	(c) 20 cm^3	(d)	$10 \ cm^3$
95.	Solubility of iodine in water may	be in	creased by adding
			[DCE 2004]
	(a) Chloroform	(b)	Potassium iodide
	(c) Carbon disulphate	(d)	Sodium Thiosulphate
96.	If 30 ml of H_2 and 20 ml of O	₂ rea	cts to form water, what is left
	at the end of the reaction		[AFMC 2005]
	(a) 10 <i>ml</i> of H_2	(b)	5 <i>ml</i> of H_2
	(c) 10 <i>ml</i> of O_2	(d)	5 <i>ml</i> of O_2
9 7.	The primary standard solution for	• esti	mation of $Na_2S_2O_3$ is
	(a) I_2 solution	(b)	KMnO ₄
	(c) $K_2 C r_2 O_7$	(d)	Oxalic acid

Acidic solution of $S_2 O_3^{2-}$ is converted to in presence of I_2 98.

(a) $S_4 O_6^{2-} + I^-$ (b) $SO_4^{2-} + I^-$ (d) $S_4 O_6^{2-} + I_3^-$ (c) $SO_3 + I^-$

- 1. A white solid 'A' on heating gives off a gas which turns lime water milky. The residue is yellow when hot but turns white on cooling. This solid 'A' is [MP PMT 1999]
 - (a) Zinc sulphate (b) Zinc carbonate
 - (c) Lead sulphate (d) Lead carbonate
- A salt on treatment with dil. HCl gives a pungent smelling gas and 2. a yellow precipitate. The salt gives green flame when tested. The salt solution gives a yellow precipitate with potassium chromate. The salt [MP PET 1996] is
 - (a) $NiSO_4$ (b) BaS_2O_3
 - (c) PbS_2O_3 (d) $CuSO_4$
- The salt used for performing 'bead' test in qualitative inorganic з. analysis is [UPSEAT 2001]
 - (a) $K_2 SO_4 . Al_2 (SO_4)_3 . 24H_2O$
 - (b) $FeSO_4.(NH_4)_2SO_4.6H_2O$
 - (c) $Na(NH_4)HPO_4.4H_2O$
 - (d) $CaSO_4 2H_2O$

4.	Where chlorine water is added to an aqueous solution	of potassium
	halide in presence of chloroform, a violet colour is o	obtained. On
	adding more of chlorine water, the violet colour disap	pears, and a
	colourless solution is obtained. This test confirms the	presence of
	the following in aqueous solution	[CPMT 1990]

- (a) lodide (b) Bromide (c) Chloride (d) lodide and bromide
- Upon the addition of a solution A to a strongly acidified solution of 5. barium nitrate, a white precipitate was obtained which did not dissolve even after large addition of water. Solution A contained
 - (a) Sodium phosphate (b) Sodium carbonate (d) Sodium chloride (c) Sodium sulphate
- To an acid solution of an anion a few drops of $KMnO_4$ solution 6. are added. Which of the following, if present will not decolourise the $KMnO_4$ solution [MP PMT 1997]
 - (b) S^{2-} (a) NO_2^-
 - Cl^{-} (d) CO_3^{2-} (c)
- The brown ring test for NO and NO_3^{-1} is due to the formation of 7. complex ion with the formula
 - [KCET (Eng./Med.) 2000; Kerala PMT 2004]

(a)	[Fe(HO)]	(b)	$[Fe(NO) (CN)_{s}]^{2}$
(c)	[Fe(HO),NO]	(d)	[Fe(HO)(NO)]

8. Mixture is heated with dil. $\boldsymbol{H}_2\boldsymbol{SO}_4~$ and the lead acetate paper turns black by the evolved gases. The mixture contains

	•	-		
(a)	Sulphite		(b)	Sulphide
(c)	Sulphate		(d)	Thiosulphate

- To a solution of a substance, gradual addition of ammonium 9. hydroxide results in a black precipitate which does not dissolve in excess of NH 4 OH . However, when HCl is added to the original solution, a white precipitate is formed. The solution contained[**BHU 1973**]
 - (a) Lead salt (b) Silver salt
 - (c) Mercurous salt (d) Copper salt
- If NaOH is added to an aqueous solution of zinc ions, a white 10. precipitate appears and on adding excess NaOH, the precipitate dissolves. In this solution zinc exists in the

[NCERT 1981; MP PET 1993]

- (a) Cationic part
- (b) Anionic part
- Both in cationic and anionic parts (c)
- (d) There is no zinc in the solution
- 11. On performing a borax-bead test with a given inorganic mixture for qualitative analysis, the colour of the bead was found to be emerald green both in oxidising and reducing flame. It indicates the possibility of the presence of

[MP PMT 2001]

(a)	Co	(b)	Ni
(c)	Cr	(d)	Cu

A red solid is insoluble in water. However it becomes soluble if some 12. KI is added to water. Heating the red solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on the cooler parts of the test tube. The red solid is[AIEEE 2003] (a) (NH) CrO(b) *Hgl*

(c)
$$HgO$$
 (d) PbO
Ap aquious solution of $FaSO$ Al (SO)

An aqueous solution of $FeSO_4$, $Al_2(SO_4)_3$ and chrome alum is 13. heated with excess of Na_2O_2 and filtered. The materials obtained

are [IIT 1996] (a) A colourless filtrate and a green residue

- (b) A yellow filtrate and a green residue

- (c) A yellow filtrate and a brown residue
- (d) A green filtrate and a brown residue

- Phosphoric acid (H_3PO_4) is tribasic acid and one of its salts is 14. sodium dihydrogen phosphate (NaH_2PO_4) . What volume of 1 M NaOH solution should be added to 12 g of sodium dihydrogen phosphate (mol. wt. 120) to exactly convert it into trisodium phosphate Na_3PO_4
 - [Kurukshetra CET 1998] (a) 80 ml (b) 100 ml (c) 200 ml (d) 300 ml Three separate samples of a solution of a single salt gave these test results : One formed a white precipitate with excess ammonia
 - solution, one formed a white precipitate with dil. NaCl solution and one formed a black precipitate with H_2S . The salt could be[Pb. PMT 1998 (b) $Pb(NO_3)_2$ (a) $AgNO_3$
 - (c) $Hg(NO_3)_2$ (d) $MnSO_4$
- 10 ml of concentrated HCl were diluted to 1 litre. 20 ml of this 16. diluted solution required 25 ml of 0.1 N sodium hydroxide solution for complete neutralization, the normality of the concentrated hydrochloric acid will be
 - (a) 8.0 (b) 9.5 (c) 12.5 (d) 15.0
- To a 25 ml of HO solution, excess of acidified solution of Kl was 17. mixed. The liberated 1 require 20 ml of 0.3M hypo solution for neutralization. The volume strength of HO will be [MP PET 2003] (a) 1.34 ml (b) 1.44 ml (c) 1.60 ml (d) 2.42 ml 18. A chemistry student trying to detect the metallic ion in a salt, makes a paste on a clean platinum wire loop of the salt with concentrated
 - HCl. When he takes a small amount of this paste and keeps it in a non-luminous Bunsen flame, the colour of the flame changes to grassy green. He should, therefore, conclude that the metal is[Manipal MEE 1995 (a) Barium
 - (b) Calcium (c) Potassium (d) Strontium
 - A white crystalline substance dissolves in water. On passing H_2S

in this solution, a black precipitate is obtained. The black precipitate dissolves completely in hot HNO_3 . On adding a few drops of conc.

 H_2SO_4 a white precipitate is obtained. This precipitate is that of [CPMT 1990]

- (b) $SrSO_4$
- (c) $PbSO_{4}$ (d) $CdSO_4$
- The best explanation for the solubility of MnS in dil. HCl is that[UPSEAT 2001]
- Solubility product of MnCl is less than that of MnS (a)
- Concentration of Mn is lowered by the formation of complex (b) ions with chloride ions
- Concentration of sulphide ions is lowered by oxidation to free (c) sulphur
- (d) Concentration of sulphide ions is lowered by formation of the weak acid HS

Reason & Reason For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- *(b)* If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d)If the assertion and reason both are false.
- If assertion is false but reason is true. (e)

10

20.

15.

(a) $BaSO_4$

1.	Assertion	:	Lime water becomes turbid on passing $\ CO_2 \$ but
			becomes clear on passing more CO_2 .
	Reason	:	Lime water is calcium hydroxide, $Ca(OH)_2$.
			[A11MS 2000]
2.	Assertion	:	Sb(III) is not precipitated as sulphide when in its
			alkaline solution H_2S is passed.
	Reason	:	The concentration of S^{2-} ion in alkaline medium is inadequate for presinitation
			[AllMS 2004]
3.	Assertion	:	CuS will give H_2S in dilute acid test.
	Reason	:	All sulphides react with dil. H_2SO_4 , on heating,
			to give H_2S .
4.	Assertion	:	$PbCl_2$ will give HCl in conc. H_2SO_4 test.
	Reason	:	All chlorides react with conc. H_2SO_4 , on
			heating, to give <i>HCl</i>
5.	Assertion	:	$ZnCO_3$ will not give any gas when treated with
			conc. $H_2 SO_4$.
	Reason	:	CO_3^{2-} can only be detected in dil. acid test.
6.	Assertion	:	<i>CdS</i> is yellow in colour.
	Reason	:	Cd salts are yellow in colour.
7.	Assertion	:	A brown gas which intensifies on adding Cu-
			turnings in conc. H_2SO_4 test is NO_2 .
	Reason	:	Copper reacts with conc. $H\!NO_3$ to give NO_2 .
8.	Assertion	:	CuS is blue in colour.
	Reason	:	All Cu^{2+} salts are blue in colour.
9.	Assertion	:	Acidified $K_2 Cr_2 O_7$ is turned green when SO_2 is
			passed through it.
	Reason	:	In this reaction SO_2 acts as a reducing agent.
10.	Assertion	:	White ppt. of $AgCl$ is soluble in NH_4OH .
	Reason	:	It is due to the formation of soluble complex.
11.	Assertion	:	All soluble sulphides gives white ppt. with $BaCl_2$
	D		solution.
	Reason	:	Bas is insoluble in water.
12.	Assertion	:	A solution of $BlCl_3$ in conc. HCl when diluted with water gives white ppt.
	Reason	:	$BiCl_3$ in insoluble in dil. HCl .
13.	Assertion	:	Addition of NH_4OH to an aqueous solution of
			$BaCl_2$ in the presence of NH_4Cl (excess)
			precipitates $Ba(OH)_2$.
	Reason	:	$Ba(OH)_2$ is insoluble in water.
			[AllMS 2005]

6	d	7	d	8	b	9	с	10	с
11	d	12	а	13	d	14	b	15	а
16	b	17	C	18	b	19	а	20	b
21	b	22	b	23	а				

Wet Test for Acid Radical

1	abd	2	c	3	b	4	d	5	с
6	а	7	b	8	d	9	а	10	b
11	b	12	d	13	C	14	C	15	C
16	b	17	C	18	а	19	b	20	а
21	c	22	d	23	d	24	C	25	b
26	C	27	b	28	b	29	b	30	а
31	а	32	C	33	а	34	b	35	а
36	b	37	а	38	а	39	d	40	b
41	а								

Wet Test for Basic Radical

1	b	2	b	3	b	4	b	5	b
6	b	7	C	8	а	9	d	10	b
11	d	12	d	13	C	14	d	15	а
16	b	17	а	18	b	19	C	20	а
21	abcd	22	bcd	23	C	24	C	25	b
26	a	27	a	28	а	29	b	30	d
31	b	32	C	33	d	34	C	35	d
36	b	37	C	38	C	39	d	40	b
41	C	42	b	43	d	44	а	45	b
46	b	47	b	48	a	49	a	50	C
51	а	52	d	53	а	54	C	55	а
56	а	57	d	58	а	59	C	60	b
61	а	62	d	63	d	64	b	65	d
66	C	67	b	68	C	69	a	70	b
71	C	72	b	73	C	74	d	75	d
76	b	77	d	78	d	79	C	80	d
81	b	82	d	83	а	84	C	85	а
86	C	87	b	88	C	89	а	90	d
91	С	92	а	93	С	94	а	95	b
96	а	97	b	98	С	99	d	100	а
101	а	102	b	103	а	104	с		

Volumetric Analysis

1	c	2	c	3	b	4	c	5	a
6	а	7	d	8	C	9	b	10	b
11	а	12	a	13	а	14	а	15	d
16	b	17	b	18	C	19	d	20	a
21	b	22	d	23	а	24	a	25	a
26	d	27	C	28	d	29	C	30	C
31	d	32	b	33	c	34	b	35	a
36	c	37	b	38	d	39	a	40	b

41	d	42	b	43	C	44	а	45	d
46	C	47	C	48	C	49	а	50	С
51	b	52	b	53	b	54	d	55	а
56	C	57	d	58	b	59	C	60	b
61	d	62	b	63	а	64	d	65	а
66	C	67	d	68	а	69	d	70	а
71	C	72	C	73	d	74	C	75	d
76	b	77	а	78	b	79	d	80	С
81	C	82	b	83	C	84	b	85	С
86	b	87	b	88	d	89	C	90	а
91	а	92	d	93	C	94	C	95	b
96	d	97	a	98	a				

Critical Thinking Questions

1	b	2	b	3	C	4	a	5	с
6	d	7	С	8	b	9	C	10	d
11	С	12	b	13	C	14	С	15	а
16	C	17	а	18	а	19	С	20	d

Assertion and Reason

1	b	2	С	3	d	4	d	5	е
6	C	7	а	8	d	9	а	10	а
11	е	12	c	13	b				

Answers and Solutions

Preliminary Test

 $\mathbf{I}. \qquad (\mathbf{a}) \quad Na_2B_4O_7.10H_2O \xrightarrow{-10 H_2O} Na_2B_4O_7$

$$\xrightarrow{\Lambda} 2NaBO_2 + B_2O_3$$

$$CuO + B_2O_3 \rightarrow Cu(BO_2)_2$$

(Copper meta borate blue)

- 2. (c) Borax bead test is generally given by transition elements.
- **5.** (a) Ba^{2+} imparts green colour to the flame.
- 6. (d) As Mn^{+2} has all it's electrons (5) unpaired in it's *d*-orbital, so it's extra stable configuration requires high excitation energy and so it gives violet colour.

(b)
$$2NO + O_2 \rightarrow 2NO_2$$

(Deep brown gas)

8.

- **9.** (c) $CoAlO_2$ is formed which is blue. Follow cobalt nitrate-charcoal test.
- 10. (c) Metals which form basic compounds and have coloured salts give the borax bead test.

n. (d)
$$2KNO_3 + H_2SO_4 \rightarrow 2KHSO_4 + 2NO_2 \uparrow_{\text{(Brown gas)}}$$

- (a) Barium salt gives green coloured flame as it has low ionization energy
- 13. (d) Calcium oxalate will not dissolve in acetic acid (weak acid) but only in strong acid
- $14. (b) Na_2S + dil.2HCl \rightarrow 2NaCl + H_2S$

$$H_2S + H_2SO_4 + K_2Cr_2O_7 \xrightarrow{\text{acidic}} K_2SO_4$$

$$+ Cr_2(SO_4)_3 + S$$
(green)

9

13.

16.

15. (a) Starch lodide paper is used for the test of lodine, as Starch + Iodine \rightarrow Starch Iodide

16. (b) Flame colour of *Ba* salt is green

$$2AgNO_3 + BaCl_2 \rightarrow 2AgCl + Ba(NO_3)_2$$
.
White ppt.

17. (c)
$$NH_3 + HCl \rightarrow NH_4Cl$$

dense white fumes

18. (b)
$$CoO + B_2O_3 \xrightarrow{\text{Heat}} Co(BO_2)_2$$

Copper metabrate (blue)

- **20.** (b) In laboratory burners, oil gas is generally used. Oil gas is mixture of $CH_4 + CO + CO_2 + H_2$
- **21.** (b) $H_2S \rightarrow$ colourless gas with unpleasant odour of rotten eggs.

 $SO_{\,2}$ $\rightarrow\,$ colourless gas with a pungent suffocating odour

 $PH_3 \rightarrow {\rm colourless}$ gas with unpleasant garlic like odour or rotten fish odour.

22. (b)
$$NO(g) + NO(g) \xrightarrow{-30^{\circ}C} NO(f)$$

(BLUE)

23. (a) Yellowish-green gas of chlorine with sufocating odour is evolved when the solid chloride mixed with manganese dioxide is heated with concentrated H_2SO_4 .

 $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$ $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$

Wet Test for Acid Radical

(abd) Chromyl chloride test $4NaCl + K_2Cr_2O_7 + 3H_2SO_4 \xrightarrow{heat} K_2SO_4 + 2Na_2SO_4 + 2CrO_2Cl_2 + 3H_2O_{chromyl chloride (orange red)}$ $4NaOH + CrO_2Cl_2 \rightarrow 2NaCl + Na_2CrO_4 + 2H_2O_{Sod. chromate (Yellow)}$ $Na_2CrO_4 + (CH_3COO)_2Pb \rightarrow 2CH_3COONa + COONA + COON$

 $\begin{array}{c} PbCrO_4 \downarrow \\ Lead chromate \\ (yellow ppt.) \end{array}$

- 2. (c) Starch is colourless but Starch + Iodine→ Starch Iodine (violet)→ (blue-black)
- 3. (b) Brown ring test with (FeSO, NO)

1.

7.

4. (d)
$$Na_4[Fe(CN)_5 NO] + S^{2-} \rightarrow Na_4[Fe(CN)_5 NOS]$$

Sodium thio nitroprusside
(violet)

6. (a) With F^- , no precipitate is obtained because of low lattice energy of AgF, so it remains in ionized state

(b)
$$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$$

 $K_2Cr_2O_7 + 2H_2SO_4 \rightarrow 2KHSO_4 + 2CrO_3 + H_2O$
 $CrO_3 + 2HCl \rightarrow CrO_2Cl_2$
(orange red vapour)

8. (d)
$$CrO_2Cl_2 \xrightarrow{NaOH} Na_2CrO_4 \xrightarrow{CH_3COOH} CH_3COOP_3$$

$$[(CH_3COO)_2Pb] \xrightarrow{CrO_2Cl_2} \rightarrow PbCrO_4$$
vellow pot.

(a)
$$2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3$$

Black ppt.

10. (b) lodine vapours are violet \therefore the salt must contain I^- as $KI + H_2SO_4 \rightarrow KHSO_4 + HI$

$$2HI + H_2SO_4 \rightarrow I_2 + 2H_2O + SO_2$$
violet vapour

11. (b) As Cl^- is more electronegative than Br^- and $I^ \therefore$ it replaces them from their salt as $2I^- + Cl_2 \rightarrow I_2 + 2Cl^- \Rightarrow$ Violet vapour

 $2Br^{-} + Cl_2 \rightarrow Br_2 + 2Cl^{-} \Rightarrow$ Brown vapour

- 12. (d) The salt must have SO_4^{2-} group which is also present in the acid so reaction is not takes place.
 - (c) Phosphates give canary yellow precipitate with ammonium molybdate in the presence of conc. HNO₃

$$H_3PO_4 + 12(NH_4)_2MoO_4 + 21HNO_3$$

$$(NH_4)_3 PO_4.12MoO_3 + 21NH_4 NO_3 + 12H_2O_3$$

ammonium phosphomo lybdate
(canary yellowppt.)

- 15. (c) Nitrates and acetates of all metals are water soluble.
 - (b) When NO_3^- is passed through $FeSO_4$ (neutral) and then few drops of conc. H_2SO_4 is added then the brown ring is obtained.

$$FeSO_4 + NO \rightarrow Fe(NO)SO_4$$

(Brown ring)
Nitroso Ferrousulp hate

- 17. (c) AgCl and AgBr dissolve in NHOH and form complexes but Agl doesn't react with NHOH. e.g. $AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2]Cl + 2H_2O$ complex
- **18.** (a) When Cl^- , Br^- and F^- are treated with $AgNO_3$ solution in presence of dilute HNO_3 , corresponding silver halide is obtained which is soluble in NH_4OH , *NaCN*, and $Na_2S_2O_3$.

$$AgNO_{3} + NaCl \longrightarrow AgCl \downarrow + NaNO_{3}$$

white
$$AgCl + dil2NH_{4}OH \longrightarrow [Ag(NH_{3})_{2}]Cl + 2H_{2}O$$

complex

19. (b) $Ca(OH)_2 + CO_2 \longrightarrow CaCO_{3(S)} + H_2O$ lime water white precipitate

$$CaCO_3 + CO_2(\text{excess}) + H_2O \longrightarrow Ca(HCO_3)_2$$

20. (a) It is a lab method for the preparation of
$$Br_2$$
 e.g.

$$2 KBr + MnO_2 + H_2SO_4 \rightarrow Br_2 + 2 KHSO_4 + MnSO_4$$
Brown gas

21. (c)
$$Na_2SO_3 + 2HCl(dil) \rightarrow 2NaCl + H_2O + SO_2$$
,
 $K_2Cr_2O_2 + H_2SO_4 + 3SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$
(Green)

- 22. (d) As the sulphate radical is a strong oxidising agent, it is insoluble in acids and so detection of sulphate radicle requires no other reagent.
- (d) Sulphite radicle will give a burning sulphur odour. Acetate radical will give a sweet, venegar odour. Nitrite will give a reddish brown gas. Carbonate will give a colourless, odourless gas, *i.e. CO*.
- 24. (c) $PbSO_4$ and $PbCl_2$ are insoluble in cold water hence the reagent $Pb(NO_3)_2$ is used to remove SO_4^{2-} and Cl^{-}

25. (b)
$$2KI + 2H_2SO_4$$
 (Conc.) $\rightarrow 2KHSO_4 + 2HI$
 $MnO_2 + H_2SO_4 \rightarrow MnSO_4 + H_2O + (O)$
 $2HI + (O) \rightarrow H_2O + I_2$
 $2KI + MnO_2 + 3H_2SO_4 \rightarrow I_2 + MnSO_4 + 2H_2O$

- 26. (c) It is a test for chloride ion.
- 27. (b) Dil. HSO doesn't react with chloride but reacts with peroxide
- **28.** (b) Ba(OH) is not highly basic and bond is not easily broken
- **29.** (b) Ozone react with *KI* solution to liberate I_2 gas.
- **30.** (a) $2KBr + MnO_2 + 3H_2SO_4 \rightarrow MnSO_4 + 2KHSO_4$

$$+2H_2O+Br_2\uparrow$$

(reddish
brown gas)

 $+2KHSO_4$

32. (c) NH₃ + 3Cl₂ → NCl₃ + 3HCl
33. (a) At the junction of salt solution and FeSO solution with conc. HSO_a brown ring is obtained (FeSO₄.NO) Brown ring

34. (b)
$$2KMnO_4 + 3H_2SO_4 + 5H_2S \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5S_4$$

35. (a)
$$3FeSO_4 + NO_2 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + FeSO_4.NO + H_2O$$

36. (b) As most of the nitrates are soluble in water.

37. (a) $SO_3^{2^-}, S^{2^-}$ and $SO_4^{2^-}$ salts from comparatively stronger acids (than H_2CO_3) in solution hence evolve CO_2 with Na_2CO_3 solution and give effervesence. While $CO_3^{2^-}$ does not react with Na_2CO_3 solution

38. (a)
$$Na_2CO_3 + 2H_2O \rightarrow 2NaOH + H_2CO_3$$

and $2NaOH \xrightarrow[(ionisation)]{} 2Na^+ + 2OH^-$

Hence, it is clear that $2OH^-$ ions will be formed on hydrolysis of one molecule of sodium corbonate.

39. (d) According to the equation, $Ca(OH)_2 + CO_2 \xrightarrow{\Delta} CaCO_3 + H_2O$ $CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$ $Ca(HCO_3)_2 \xrightarrow{\Delta} CaO + H_2O + 2CO_2$

Hence, the gas A and B are CO_2 and CO_2 respectively

- **40.** (b) $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5S + 8H_2O_4$
- **41.** (a) It doesn't provide free Br^- ions to react with $AgNO_3$.

Wet Test for Basic Radical

- 1. (b) As S forms complex with $(NH_4)_2 CO_3$
- 2. (b) $Cu(NH_3)_4(NO_3)_2 + 4CH_3COOH \rightarrow Cu(NO_3)_2 + 4CH_3COONH_4$

$$2Cu (NO_3)_2 + K_4 [Fe(CN)_6] \rightarrow Cu_2 Fe(CN)_6 + 4 KNO_3$$

- (b) $SnS + (NH_4)_2 S_2 \xrightarrow{HCl} (NH_4)_2 S + SnS_2$
- 4. (b) For the solution to become milky H_2S must be oxidised to SO
- (b) HNO oxidises Fe to Fe otherwise Fe is not completely precipitated as hydroxide
- **6.** (b) Sr^{2+} give bright red colour to the flame
- (c) Calcium oxalate will not dissolve in acetic acid (weak acid) but only in strong acid

8. (a)
$$2Hg + 2HCl \rightarrow Hg_2Cl_2 + H_2$$
 white ppt.

(d) It is an acidic salt

3.

٩.

11.

14.

19.

10. (b) In presence of *NHOH*, dissociation of *HS* is remarkably high so increases the solubility product of $1V^*$ group sulphides $H_2S \Box 2H^+ + S^{2-}$

$$NH_4OH \rightarrow NH_4^+ + OH_4$$

$$OH^- + H^+ \rightarrow H_2O$$

- (d) As cadmium belongs to the II⁻ group and is precipitated as sulphide and not as chloride.
- (d) Aluminium is in 111 group and is precipitated as hydroxide [Al(OH)₃].
- 13. (c) Due to common ion effect as

$$HCl \rightarrow H^+ + Cl^-; \quad H_2S \rightarrow 2 H^+ + S^{2-}.$$

- (d) Oxalate of these metals are insoluble
- **15.** (a) Both will precipitate as sulphide.
- 16. (b) Both Pb and Ag form white ppt. of their chlorides. But $PbCl_2$ is soluble in hot water while AgCl does not dissolve in hot water.

black ppt.

(c)
$$(CH_3COO)_2Pb + H_2S \rightarrow 2CH_3COOH + PbS \downarrow$$

20. (a) $(NH_4)SCN$ is a red colour substance.

21. (abcd)
$$FeCl_3 + K_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3$$

Ferri ferroc vanide (Blue)

$$\begin{array}{c} 2FeCl_3 + 3H_2S \rightarrow Fe_2S_3 + 6HCl \\ 3NH_4CNS + FeCl_3 \rightarrow Fe(CNS)_3 + 3NH_4Cl \\ (Blood red) \\ FeCl_3 + 3KCNS \rightarrow Fe(CNS)_3 + 3KCl \\ (Blood red) \\ \end{array}$$

- **24.** (c) (Conc. $H_2SO_4 + K_2Cr_2O_7$) mixture is called as chromic acid.
- 26. (a) $NaCl > MgCl_2 > Na_2S > MgS$ Solubility decreasing order
- **30.** (d) Cobalt sulphide does not ppt. in second group.
- **36.** (b) $BaCO_3 + 2HCl \rightarrow BaCl_2 + H_2O + CO_2$

$$ZnS + 2 \underset{(dil.)}{HCl} \rightarrow ZnCl_2 + H_2S$$

37. (c) Cd^{2+} is not precipitated by H_2S in concentrated acid solution that is why the solution is diluted before passing H_2S through it.

39. (d)
$$AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl = [Ag(NH_3)_2]^+ + Cl^-$$

complex

40. (b)
$$Fe^{3+} + K_4[Fe(CN)_6] \rightarrow K[Fe[Fe(CN)_6]] + 3K^+$$

Prussian blue

41. (c) As Na_2CO_3 is a strong electrolyte it will cause the precipitation of *MgCO*. So (*NH*) *CO* is used as it's a weaker electrolyte than Na_2CO_3 .

- **42.** (b) As the concentration of OH^- ions is less due to common ion effect but enough to precipitate the III⁻ group radicals as hydroxides, as the solubility product of III group hydroxides is lower than IV, V and VI group hydroxides.
- **44.** (a) As *NHCl* is a strong electrolyte. It supresses the ionization of *NHOH*, so the concentration of OH^- ions in the solution is decreased, but it is sufficient to precipitate the III group basic radicals because the solubility product of III group hydroxides is lower than IV, V and VI group hydroxides. As $NHOH \square NH + OH$

$$\begin{array}{ccc} NHOH \square & NH + OH \\ NHOI \rightarrow & NH_4^+ + Cl^- \\ & & \text{Common ion effect} \end{array}$$

45. (b)
$$4FeCl_3 + 3K_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3 + 12KCl$$

Prussian
Blue colour

- **46.** (b) ZnS is white.
- **47.** (b) $Sb_2S_3 + 2(NH_4)_2S_2 \rightarrow 2(NH_4)_2S + Sb_2S_5$
- (a) The second group radicals will precipitate because their solubility product is very low so sulphates will be precipitated.
 (a) As *Pb(NO)* is an ionic compound so the reaction is easy.
- $Pb(NO) + 2NaCl \rightarrow 2NaNO_3 + PbCl_2$, but Ba(NO) has a higher lattice energy, so no reaction takes place.
- **50.** (c) $4 NH_4 OH + CuSO_4 \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O_{(excess)}$

51. (a)
$$CuCl_2 + H_2S \rightarrow CuS_{(Black ppt)} + 2HCl_{(Black ppt)}$$

- **52.** (d) As they have low K value.
- 53. (a) NH_4^+ ions are required to supress the ionization of NHOHbut sufficient to precipitate the III group radicals. (*NH*) SO can't be used as SO_4^{2-} ions will precipitate *Ba* as *BaSO*.
- **54.** (c) White precipitate obtained is of $BaCl_2$, as the Cl^- ion's concentration increases due to the addition of *HCl*, the ionic product becomes more than solubility product and thus, *BaCl* is precipitated
- **55.** (a) $HgS + HNO_3 \rightarrow No$ reaction
- 56. (a) *Pb* as it's precipitated as chloride and sulphide in 1⁻ and 11⁻ group respectively
- **57.** (d) As *Bi*(*SO*), is a covalent compound with high lattice energy and hence it is insoluble in water.
- **58.** (a) The solution must contain Nt^{+2} as it forms a complex with DMG giving $[Ni(DMG)_2]$ which is red in colour.

59. (c)
$$BiCl_3 + H_2O \rightarrow BiOCl + 2HC$$

(white ppt)

60. (b)
$$Hg_2Cl_2 + 2NH_4OH \rightarrow NH_2 - Hg - Cl + Hg_{(Black pp)} + NH_4Cl + 2H_2O$$

- **61.** (a) Colour of anhydrous *COCI* is blue and when it comes in contact with moisture then it turns in pink.
- **62.** (d) When $(NH)_{.}CO_{.}$ is used then the concentration of $CO_{.3}^{2-}$ is comparatively low but when $Na_{.}CO_{..}$ is added then concentration of $CO_{.3}^{2-}$ increases so Mg^{2+} will be precipitated along with other 5° group radicals

63. (d) Nessler's reagent gives red precipitate with
$$NH_4^+$$

 $NH_4Cl + 2K_2[HgI_4] + 4KOH \rightarrow$
 $NH_2 - Hg - O - Hg - I + 7KI + KCl + 3H_2O$
Iodide of Millon's base (Brown ppt)

64. (b) FeS is soluble in HCl. Also Fe^{2+} salts are green.

- **65.** (d) Cd^{+2} belongs to 11 A group while As^{+3} to 11 B. All the sulphides of 11 B are soluble in yellow ammonium sulphide but those of 11 A are insoluble.
- **66.** (c) As Fe(OH), is soluble in NaOH whereas Al(OH), is not.
- 67. (b) $NH_3 + H_2O \rightarrow NH_4OH$ due to common ion effect NH^+ ion concentration increases which loads to the

 NH_4^+ ion concentration increases which leads to the precipitation of $AI(OH)_2$

- **68.** (c) $CrCl_3$, as $Cr^{+3} \Rightarrow 3d^3$, has unpaired electron in *d*-orbital as a result it will show paramagnetism and thus forms coloured complexes.
- **69.** (a) *Cu* will be precipitated as *CuS* in acidic medium where as Ni^{2+} is not precipitated.
- **70.** (b) Even $SnCl_2$ added into $HgCl_2$ solution to give white gray colour.

76. (b)
$$Al^{+3} + (OH^{-})_3 \rightarrow Al(OH)_3$$

(white ppt.)
which is soluble in excess alkali.

77. (d) As the ionic product of Sb^{3+} and Bi^{3+} is very low and Cl^{-} is present in high concentration, therefore Sb and Bi get precipitated, as

$$5b + 5Cl \rightarrow SbCl_3$$

- **78.** (d) $Fe_3(PO_4)_2$ is insoluble in water.
- **79.** (c) Sulphide having high ionic product are completely precipitated in acidic medium. *CdS* has maximum ionic product hence it is completely precipitated.

80. (d)
$$3FeCl_2 + 2K_3[Fe(CN)_6] \rightarrow Fe_3[Fe(CN)_6]_2 + 6KCl$$

blue colour

83. (a)
$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

84. (c)
$$2CuSO_4 + 4KI \rightarrow 2CuI + 2K_2SO_4 + I_2$$

Cuprous iodide

85. (a) Ca, Ba, Sr these radicals are precipitated in basic medium.

88. (c)
$$Cu^{2+} + H_2 S \rightarrow CuS \downarrow_{\text{black ppt.}}$$

89. (a)
$$NHOH \square NH_4^+ + OH^-$$

 $NH_4Cl \rightarrow NH_4^+ + Cl^-$

 NHCI decreases the dissociation of NHOH by common ion effect

93. (c) *HCl* suppresses ionisation of weakly dissociated H_2S , with the result only the ionic product of the sulphides of group II radicals exceed their corresponding solubility product and hence only these are precipitated.

97. (b)
$$Cd^{++} + H_2S \rightarrow CdS_{\text{Yellowpt}} + H_2O$$

98. (c) Acidified solution of potassium permanganate. $Fe^{+2} \xrightarrow{KMnO_4} Fe^{+3}$

 $Fe^{+3} \xrightarrow{KMnO_4} No$ reaction

99. (d)
$$CuCl_2 + 2HNO_3 \rightarrow Cu(NO_3)_2 + 2HCl$$

 $Cu(NO_3)_2$ reacts with NH_4OH and gives $Cu(NH_3)_4^{2+}$ which has deep blue colour.

- 102. (b) $Bi(NO)_{a}(aq) + 3Kl(aq) \longrightarrow Bil_{s}(s)$ + $3KNO(aq) \qquad Black$ $Bil_{a}(s) + Kl(aq) \longrightarrow K[Bil_{a}]$ Orange colour
- 103. (a) *HCl* suppresses ionisation of weakly dissociated H_2S , with the result only the ionic product of the sulphides of group II

radicals exceed their corresponding solubility product and hence only these are precipitated.

104. (c)
$$Na_2S + Na_2[Fe(NO)(CN)_5] \rightarrow$$

 $Na_3[Fe(ONSNa)(CN)_5]$ or $Na_4[Fe(CN)_5NOS]$ violet coloured complex purple colour complex

sodium nitroprusside

Volumetric Analysis

1. (c)
$$0.1 = \frac{x \times 1000}{40 \times 100} \Rightarrow x = 0.45 \ gms$$
.

- (c) As methyl orange is a weak base. 2.
- (b) Phenolphthalein is an indicator for strong base and weak acid, 3. but KMnO oxidises it.

4. (c)
$$N_1 V_1 = N_2 V_2$$
, $\frac{1}{10} \times 15 = N_2 \times 12 \Longrightarrow N_2 = \frac{1}{8} N$

In the neutralization of acid and base $N \times V$ of both must be (a) 5. equivalent

$$N \times V \text{ of } HCl = 0.1 \times 100 = 10$$

$$N \times V \text{ of } NaOH = 0.2 \times 30 = 6$$
as to obtain 10 $N \times V$ of base

$$4 N \times V \text{ of base is required}$$

$$N \times V \text{ of } KOH = 0.25 \times 16 = 4$$

$$NV = N \times V + N \times V$$

$$NaOH KOH$$

$$0.1 \times 100 = 0.2 \times 30 + 0.25 \times V$$

$$10 = 6 + 0.25 V$$

$$V = \frac{400}{0.25} \implies V = 16 mI$$

6. (a) 1 - 0.68 = 0.32 g oxygen

$$\frac{0.68}{eq.wt.} = \frac{0.32}{8} \implies eq.wt. = \frac{0.68 \times 8}{0.32} = 17$$

(d) $V_1 = 20 \ ml, \ N_1 = 0.25N, \ V_2 = 30 \ ml$ 7. $N_2 = 0.2N$ $\therefore N = \frac{N_1 V_1 + N_2 V_2}{N_1 + N_2 V_2} = \frac{20(0.25) + 30(0.2)}{N_1 + N_2 V_2}$

$$V_1 + V_2 20 + 30$$
$$= \frac{5+6}{50} = \frac{11}{50} = 0.2N \text{ basic}$$

9. (b)
$$NV = NV \Rightarrow \frac{1}{10} \times 8 = N_2 \times 20, \quad \therefore N_2 = 0.04N$$

10. (b)
$$N = \frac{W_B \times 1000}{E \times V} \Rightarrow \frac{N}{10} = \frac{x \times 1000}{63 \times 250}$$

 $\therefore x = 1.575 \, erams$

11. (a)
$$NV = NV$$

 $15 \times 0.2 = 30 \times x$ $\therefore x = 0.1 N$
12. (a) $NV + NV = NV$
 $200 \times 0.6 + 100 \times 0.3 = N_3 V_3$ and $V_3 = V_2 + V_1 = 300 ml$

- $\therefore N_3 = 0.5 N$ (a) $10 M H_2 SO_4 \Rightarrow 20 N H_2 SO_4$ $\therefore 20 \times 10 = 200$ for H_2SO_4 and
- $100 \times 1 = 100$ for *NaOH* : Acidity> Basicity

13.

14. (a)
$$0.1M \text{ of } H_2SO_4 \Rightarrow 0.2N \text{ of } H_2SO_4$$

 $\therefore NV = NV$ [$N = 2m$ for H_2SO_4]

$$0.2 \times V = 30 \times 0.2$$

$$\therefore V = 30 \ ml$$
(d) $N_1 V_1 = N_2 V_2 \quad 5N \times 1 \ ht = x \times 10 \ ht.$

$$\therefore x = 0.5 \ N$$
(b) Normality = $N = \frac{W_B \times 1000}{Eq.wt \times V}$

$$\Sigma = W_1 = \frac{0.45 \times 1000}{45} \ dz$$

$$\therefore \text{ Eq. Wt} = \frac{0.45 \times 1000}{0.5 \times 20} = 45$$
$$\therefore \text{ Basicity} = \frac{\text{Molec. Wt}}{\text{Eq. Wt}} = \frac{90}{45} = 2$$

15.

16.

17. (b)
$$\stackrel{i}{\to} 2H_2O \rightarrow 126$$
 is molecular wt.
 \therefore Equivalent wt. = Molecular wt./2 = 63

18. (c)
$$NV = NV \Longrightarrow 5 \times 10 = \frac{1}{10x} \times x \quad \therefore x = 500ml$$

19. (d)
$$KMnO_4 \rightarrow K_2MnO_4$$

$$\frac{\text{Molecular weight}}{1} = \frac{158}{1} = 158$$

Hyposolution are used as the reducing agent with potassium 21. (b) dicromate solution $K_2 Cr_2 O_7 = \frac{\text{Molecularweight}}{1}$

22. (d)
$$N_1 V_1 = N_2 V_2$$

 $N \times 25 = \frac{109.5 \times 32.9}{36.5} \Rightarrow N = \frac{109.5 \times 32.9}{36.5 \times 25}$
 $N_3 V_3 = N_4 V_4$ $(V_3 = \frac{m}{d}, V_3 = \frac{125}{1.25})$
 $\frac{109.5 \times 32.9}{36.5 \times 25} \times 100 = 0.84 \times V \Rightarrow V = 470 \, ml$

23. (a)
$$N_1 V_1 = N_2 V_2$$

 $0.1 \times V_1 = 0.13 \times 80 \Longrightarrow V_1 = 104 \, ml$
 $wt \times 1000$

24. (a) Molarity=
$$\frac{wt. \times 1000}{\text{Eq. wt. \times vol.}}$$

 $0.1 = \frac{wt. \times 1000}{40 \times 250}$

$$\therefore \text{ wt. required} = 1 gm$$
25. (a) $1 = \frac{x \times 1000}{(2 - 100)} \Rightarrow x = 6.3 gm$

(a)
$$1 = \frac{1}{63 \times 100} \Rightarrow x = 6.3 \ gms$$

26. (d)
$$10 \times x = 1 \times 1$$

 $x = 0.1$ *liter* = 100 *cc*

(b) In acidic medium 2 molecules of $KMnO_4$ gives 5 atoms of 32. oxygen $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5(O)$ $2 \times 158 = \frac{316 \times 8}{80} = 31.6.$

> So, equivalent wt. of $KMnO_4$ in acidic medium is = 31.6 *gm*

33. (c)
$$N_1V_1 = N_2V_2$$

 $N_1 \times 20 = N_2 \times 22.18$
 $N_1 = \frac{N_2 \times 22.18}{20}$ (i)
 $NaQH$ solution = HCl solution

NaOH solution = HCl solution

$$N_{2} \times 21.5 = \frac{1}{10} \times 20$$

$$N_{2} = \frac{20}{10 \times 21.5} \qquad \text{......(ii)}$$
by eq. (i) and (ii)

$$N_{1} = \frac{20 \times 22.18}{20 \times 10 \times 21.5} = \frac{22.18}{215} = 0.1N$$
34. (b) $MHSO = 2N H_{2SO_{4}}$
 $N_{1}SO_{2} = NAOH 2SO_{4}$
 $N_{1}V_{1} = N_{2}V_{2}$
 $2 \times V = 10 \times 1, \quad V_{1} = \frac{10 \times 1}{2} = 5 ml$
36. (c) $N = \frac{W_{B} \times 1000}{Eq.vt. \times V}; W_{B} = \frac{N \times Eq.vt \times V}{1000}$
 $= \frac{0.1 \times 40 \times 100}{1000} = 0.4$
38. (d) 20 ml of 0.1N AraOH neutralize 20 ml of 0.1N arid
Weight of acid = 0.126 g
Volume = 20 ml. $\frac{20}{1000}$ litre
Normality = 0.1 N
Equivalent weight = ?
Equivalent weight = ?
Equivalent weight = $\frac{4}{N \times V}$
 $= \frac{0.126 \times 1000}{0.1 \times 20} = 63$
40. (b) 2×31.82 , \therefore wt of one atom $= \frac{2 \times 31.82}{N} = \frac{63.64}{N}$
41. (d) $Na_{2}S + I_{2} + Na_{2}SO_{3} \rightarrow Na_{2}S_{2}O_{3} + 2NaI$
43. (c) $X = \frac{50}{50} = 5; Y = \frac{50}{20} = 2.5$
Ratio of g atoms of X and Y = 2 : 1
47. (c) $N = \frac{0.53 \times 1000}{53 \times 100} \Rightarrow N = \frac{1}{10}$
So normality of the solution will be $\frac{N}{10}$.
51. (b) Acid = 0.1 \times 100 = 10
Base = 0.2 × 100 = 10
Base = 0.2 × 100 = 20
 \therefore solution will be basic. 0.1N of *HCI* is neutralised by 0.1 N of NaOH and the remaining 0.1N of NaOH is in 200 cm³ of solution.
 \therefore resulting normality = 0.05 N, basic.
53. (b) Equivalent weight of Zn(OH)_{2} = 1, only one OH is replaced.
55. (a) $M_{1}V_{1} = M_{2}V_{2}$
 $(Na_{2}CO_{3}) = (HCI)$
 $0.25M \times 25 = 0.5M \times V_{2}$
 $V_{2} = \frac{0.25M \times 25}{0.5M} = 12.5 ml$
56. (c) $\frac{0.16}{N} \times \frac{1000}{25} = \frac{1}{10} \Rightarrow \frac{6.4}{x} = \frac{1}{10} \therefore x = 64$
Mol. wt. 64 × 2 = 128

57. (d) If $N_1V_1 = N_2V_2$ then the solution will be neutral

$$\therefore 1 \times 100 = 10 \times 10$$

100 = 100 ⇒ solution in neutral
59. (c) Volume = 25 ml = $\frac{25}{1000}$ litre
Normality = $\frac{wt}{eq.wt \times Volume}$ ⇒ 0.12 = $\frac{0.1914 \times 1000}{E \times 25}$
eq.wt. = $\frac{0.1914 \times 1000}{0.12 \times 25}$ = 63.8
60. (b) Eq.wt = $\frac{MolecularWt.}{basicity}$ = $\frac{W}{3}$
61. (d) Valency = $\frac{26.89}{8.9}$ = 3
at.mass = Eq.wt × valency = $8.9 \times 3 = 26.7$
62. (b) $\therefore 4 gms$ of Br combines with 1 gm of Ca
 \therefore 80 gms of Br combines with $\frac{1}{4} \times 80 = 20$
Therefore,
equivalent wt of Ca = 20
63. (a) $N = \frac{4 \times 1000}{40 \times 100} = 1N$
64. (d) $NV = NV$
 $1 \times 1 = 0.5 \times 2 \times 1$
as 0.5 N will give double the amount of H ions
65. (a) $BaCO_3 \rightarrow BaO + CO_2 \uparrow$
 $\therefore 197 g BaCO_3$ on decompose gives = 22.4 litre CO_2
 $\therefore 1 g BaCO_3$ will give $= \frac{22.4}{197} = litreCO_2$
 $= \frac{22.4 \times 9.85}{197} = 1.12 \ litreCO_2$
66. (c) As the resultant solution will be neutral so either of them can
be used.
67. (d) Here KMnO itself works as an indicator.
70. (a) The resulting solution is colourless.
71. (c) As the resulting solution is colourless.
71. (c) As the resulting solution is colourless.
71. (c) As the resulting solution is colourless.
72. (c) As the resulting solution is colourless.
73. (d) Here KMnO is used as an indicator.
74. (c) Strength = $\frac{W}{V} = NE$

75. (d) As H_3PO_4 can donate $3H^+$ in the solution, as a result the normality of solution is 3N, as Molarity × basicity = Normality

76. (b)
$$I_2 + 2S_2O_3^- \rightarrow 2I^- + S_4O_6^{2-}$$

 \therefore Eq. wt. = $\frac{1}{2} \times$ molecular wt.
77. (a) $40 \times 1 = 16 \times x \implies x = \frac{40}{16} = 2.5 \ ml$

78. (b) 18 *M* of
$$H_2SO_4 = 36 N$$
 of H_2SO_4
 $N_1V_1 = N_2V_2 \Rightarrow 36 \times 10 = N \times 1000$
 $\therefore N = 0.36 N$

79. (d)
$$\frac{1}{10} = \frac{W \times 1000}{\text{eq.wt} \times \text{vol.}} = \frac{W \times 1000}{49 \times 1000} \Rightarrow W = 4.9 \text{ gms}$$

80. (c)
$$M_1 V_1 = M_2 V_2$$

 $0.1 \times V = M_2 \times 2V \Rightarrow M_2 = \frac{1 \times V}{2V} = 0.05M$

81. (c)
$$N_1V_1 = N_2V_2 \Rightarrow \frac{1}{5} \times 10 = \frac{1}{20} \times V_2 \Rightarrow V_2 = 40 \ ml$$

82. (b) $N_1V_1 = N_2V_2$
 $0.15 \times 25 = 0.1V_2 \Rightarrow V_2 = 37.5 \ ml$
Water to be added = 37.5 - 25 = 12.5 ml
83. (c) $N_1V_1 = N_2V_2 \Rightarrow 0.2 \times V_1 = 0.2 \times 40 \Rightarrow V_1 = 40 \ ml$
85. (c) $Mn^{+7} \rightarrow Mn^{+6} = \frac{158}{1} = 158$
88. (d) Given, $N = 0.1$, w = 10 gm, equivalent weight = 50, $V = ?$
 $V = \frac{w \times 1000}{Eq.wt. \times N} = \frac{1 \times 1000}{50 \times 0.1} = 200 \ cm^3$
89. (c) $2Ag_2CO_3 \qquad A \qquad 4Ag + 2CO_2 + O_2$
 $[(2 \times 108) + 12 + 48] \qquad 4 \times 108$
 $2 \times 276 = 552 \qquad 4 \times 108$
 $2 \times 276 = 552 \qquad 4 \times 108$
 $2 \times 276 = 552 \qquad 4 \times 108$
 $2 \times 276 = 552 \qquad 4 \times 108$
 $2 \times 276 \ ms^2$ where carbonate gives $\frac{432 \times 2.7}{552} \ 2.16 \ gm$
90. (a) $0.164 \ M \ NaOH \equiv 0.164 \ N \ NaOH$
We know, $N_1V_1 = N_2V_2$; $N_1 \times 25 = 0.164 \times 32.63$
 $0.214 \ N \ H_2SO_4 \approx \frac{0.214}{2} \ M \ H_2SO_4$
(: basicity of H_2SO_4 is 2)
 $\approx 0.107 \ M \ H_2SO_4$
91. (a) We know, $[H^+] = 10^{-pH} = 10^{-13}$;
 $\therefore [OH^-] = \frac{10^{-14}}{10^{-13}} = 10^{-1}$
Hence, normality of solution = 0.1
We know, $w = \frac{NEV}{1000} = \frac{0.1 \times 74 \times 250}{2 \times 1000} = 0.925 \ gm$
92. (d) $N_1V_1 = N_2V_2 \ or \ M_1V_1 = M_2V_2$
 $\therefore 12 \times V = 18 \times 240$
 $V_1 = \frac{18 \times 240}{12} \ 260 \ ml = 0.36 \ litre$
93. (c) For complete neutralisation,
milli equivalent of base = mill equivalent of acid
 $N_1V_1 = N_2V_2 \Rightarrow \frac{1}{10} \times V_1 = \frac{1}{25} \times 100; \ V_1 = 40 \ ml.$
94. (c) Normality = modarity k basicity are acidity (for $HC)$
 $N_2 = 0.4 \times 1 = 0.6 N \ V_1 = ?V_2 = 30 \ cm^3$
From the equation, $N_1V_1 = N_2V_2$
 $0.6 \times V_1 = 0.4 \times 30$
 $V_1 = \frac{0.4 \times 30}{0.6} = 20 \ cm^3$
95. (b) The solubility of I in water increases by the addition of KI due to ormation of polyhaldic ion, *i.e.* I_3
 $KI + I_2 \rightarrow KI_3$
96. (d) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$
 $1 \ mole \ \frac{1}{2} \ mole$ 1 mole

1 volume $\frac{1}{2}$ volume

 $\operatorname{M} H_2$ reacts with $\frac{1}{2}$ m/ O_2 30*ml* of H_2 reacts with $=\frac{1}{2} \times 30 = 15ml$ O_2 (20–15) = 5ml of O_2 will left at the end of the reaction.

(a) Standard solution of I_2 is used to estimate sulphite, 97. thiosulphite, arsenite etc.

98. (a)
$$I_2 + Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$

 $I_2 + S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$

2

Critical Thinking Questions

8. (b) It must be sulphide as

$$Pb(CH_3COO)_2 + H_2S \rightarrow PbS + 2CH_3COOH$$

(Black ppt.)

9. (c)
$$Hg_2Cl_2$$
 is white insoluble salt.
 $Hg_2Cl_2 + 2NH_4OH \rightarrow Hg + Hg(NH_2)Cl + NH_4Cl + 2H_2O$
Black

10. (d)
$$Zn^{2+} + 2NaOH \rightarrow Zn(OH)_2 + 2Na^+$$

 $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$

(c) Chromium ion gives in hot and cold. Oxidising and reducing 11. flame green-colour.

12. (b)
$$HgI_2 + 2KI \rightarrow K_2(HgI_4)$$
 soluble
Red solid
 $HgI_2 \rightarrow Hg + I_2$ violet foams.

(c) Yellow filtrate is due to chromate ions (CrO_4^{--}) and green 13. residue is due to $Fe(OH)_2$.

14. (c)
$$1 \times V = \frac{12}{120} \times 2 = 200ml$$
.

(a) $AgNO_3$ react with all conditions and gives corresponding 15. result.

$$\begin{array}{l} AgNO_3 + 2NH_3 \rightarrow [Ag(NH_3)_2]NO_2 + H_2O \\ & \text{White ppt} \end{array}$$

$$\begin{array}{l} AgNO_3 + NaCl \rightarrow AgCl + NaNO_3 \\ & \text{White ppt} \end{array}$$

$$2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3.$$

Black ppt

16. (c)

17.

 $N_1 \times 20ml = 0.1 \times 25$

 $N_1V_1 = N_2V_2$

NaOH

HCl

λ

$$V_1 = \frac{0.1 \times 25}{20} = 0.125 \,.$$

If one *litre HCl* present in 0.125

Therefore in 10 *ml*
$$\frac{0.125}{1000} \times 10 = 12.5$$

The normality of conc. *HCl* is 12.5*N.*

(a) 20 *ml* of $0.3N Na_2S_2O_3$

- =20ml of $0.3NI_2$ Solution
- = 20 m l of $0.3 N H_2 O_2$ solution
- $\equiv 25 \, ml$ of $0.08 \, N \, H_2 O_2$ solution

Mass of
$$H_2O_2$$
 100ml solution = $\frac{0.08 \times 17 \times 100}{1000}$

$$= 0.136 \, gm$$

 $68 \ gm \ H_2O_2$ evolve oxygen at NTP = 22400 ml

 $0.00136\,gmH_2O_2\,$ evolve oxygen at NTP

$$=\frac{22400}{68}\times 0.00136=0.448$$
 For $0.1N$, the solution is of 0.448 volume.

 \therefore 3*N* , volume = 0.448 × 3 = 1.344 *ml* .

19. (c)
$$Pb^{+2} + H_2S \xrightarrow[Back ppt]{acidic} PbS \downarrow + H_2 \uparrow$$

 $(Black ppt)$
 $3PbS + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 3S + 4H_2C$
 $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HNO_3 \uparrow$
(white ppt.)

20. (d) It is a characteristic property of IV group concentration of sulphide ions is lowered by formation of the weak acid H_2S .

Assertion and Reason

1. (b) Lime water become turbid on passing CO_2 into it because both reacts to produce insoluble calcium carbonate. $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ Lime Water CalciumCarbonate (Insoluble)

If more CO_2 is passed than soluble calcium bicarbonate is formed which clear the solution

$$\begin{array}{c} CaCO_3 + H_2O + CO_2 \rightarrow \begin{array}{c} Ca(HCO_3)_2 \\ \text{Insoluble} \end{array} \\ \begin{array}{c} \text{Calcium bi Carbonate} \\ \text{(Soluble)} \end{array}$$

The reason that lime water is $Ca(OH)_2$ is also correct. Here, both assertion and reason are correct but reason is not a correct explanation of assertion.

2. (c) Assertion is true but reason is false.

Sb(III) is a basic radical of IIB group for which group reagent is H_2O is presence of dilute HCl. It is necessary to maintain the proper hydrogen ion concentration for the precipitation of IV group cations.

3. (d) CuS is one such exception which is not decomposed by dil. H_2SO_4

- 4. (d) $PbCl_2$ does not react with conc. H_2SO_4 as $PbSO_4$ is insoluble in water.
- 5. (e) $ZnCO_3$ will react with conc. H_2SO_4 to give CO_2 Radicals of dil. acid test are decomposed by conc. H_2SO_4 in cold.
 - (c) Cd^{2+} salts are generally white in colour, however, CdS is yellow in colour.

6.

9.

- (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- **8.** (d) Cu^{2+} salts are generally blue in colour, however, *CuS* is black in colour.
 - (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- **11.** (e) Sulphides do not give any test with $BaCl_2$ (*aq.*) as BaS is soluble in water.
- 12. (c) It is due to the formation of insoluble BiOCl on hydrolysis. $BiCl_3 + H_2O \rightarrow BiOCl + 2HCl$ White ppt.

Chemical Analysis

what volume of a solution of hydrochionic acid containing /3 g of acid per litre would sufficient for the exact neutralization of sodium hydroxide obtained by allowing 0.46 g metallic sodium to act upon water

2001]

(<i>Cl</i> = 35.5, <i>Na</i> = 23.0, 0 = 16)	[UPSEAT
---	---------

- (a) 10 ml (b) 15 ml
- (d) 8 ml (c) 20 ml
- A white sodium salt dissolves readily in water to give a solution 2. which is neutral to litmus. When silver nitrate solution is added to the solution, a white precipitate is formed which does not dissolve in dilute nitric acid. The anion could be
 - (a) SO_4^{2-} (b) CO_{2}^{2-}
 - (c) S^{2-} (d) Cl^{-}
- Sometimes yellow turbidity appears on passing H_2S gas even in 3 the absence of the second group radicals. This happens because
 - (a) Sulphur is present in the mixture as an impurity
 - (b) The fourth group radicals are precipitated as sulphides
 - (c) The H_2S is oxidized by some acid radicals
 - (d) The third group radicals are precipitated
- The colour of $CuCr_2O_7$ solution in water is green because 4

[Bihar CEE 1995]

8.

9.

10.

11.

- (a) $Cr_2 O_7^{2-}$ ions are green
- Cu^{++} ions are green (b)
- Both ions are green (c)
- Cu^{++} ions are blue and $Cr_2O_7^{2-}$ ions are yellow (d)
- Pb^{++} , Cu^{++} , Zn^{++} , and Ni^{++} ions are present in a given 5 acidic solution. On passing hydrogen sulphide gas through this solution the available precipitate will contain

[MP PMT 1996; MP PET/PMT 1998]

- (b) *PbS* and *CuS* (a) PbS and NiS
- CuS and ZnS (d) CuS and NiS (c)
- In acidic medium, dichromate ion oxidises ferrous ion to ferric ion. If 6. the gram molecular weight of potassium dichromate is 294 grams, its gram equivalent weight is grams

(a)	294	(b)	127
-----	-----	-----	-----

(c) 49 (d) 24.5

Metallic tin in the presence of HCI is oxidise $K_2 CrO$, to stannic 7. chloride. What volume of decinormal dichromate solution would be reduced by 1 g of tin

(a)	168.49 <i>ml</i>	(b)	175.49 <i>ml</i>
(c)	170.50 <i>ml</i>	(d)	162.38 <i>ml</i>

ET Self Evaluation Test - 21

- 50 ml 10 $N H_2SO_4$, 25 ml 12N-HCl and 40 ml 5 $N HNO_3$ were mixed together and the volume of the mixture was made 1000 ml by adding water. The normality of the resultant solution will be
- [MP PET/PMT 1998; MP PMT 2002] [Pb. PMT 1998] (b) 2 N (c) 3 N (d) 4 N
- An aqueous solution of colourless metal sulphate M, gives a white precipitate with NaOH. This was soluble in excess of NaOH. On passing H_2S through this solution a white precipitate is formed.[A]]MSn982] M in the salt is

						[KCE	Г 199	0]
(a)	Ca		(b)	Ba				
(c)	Al		(d)	Zn				
А	compound	is soluble	in water.	If ammonia	is a	dded,	a re	ed

d, a red precipitate appears which is soluble in dilute HCl. The compound [CPMT 1974] has

(a)	Aluminium	(b)	Zinc
(c)	lron	(d)	Cadmium

[CPMT 1997; MP PET/PMT 1998]

[UPSEAT 2001]

- (a) $KHgI_4$ (b) $K_2 HgI_4 + NH_4 OH$
- (c) $K_2HgI_4 + KOH$ (d) $KHgI_4 + NH_4OH$
- Neutral ferric chloride is added to the aqueous solution of acetate. 12. The blood red colour is obtained, it is due to the compound
 - (a) $Fe(OH)_2$ (b) $Fe(OH)_3$
 - (d) $Fe(OH)_2(CH_3COO)$ (c) $Fe(CH_3COO)_3$

Mark the gas which turns lime water milky 13.

Nessler's reagent is

- (a) H_2S (b) SO_2
- (c) Cl_2 (d) CO_2

 - (b) $CdCl_2$ (a) $ZnCl_2$ (c) $COCl_2$ (d) $CuCl_2$

(SET -21)

1. (a)
$$\frac{0.46}{23} = \frac{73}{36.5} \times V(l)$$

 $V = 10 \, ml$

2. (d)
$$NaCl + H_2O \rightarrow NaCl_{(aq)}$$

 $NaCl + AgNO_3 \rightarrow AgCl \xrightarrow{HNO_3}{dil}$ Insoluble
 $(aq) \qquad (aq) \qquad (a$

- 3. (b) This is due to the precipitation of fourth group radical as sulphides due to high concentration of S^{2-} in the solution as a result yellow turbidity is obtained
- **4.** (d) Cu^{++} ions are blue and $Cr_2O_7^{--}$ ions are yellow, yellow and blue combination gives-green colour.
- 5. (b) As both Pb^{2+} and Cu^{2+} require acidic medium and low concentration of S^{2-} to be precipitated as sulphide and low concentration of S^{2-} is provided by common ion effect of *HCl* and *HS*.
- 6. (c) In acidic medium potassium dicromate shows + 6 oxidation state $\frac{M}{6} = \frac{294}{6} = 49$

7. (a)
$$0.1 \times V = \frac{2}{119}$$

$$V = 168.06 \, ml$$
.

8. (a) H_2SO_4 HCl HNO_3 Total volume $N_1V_1 + N_2V_2 + N_3V_3 = N \times 1000ml$ $N = \frac{N_1V_1 + N_2V_2 + N_3V_3}{1000}$ $= \frac{50 \times 10 + 25 \times 12 + 40 \times 5}{1000}$ $N = \frac{500 + 300 + 200}{1000} = \frac{1000}{1000} = 1N$

9. (d)
$$Zn^{+2} + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$$

(white ppt.)
 $Na_2ZnO_2 + H_2S \rightarrow ZnS + 2NaOH$
(White ppt.)

10. (c)
$$FeCl_3 + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4CH_{(red)}$$

 $2Fe(OH)_3 + 6HCl \rightarrow 2FeCl_3 + 6H_2O_{(soluble)}$

II. (c) Nessler's reagent $= K_2 H g I_4 + K O H$.

12. (c)
$$3CH_3COONa + FeCl_3 \rightarrow Fe(CH_3COO)_3 + 3 NaCl$$

Blood red ppt.

13. (bd) CO and SO turns lime water milky, as

$$Ca(OH)_2 (aq.) + CO_2 \rightarrow CaCO_3 \downarrow +H_2O$$

(milky)
 $Ca(OH)_2 + SO_2 \rightarrow CaSO_3 \downarrow +H_2O$
(milky)