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We have studied different types of numbers in earlier classes. We have learnt about natural

numbers, whole numbers, integers, rational numbers and irrational numbers. Let us recall a little

bit about rational numbers and irrational numbers.

Rational numbers are numbers which can be written in the form of 
p

q  where both p and q

are integers and q �  0. They are a bigger collection than integers as there can be many rational

numbers between two integers. All rational numbers can be written either in the form of terminating

decimals or non-terminating repeating decimals.

Numbers which cannot be expressed in the form of 
p

q  are irrational. These include numbers

like 2, 3, 5  and mathematical quantities like π . When these are written as decimals, they

are non-terminaing, non-recurring. For example, 2  = 1.41421356... and  π  = 3.14159...

These numbers can be located on the number line.

The set of rational and irrational numbers together are called real numbers. We can show

them in the form of a diagram:

R ation a l N u m b ers

In tegers

W h ole  N u m b ers

N atu ra l 
N u m b ers

Irra tion al
N u m b ers

R eal N um b ers

��������	�
��



�������� ��	
���	
��

�����������	
�����	
����������������

�

In this chapter, we will see some theorems and the different ways in which we can prove them.

We will use the theorems to explore properties of rational and irrational numbers. Finally, we will

study about a type of function called logarithms (in short logs) and see how they are useful in

science and everyday life.

But before exploring real numbers a little more, let us solve some questions.
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1. Which of the following rational numbers are terminating and which are non-terminating,

repeating in their deimenal form?

(i)
2

5
(ii)

17

18
(iii)

15

16
(iv)

7

40
(v)

9

11

2. Find any rational number between the pair of numbers given below:

(i)  
1

2
 and 1 (ii)  

1
3

3
and 

2
3

3
(iii) 

4

9
 and 2

3. Classify the numbers given below as rational or irrational.

(i)  
1

2
2

    (ii) 24       (iii) 16      (iv) 7.7     (v) 
4

9
      (vi)  30−    (vii) 81−

4. Represent the following real numbers on the number line. (If necessary make a seperate
number line for each number).

(i)  
3

4
(ii) 

9

10

−
(iii) 

27

3
(iv) 5 (v) 16−
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  Are all integers also in real numbers? Why?
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Let us explore real numbers more in this section. We know that natural numbers are also
in real numbers. So, we will start with them.
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In earlier classes, we have seen that all natural numbers, except 1, can be written as a
product of their prime factors. For example, 3 = 3, 6 as 2 � 3,  253 as 11 � 23 and so on.
(Remember: 1 is neither a composite nor a prime).
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Do you think that there may be a composite number which is not the product of the

powers of primes? To answer this, let us factorize a natural number as an example.

We are going to use the factor tree which you all are familiar with. Let us take some large

number, say 163800, and factorize it as shown :

So we have factorized 163800 as 2 � 2 � 2 � 3 � 3 � 5 � 5 � 7 � 13.  So 163800

= 23 � 32 � 52 � 7 � 13, when we write it as a product of power of primes.

Try another number, 123456789. This can be written as 32 � 3803 � 3607. Of course,

you have to check that 3803 and 3607 are primes! (Try it out for several other natural numbers

yourself.) This leads us to a conjecture that every composite number can be written as the

product of powers of primes.

Now, let us try and look at natural numbers from the other direction. Let us take any
collection of prime numbers, say 2, 3, 7, 11 and 23. If we multiply some or all of these numbers,
allowing them to repeat as many times as we wish, we can produce infinitely many large positive
integers.  Let us list a few :

2 � 3 � 11 = 66 7 � 11 = 77
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7 � 11 � 23 = 1771 3 � 7 � 11 � 23 = 5313

2 � 3 � 7 � 11 � 23 = 10626 23 � 3 � 73 = 8232

22 � 3 � 7 � 11 � 23 = 21252

Now, let us suppose your collection of primes includes all the possible primes. What is

your guess about the size of this collection? Does it contain only a finite number of primes or

infinitely many? In fact, there are infinitely many primes. So, if we multiply all these primes in all

possible ways, we will get an infinite collection of composite numbers.

This gives us the Fundamental Theorem of Arithmetic which says that every composite
number can be factorized as a product of primes. Actually, it says more. It says that given any
composite number it can be factorized as a product of prime numbers in a ‘unique’ way, except
for the order in which the primes occur. For example, when we factorize 210, we regard 2 � 3
� 5 � 7 as same as 3 � 5 � 7 � 2, or any other possible order in which these primes are
written. That is, given any composite number there is one and only one way to write it as a
product of primes, as long as we are not particular about the order in which the primes occur. Let

us now formally state this theorem.

Theorem-1.1 : (Fundamental Theorem of Arithmetic) : Every composite number can be

expressed (factorised) as a product of primes, and this factorization is unique, apart

from the order in which the prime factors occur.

In general, given a composite number x, we factorize it as x = p
1
p

2
...p

n
, where p

1
, p

2
...,

p
n
 are primes and written in ascending order, i.e., p

1
 ≤  p

2
 ≤ ... ≤ p

n
. If we use the same primes,

we will get powers of primes. Once we have decided that the order will be ascending, then the

way the number is factorised, is unique. For example,

163800 =   2 � 2 � 2  � 3 � 3 � 5 � 5 � 7 � 13 = 23 � 32 � 52  � 7 � 13

���� ����

Express 2310 as a product of prime factors. Also see how your friends have factorized
the number. Have they done it like you? Verify your final product with your friend’s result.
Try this for 3 or 4 more numbers. What do you conclude?

While this is a result that is easy to state and understand, it has some very deep and

significant applications in the field of mathematics. Let us see two examples.

You have already learnt how to find the HCF (Highest Common Factor) and LCM

(Lowest Common Multiple) of two positive integers using the Fundamental Theorem of Arithmetic
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in earlier classes, without realizing it! This method is also called the prime factorization method.

Let us recall this method through the following example.

Example-1.  Find the  HCF and LCM  of 12 and 18 by the prime factorization method.

Solution : We have 12 = 2 � 2 � 3 = 22 � 31

18 = 2 � 3 � 3 = 21 � 32

Note that HCF (12, 18) = 21 � 31 = 6 = Product of the smallest power of each
common prime factors in the numbers.

LCM (12, 18) = 22 � 32  = 36 = Product of the greatest power of each
prime factors, in the numbers.

From the example above, you might have noticed that HCF (12, 18) � LCM (12, 18)

= 12 � 18. In fact, we can verify that for any two positive integers a and b, HCF (a,b) �  LCM

(a, b) = a �  b. We can use this result to find the LCM of two positive integers, if we have

already found the HCF of the two positive integers.

Example 2.  Consider the numbers 4n, where n is a natural number. Check whether there is any

value of n for which 4n ends with the digit zero?

Solution : For the number 4n to end with digit zero for any natural number n, it should be

divisible by 5. This means that the prime factorisation of 4n should contain the prime number 5.

But it is not possible because 4n = (2)2n so 2 is the only prime in the factorisation of 4n. Since 5

is not present in the prime factorization, so there is no natural number n for which 4n ends with the

digit zero.

���� ����

 Show that 12n cannot end with the digit 0 or 5 for any natural number ‘n’.

� � 
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1. Express each number as a product of its prime factors.

(i) 140 (ii) 156 (iii) 3825 (iv) 5005 (v) 7429

2. Find the LCM and HCF of the following integers by the prime factorization method.

(i) 12, 15 and 21 (ii) 17, 23, and 29 (iii) 8, 9 and 25

(iv) 72 and 108 (v) 306 and 657
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3. Check whether 6n can end with the digit 0 for any natural number n.

4. Explain why 7 � 11 � 13 + 13  and 7 � 6 � 5 � 4 � 3 � 2 � 1 + 5 are composite

numbers.

5. How will you show that (17 � 11 � 2) + (17 � 11 � 5) is a composite number?

Explain.

Now, let us use the Fundamental Theorem of Arithmetic to explore real numbers further.

First, we apply this theorem to find out when the decimal expansion of a rational number is

terminating and when it is non-terminating, repeating.  Second, we use it to prove the irrationality

of many numbers such as 2 , 3 and 5 .
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In this section, we are going to explore when their decimal expansions of rational numbers
are terminating and when they are non-terminating, repeating.

Let us consider the following terminating decimal forms of some rational numbers:

(i) 0.375 (ii) 1.04 (iii) 0.0875 (iv) 12.5 (v) 0.00025

Now let us express them in the form of  
p

q .

 (i)  
3

375 375
0.375

1000 10
� � (ii)   

2

104 104
1.04

100 10
� �

(iii)  
4

875 875
0.0875

10000 10
� � (iv)  

1

125 125
12.5

10 10
� �

(v)  0.00025 = 
25

100000
 = 5

25

10

We see that all terminating decimals taken by us can be expressed as rational numbers

whose denominators are powers of 10. Let us now prime factorize the numerator and denominator

and then express in the simplest rational form :

Now (i)
3

3 3 3 3

375 3 5 3 3
0.375

10 2 5 2 8

�
� � � �

�
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(ii)
3

2 2 2 2

104 2 13 26 26
1.04

10 2 5 5 25

�
� � � �

�

(iii)
3

4 4 4 4

875 5 7 7
0.0875

10 2 5 2 5

�
� � �

� �

(iv)
3125 5 25

12.5
10 2 5 2

� � �
�

(v)
2

5 5 5 5 3

25 5 1 1
0.00025

10 2 5 2 5 4000
� � � �

� �

Do you see a pattern in the denominators? It appears that when the decimal expression

is expressed in its simplest rational form then  p and q are coprime and the denominator (i.e., q)

has only powers of 2, or powers of  5, or both. This is because the powers of 10 can only have

powers of 2 and 5 as factors.

	�� ����

Write the following terminating decimals in the form of 
p

q ,  q�0 and p, q are co-

primes

(i) 15.265 (ii) 0.1255 (iii) 0.4 (iv) 23.34          (v) 1215.8

What can you conclude about the denominators through this process?

�
�� 
�� �����
	


Even though, we have worked only with a few examples, you can see that any rational

number which has a decimal expansion that terminates can be expressed as a rational number

whose denominator is a power of 10. The only prime factors of 10 are 2 and 5. So, when we

simplyfy the rational number, we find that the number is of the form 
p

q , where the prime

factorization of q is of the form 2n5m, and n, m are some non-negative integers.

We can write our result formally :

Theorem-1.2 : Let x be a rational number whose decimal expansion terminates. Then x

can be expressed in the form 
p

q , where p and q are coprime, and the prime factorization

of q is of the form 2n5m, where n, m are non-negative integers.



�������� ��	
���	
��

�����������	
�����	
����������������

 

You are probably wondering what happens the other way round. That is, if we have a

rational number in the form 
p

q ,  and the prime factorization of q is of the form 2n5m, where n, m

are non-negative integers, then does 
p

q  have a terminating decimal expansion?

So, it seems to make sense to convert a rational number of the form 
p

q , where q is of the

form 2n5m, to an equivalent rational number of the form 
a

b
, where b is a power of 10. Let us go

back to our examples above and work backwards.

(i)
325 5 125

12.5
2 2 5 10
� � �

�

(ii)
3

2 2 2 2

26 26 13 2 104
1.04

25 5 2 5 10

�
� � � �

�

(iii)
3

3 3 3 3

3 3 3 5 375
0.375

8 2 2 5 10

�
� � � �

�

(iv)
3

4 4 4 4

7 7 7 5 875
0.0875

80 2 5 2 5 10

�
� � � �

� �

(v)
2

5 3 5 5 5

1 1 5 25
0.00025

4000 2 5 2 5 10
� � � �

� �

So, these examples show us how we can convert a rational number of the form 
p

q ,

where q is of the form 2n5m, to an equivalent rational number of the form 
a

b
, where b is a power

of 10. Therefore, the decimal expansion of such a rational number terminates. We find that a

rational number of  the form 
p

q , where q is a power of 10, will have terminating decimal expansion.

So, we find that the converse of theorem 12 is also true and can be formally stated as :

Theorem 1.3 : Let  x = 
p

q  be a rational number, such that the prime factorization of q is

of the form 2n5m, where n, m are non-negative integers. Then x has a decimal expansion
which terminates.
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Write the following rational numbers in the form  of 
p

q , where q is of the form 2n5m

where n, m are non-negative integers and then write  the numbers in their decimal form

(i) 
3

4
(ii)  

7

25
(iii) 

51

64
(iv)  

14

23
(v)  

80

81

�����������
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Let us now consider rational numbers whose decimal expansions are

non-terminating and recurring. Once again, let us look at an example to see

what is going on-

Let us look at the decimal conversion of 
1

7
.

1

7
= 0.1428571428571 ..... which is a non-terminating and recurring

decimal. Notice, the block of digits '142857' is repeating in the quotient.

Notice that the denominator here, i.e., 7 is not of the form 2n5m.

	�� ����

Write the following rational numbers as decimals and find out the

block of digits, repeating in the quotient.

(i) 
1

3
(ii)

2

7
(iii)

5

11
(iv)

10

13

From the 'do this exercise' and from the example taken above, we
can formally state:

Theorem-1.4 : Let x = 
p

q  be a rational number, such that the prime factorization of q is

not of the form 2n5m, where n, m are non-negative integers. Then, x has a decimal
expansion which is non-terminating repeating (recurring).

From the discussion above, we can conclude that the decimal form of every rational

number is either terminating or non-terminating repeating.

0.1428571
7 1.0000000

7

30

28

20

14

6 0

56

40

35

50

49

10

7

30
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Example-3.  Using the above theorems, without actual division, state whether the following

rational numbers are terminating or non-terminating, repeating decimals.

(i)
16

125
(ii)

25

32
(iii)

1 0 0

8 1
(iv)

41

75

Solution : (i)  3

16 16 16

125 5 5 5 5
� �

� �
 is terminating decimal.

(ii)  5

25 25 25

32 2 2 2 2 2 2
� �

� � � �
  is terminating decimal.

(iii)  4

100 100 10

81 3 3 3 3 3
� �

� � �
 is non-terminating, repeating decimal.

(iv)  2

41 41 41

75 3 5 5 3 5
� �

� � �
 is non-terminating, repeating decimal.

Example-4.  Write the decimal expansion of the following rational numbers without actual division.

(i)
35

50
(ii)

21

25
(iii)

7

8

Solution : (i)  1

35 7 5 7 7
0.7

50 2 5 5 2 5 10

�
� � � �

� � �

(ii)  
2

2 2 2 2

21 21 21 2 21 4 84
0.84

25 5 5 5 5 2 5 2 10

� �
� � � � �

� � � �

(iii)  � � � � � �

3

3 33 3 3

7 7 7 7 5 7 25 875
0.875

8 2 2 2 2 2 5 2 5 10

� �
� � � � � �

� � � �

� � � 
�
����
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1. Write the following rational numbers in their decimal form and also state which are

terminating and which have non-terminating, repeating decimal.

(i) 
3

8
(ii)

229

400
(iii)

1
4

5
(iv)

2

11
(v)  

8

125

2. Without actually performing division, state whether the following rational numbers will

have a terminating decimal form or a non-terminating, repeating decimal form.
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(i)
13

3125
(ii)

11

12
(iii)

64

455
(iv)

15

1600
(v)

29

343

(vi) 3 2

23

2 5
(vii) 2 7 5

129

2 5 7
(viii)

9

15
(ix)

36

100
(x)  

77

210

3. Write the following rationals in decimal form using Theorem 1.1.

(i)
13

25
(ii)

15

16
(iii) 3 2

23

2 .5
(iv) 2 2

7218

3 .5
(v)  

143

110

4. The decimal form of some real numbers are given below. In each case, decide whether

the number is rational or not. If it is rational, and expressed in form 
p

q , what can you say

about the prime factors of q?

(i) 43.123456789 (ii) 0.120120012000120000… (iii) 43.123456789

�������
� ���
�� ����������� �
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Recall, a real number ("Q1" or  "S") is called irrational if it cannot be written in the form

p

q ,  where p and q are integers and q ≠ 0. Some examples of irrational numbers, with which you

are already familiar, are :

2
2, 3, 15, , ,

3
� �  0.10110111011110…, etc.

In this section, we will prove some real numbers are irrationals with the help of the

fundamental theorem of arithmetic. We will prove that 2, 3, 5 and in general, p  is

irrational, where p is a prime.

Before we prove that 2  is irrational, we will look at a statement, the proof of which is

based on the Fundamental Theorem of Arithmetic.

Statement-1 : Let p be a prime number. If p divides a2, (where a is a positive integer),

then p divides a.
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Proof : Let a be any positive integer. Then the prime factorization of a is as follows :

a = p
1
p

2
 … p

n
, where p

1
, p

2
, …., p

n
 are primes, not necessarily distinct.

Therefore a2 = (p
1
p

2
 … p

n
) (p

1
p

2
 … p

n
) = p2

1
p2

2
 … p2

n
.

Now, here we have been given that p divides a2. Therefore, from the Fundamental

Theorem of Arithmetic, it follows that p is one of the prime factors of a2. Also, using the uniqueness

part of the Fundamental Theorem of Arithmetic, we realise that the only prime factors of a2 are

p1  p2 … pn. So p is one of p1, p2, … pn.

Now, since p is one of  p1p2 … pn,  it divides a.

	�� ����

Verify the statement proved above for p= 2, p = 5 and for a2 = 1, 4, 9, 25, 36, 49, 64

and 81.

We are now ready to give a proof that 2  is irrational. We will use a technique called

proof by contradiction.

Example-5.  Prove that 2  is irrational.

Proof : Since we are using proof by contradiction, let us assume the contrary, i.e., 2  is rational.

If it is rational, then there must exist two integers r and s (s ≠ 0) such that 2  = 
r

s
.

Suppose r and s have a common factor other than 1. Then, we divide by the common

factor to get 2  = 
a

b
 , where a and b are co-prime.

So, b 2 = a.

On squaring both sides and rearranging, we get 2b2 = a2. Therefore, 2 divides a2.

Now, by statement 1, it follows that if 2 divides a2 it also divides a.

So, we can write a = 2c for some integer c.

Substituting for a, we get 2b2 = 4c2, that is, b2 = 2c2.

This means that 2 divides b2, and so 2 divides b (again using statement 1 with p= 2).

Therefore, both a and b have 2 as a common factor.
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But this contradicts the fact that a and b are co-prime and have no common factors other

than 1.

This contradiction has arisen because of our assumption that 2  is rational. So, we

conclude that 2  is irrational.

In general, it can be shown that d  is irrational whenever d is a positive integer which is

not the square of an integer. As such, it follows that 6, 8, 15 24  etc. are all irrational

numbers.

In earlier classes, we mentioned that :

• the sum or difference of a rational and an irrational number is irrational and

• the product or quotient of a non-zero rational and irrational number is irrational.

We prove some particular cases here.

Example-6.  Show that 5 – 3  is irrational.

Solution : Let us assume, to the contrary, that 5 – 3  is rational.

That is, we can find coprimes a and b (b ≠ 0) such that 5 –  3  = 
a

b
.

Therefore, 5 – 
a

b
  = 3

Rearranging this equation, we get 3  = 5 
5a b a

b b

�
� �

Since a and b are integers, we get 5
a

b
�  is rational so 3  is rational.

But this contradicts the fact that 3  is irrational.

This contradiction has arisen because of our incorrect assumption that 5 – 3  is rational.

So, we conclude that 5 – 3   is irrational.

Example-7.  Show that 3 2  is irrational.

Solution : Let us assume, the contrary, that 3 2  is rational.

i.e., we can find co-primes a and b (b ≠ 0) such that  3 2  = 
a

b
.
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Rearranging, we get  2 = 
3

a

b
.

Since 3, a and b are integers, 
3

a

b
 is rational, and so 2  is rational.

But this contradicts the fact that  2   is irrational.

So, we conclude that 3 2  is irrational.

Example-8.  Prove that 2  + 3  is irrational.

Solution : Let us suppose that 2  +  3   is rational.

Let 2  + 3  = 
a

b
, where a, b are integers and  b ≠ 0

Therefore, 2 =  
a

b
– 3  .

Squarring on both sides, we get
2

2
2 3 2 3

a a

b b
� � �

Rearranging

   
2

2

2
3 3 2

a a

b b
� � �

  �
2

2
1

a

b
�

        
2 2

3
2

a b

ab

�
�

Since a, b are integers,  
2 2

2

a b

ab

�
 is rational, and so, 3  is rational.

This contradicts the fact that  3  is irrational. Hence, 2 3�  is irrational.

Note :
1. The sum of the two irrational numbers need not be irrational.

For example, if a = 2  and b = 2� , then both a and b are irrational, but a + b = 0

which is rational.
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2. The product of two irrational numbers need not be irrational.

For example, a = 2 and b = 8 , then both a and b are irrational, but

ab = 16  = 4 which is rational.

� � � 
�
����
� �� ���

1. Prove that the following are irrational.

(i)  
1

2
(ii)  3  + 5 (iii) 6 + 2 (iv) 5 (v)  3 + 2 5

2. Prove that p q�  is irrational, where p, q are primes.

� ���� ����

Properties of real numbers

In this chapter, you have seen many examples to show whether a number is rational or

irrational. Now assuming that a, b and c represent real numbers, use your new knowledge to

find out whether all the properties listed below hold for real numbers. Do they hold for the

operations of subtraction and division? Take as many real numbers you want and investigate.

Property Addition Multiplication

1. Closure a + b = c a . b = c

2. Commutative a + b = b + a a . b = b.a

3. Associative a + (b + c) = (a + b) + c a(bc) = (ab).c

4. Identity a + 0 = 0 + a = a a.1 = 1.a = a

5. Inverse a + (-a) = 0 a. 
1

a
 = 1, (a�0)

6. Distributive                           a (b + c) = ab + ac

���� � 
�	
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In this section, we are going to learn about logarithms. Logarithms are used for all sorts

of calculations in engineering, science, business, economics and include calcuating compound

interest, exponential growth and decay, pH value in chemistry, measurement of the magnitude of

earthquakes etc.
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However, before we can deal with logarithms, we need to revise the laws of exponents

as logarithms and laws of exponents are closely related.
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We know that when 81 is written as 34 it is said to be written in its exponential form. That

is,  in 81 =  34, the number 4 is the exponent or index and 3 is the base. We say that -

81 is the 4th power of the base 3 or 81 is the 4th power of 3. Similarly, 27 =  33.

Now, suppose we want to multiply 27 and 81; one way of doing this is by directly

multiplying. But multiplication could get long and tedious if the numbers were much larger than 81

and 27. Can we use powers to makes our work easier?

We know that 81 = 34. We also know that 27 = 33.

Using the Law of exponents +× =m n m na a a ,  we can write

27 � 81 = 33 � 34 = 37

Now, if we had a table containing the values for the powers of 3, it would be straight

forward task to find the value of 37 and obtain the result of 81 � 27 = 2187.

Similaly, if we want to divide 81 by 27 we can use the law of exponents
m n m na a a −÷ = where m > n. Then, 81 ÷ 27 =  34  ÷ 33 = 31 or simply 3

Notice that by using powers, we have changed a multiplication problem into one involving
addition  and a division problem into one of subtration i.e., the addition of powers, 4 and 3 and
the subtraction of the powers 4 and 3.

	�� ����

Try to write the numbers 10, 100, 1000, 10000 and 100000 in exponential forms.

Identify the base and index in each case.

� ���� ����

     (i) Find 16 x 64, without actual multiplication, using exponents.

    (ii) Find 25 x 125, without actual multiplication, using exponents.

    (iii) Express 128 and 32 as powers of 2 and find 128 ÷ 32.
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We know that 10000 =104 . Here, 10 is the base and 4 is the exponent. Writing a
number in the form of a base raised to a power is known as exponentiation. We can also write
this in another way called logarithms as

log
10

 10000 = 4.

This is stated as  "log  of 10000 to the base 10 is equal to  4".

We observe that the base in the original expression becomes the base of the logarithmic
form. Thus,

10000=104 is the same as log
10

10000 = 4.

In general, if an = x; we write it as logax = n where a  and x are positive numbers
and a ≠≠≠≠≠ 1.

Let us understand this better through examples.

Example-9.  Write i) 64 = 82  ii) 64 = 43 in logarithmic form.

Solution :  (i) The logarithmic form of 64 = 82 is log
8
64 = 2.

     (ii) The logarithmic form of 64 = 43 is log
4
64 = 3.

In this example, we find that log base 8 of 64 is 2 and log base 4 of 64 is 3. So, the

logarithms of the same number to different bases are different.

	�� ����

Write 16 = 24 in logarithmic form. Is it the same as log
4
16?

Example-10.  Write the exponential form of the following .

(i) log
10

100 = 2  (ii) log
5
25 = 2  (iii) log

2
2 = 1        (iv) log

10
10 = 1

Solution : (i) Exponential form of log
10

100=2 is 102 = 100.

(ii) Exponential form of log
5
25=2 is 52 = 25.

(iii) Exponential form of log
2
2=1 is 21 = 2.

(iv) Exponential form of log
10

10=1 is 101 = 10.

In cases (iii) and (iv), we notice that log
10

10 =1 and log
2
2=1.  In general, for any base a,

a1 = a so loga a = 1

���� ����

Show that a0  = 1 so loga1=0.
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  1. Write the following in logarithmic form.

(i) 112 = 121 (ii) (0.1)2 = 0.01 (iii) ax = b

  2. Write the following in exponential form.

(i) log
5
125 = 3 (ii) log

4
64 = 3 (iii) log

a
x = b (iv) log

2
2 = 1

Example-11.  Determine the value of the following logarithms.

(i)   log
3
9 (ii)   log

8
2 (iii)    logc c

Solution : (i) Let log
3
9 = x, then the exponential form is 3x = 9 ⇒⇒⇒⇒⇒ 3x = 32 ⇒⇒⇒⇒⇒ x=2

(ii) Let log
8
2=y, then the exponential form is 8y=2 ⇒⇒⇒⇒⇒ (23)y=2 ⇒⇒⇒⇒⇒ 3y=1 ⇒⇒⇒⇒⇒ y = 

1

3

(iii) Let  logc c =z, then the exponential form is 
1

2
1

2
z zc c c c z� � � � �
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Just like we have rules or laws of exponents, we have three laws of logarithms. We will
try to prove them in the coming sections

1.5.3a The first law of logarithms

Suppose x = an and y = am where a>0 and a�1. Then we know that we can write:

log
a
x = n and log

a
y = m .............. (1)

Using the first law of exponents we know that an � am = an+m

So, xy =  an � am = an+m i.e. xy =  an+m

Writing in the logarithmic form, we get

log
a
xy = n+m .............. (2)

But from (1), n = log
a
x and m=log

a
y.

So, log
a
xy = log

a
x + log

a
y

So, if we want to multiply two numbers and find the logarithm of the product, we can do

this by adding the logarithms of the two numbers. This is the first law of logarithms.

    logaxy = logax + logay
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1.5.3b The second law of logarithms   states loga 
x

y = logax - logay

���� ����

Prove the second law of logarithms by using the law of exponents 
n

n m
m

a
a

a
��

1.5.3c The third law of logarithms

Let x = an  so log
a
x = n. Suppose, we raise both sides of x = an to the power m, we get-

xm = (an)m

Using the laws of exponents-

xm = anm

If we think of xm as a single quantity, the logarithmic form of it, is

log
a
xm = nm

logax
m = m logax (an = x so log

a
x = n)

This is the third law. It states that the logarithm of a power number can be obtained by
multiplying the logarithm of the number by that power.

logax
m = m logax

Example-12.  Expand log15

Solution : As you know, log
a
xy = log

a
x + log

a
y.

So,  log15 = log (3 × 5)

= log3 + log5

Example-13.  Expand log 
343

125

Solution : As you know, log
a
 
x

y = log
a
x - log

a
y

   So, log 
343

125
 = log343 – log125

= log73 – log53
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     Since, log
a
xm = m log

a
x

 = 3log7 – 3log5

     So log 
343

125
  = 3(log7 – log5).

Example-14.  Write 2log3 + 3log5 – 5log2 as a single logarithm.

Solution : 2log3 + 3log5 – 5log2

= log32 + log53 – log25 (since in m log
a
x=log

a
xm)

= log9 + log125 – log32

= log (9 × 125) – log32 (Since log
a
x + log

a
y = log

a
xy)

= log1125 – log32

= log 
1125

32
 (Since log

a
x – log

a
y = log

a 

x

y  )
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  1.  Write the logarithms following in the form log
a
x + log

a
y

(i) 8 ×  32 (ii) 49 ×  343 (iii) 81 ×  729

  2.  Write the logarithms following in the form log
a
x - log

a
y

(i) 8 ÷ 64 (ii) 81 ÷ 27

  3.  Write the logarithms following in logarithmic forms

(i) 43 = (22)3 (ii) 362 = (62)2

� � 
�
����
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1. Write the following in logarithmic form.

(i) 35 = 243 (ii) 210 = 1024 (iii) 106 = 1000000

(iv) 10-3 = 0.001 (v) 3-2 = 
1

9
(vi) 60 = 1

(vii) 5-1 = 
1

5
(viii) 49 7� (ix)

2

327 9� (x) 
2

5 1
32

4

�

�
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2. Write the following in exponemtial form

(i) log
18

324 = 2 (ii) log
10

10000 = 4 (iii) log
a x = b

(iv) 8
4log x� (v) log

3

1

27

� 	
� 
� 
�� 

= y

3. Determine the value of the following.

(i) log
25

5 (ii) log
81

3 (iii) log
2

1

16

� 	
� 
� 
�� 


(iv) log
7
1 (v) log

x x (vi) log
2
512

(vii) log
10

0.01 (viii) 2

3

8
log

27

� 	
� 
� 
�� 


4. Write each of the following expressions as log N. Determine the value of N. (You can
assume the base is 10, but the results are identical which ever base is used).

(i) log 2 + log 5 (ii) log 16 - log 2 (iii) 3 log 4

(iv) 2 log 3 - 3 log 2 (v) log243 + log1 (vi) log 10 + 2 log 3 - log 2

5. Expand the following.

(i) log1000 (ii) log 
128

625

� 	
� 
� 
�� 

(iii) logx2y3z4

(iv) log
2 3p q

r
(v) log

3

2

x

y

������ � ����	��	� ���
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There are two bases which are used more commonly than any others and deserve

special mention. They are base 10 and base e

Usually the expression log x implies that the base is 10. In calculators, the button

marked log  is pre-programmed to evaluate logarithms to base ‘10’.

For example,

log 2 = 0.301029995664…

log 3 = 0.4771212547197…
Are log 2 and log 3 irrational?
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The second common base is ‘e’. The symbol ‘e’ is called the exponential constant. This

is an irrational number with an infinite, non-terminating non-recurring decimal expansion. It is

usually approximated as 2.718. Base ‘e’ is used frequently in scientific and mathematical

applications. Logarithms to base e or log
e
, are often written simply as ‘ln’. So, “ln x” implies

the base is ‘e’. Such logarithms are also called natural logarithms. In calculators, the button

marked ‘ln’ gives natural logs.

For example

ln 2 = 0.6931471805599…

ln 3 = 1.0986122886681…
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Let us understand applications of logarithms with some examples.

Example-15.  The magnitude of an earthquake was defined in 1935 by Charles Richer with the

expression M=log 
I

S
; where I is the intensity of the earthquake tremor and  S  is the intensity of

a “threshold earthquake”.

(a) If the intensity of an earthquake is 10 times the intensity of a threshold earthquake, then

what is its magnitude?

(b) If the magnitude of an earthquake registers 10 on the Richter scale, how many times is

the intensity of this earthquake to that of a threshold earthquake?

Solution :
(a) Let the intensity of the earthquake be I, then we are given

I = 10 S

The magnitude of an earthquake is given by-

M = log 
10S

S

∴The magnitude of the Delhi earthquake will be-

M = log 
I

S

    = log 10

    = 1

Are  ln(2) and ln(3) irrational?
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(b) Let x be the number of times the intensity of the earthquake to that of a threshold

earthquake. So the intensity of earthquake is-

I = xS

We know that-

M = log 
I

S

So, the magnitude of the  earthquake is-

M = log  
xs

s

or M = log x

We know that M = 10

So log x = 10 and therefore x = 1010

���� ����

The formula for calculating pH is pH = -log
10

 [H+] where pH is the acidity or basicity

of the solution and [H+] is the hydrogen ion concentration.

  (i) If Shankar's Grandma’s Lux Soap has a hydrogen ion concentration of

9.2 × 10(-12). What is its pH?

(ii) If the pH of a tomato is 4.2, what is its hydrogen ion concentration?

� � � ��������� 
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     [This exercise is not meant for examination]

1. Can the number 6n, n being a natural number, end with the digit 5? Give reason.

2. Is 7 � 5 � 3 � 2 + 3 a composite number? Justify your answer.

3. Check whether 12n can end with the digit 0 for any natural number n?

4. Show that one and only one out of n, n + 2 or n + 4 is divisible by 3, where n is any

positive integer.

5. Prove that � �2 3 5�  is an irrational number. Also check whether

� �� �2 3 5 2 3 5� � is rational or irrational.
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6. Without actual division, find after how many places of decimals in the decimal expansion

of the following rational numbers terminates. Verify by actual division. What do you

infer?

(i) 
5

16
(ii) 2

13

2
(iii) 

17

125
(iv) 

13

80
       (v) 

15

32
 (vi)  2

33

2 5�

7. If x2 + y2 = 6xy, prove that 2 log (x + y) = logx + logy + 3 log 2

8. Find the number of digits in 42013, if log
10

 2 = 0.3010.

Note : Ask your teacher about integral part and decimal part of a logarithm of number.
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1. The Fundamental Theorem of Arithmetic states that every composite number can be

expressed (factorized) as a product of its primes, and this factorization is unique, apart

from the order in which the prime factors occur.

2. If p is a prime and p divides a2, where a is a positive integer, then p divides a.

3. Let x be a rational number whose decimal expansion terminates. Then we can express x

in the form 
p

q , where p and q are coprime, and the prime factorization of q is of the form

2n5m, where n, m are non-negative integers.

4. Let x =  
p

q  be a rational number, such that the prime factorization of q is of the form

2n5m, where n, m are non-negative integers. Then x has a decimal expansion which

terminates.

5. Let x =  
p

q  be a rational number, such that the prime factorization of q is of the form

2n5m, where n, m are non-negative integers. Then x has a decimal expansion which is

non-terminating, repeating (recurring).

6. We define log
a
 x = n, if an = x, where a and x are positive numbers and a ≠ 1.

7. Laws of  logarithms :

(i) log
a
 xy = log

a
 x + log

a
 y (ii) log

a
 

x

y  = log
a
 x �  log

a
 y

(iii) log
a
 xm = m log

a
 x

8. Logarithms are used for all sorts of calculations in engineering, science, business and

economics.


