CURRENT ELECTRICITY

1. **ELECTRIC CURRENT**

$$I_{av} = \frac{\Delta q}{\Delta t}$$
 and instantaneous current

$$i = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$$

2. **ELECTRIC CURRENT IN A CONDUCTOR**

I = nAeV

$$v_d = \frac{\lambda}{\tau}$$

$$v_d = \frac{\frac{1}{2} \left(\frac{eE}{m}\right) \tau^2}{\tau} = \frac{1}{2} \frac{eE}{m} \tau,$$

$$= neAV$$
.

$I = neAV_{_d}$ CURRENT DENSITY 3.

$$\vec{J} = \frac{dI}{ds} \vec{n}$$

ELECTRICAL RESISTANCE 4.

$$I = neAV_d = neA\left(\frac{eE}{2m}\right) \tau = \left(\frac{ne^2\tau}{2m}\right) AE$$

$$E = \frac{V}{\ell}$$
 so $I = \left(\frac{ne^2\tau}{2m}\right) \left(\frac{A}{\ell}\right) V = \left(\frac{A}{\rho\ell}\right) V = V/R \implies V = IR$

ρ is called resistivity (it is also called specific resistance) and

$$\rho = \frac{2m}{ne^2\tau} = \frac{1}{\sigma}, \ \sigma \ \text{is called conductivity}. \ Therefore \ current \ in \ conductors$$

is proportional to potential difference applied across its ends. This is Ohm's Law.

Units:

$$R \rightarrow ohm(\Omega), \rho \rightarrow ohm - meter(\Omega - m)$$

also called siemens, $\sigma \to \Omega^{-1} m^{-1}$.

Dependence of Resistance on Temperature:

$$R = R_o (1 + \alpha \theta)$$
.

Electric current in resistance

$$I = \frac{V_2 - V_1}{R}$$

5. ELECTRICAL POWER

P = VI

$$P = I^2 R = VI = \frac{V^2}{R}$$
.

$$H = VIt = I^2Rt = \frac{V^2}{R}t$$

$$H = I^2RT$$
 Joule = $\frac{I^2RT}{4.2}$ Calorie

9. KIRCHHOFF'S LAWS

9.1 Kirchhoff's Current Law (Junction law)

$$\Sigma I_{in} = \Sigma I_{out}$$

9.2 Kirchhoff's Voltage Law (Loop law)

$$\Sigma$$
 IR + Σ EMF =0".

10. COMBINATION OF RESISTANCES:

Resistances in Series:

 $R=R_{_1}+R_{_2}+R_{_3}+.....+R_{_n}$ (this means $R_{_{\mbox{\footnotesize eq}}}$ is greater then any resistor)) and

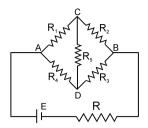
$$V = V_1 + V_2 + V_3 + \dots + V_n$$

$$V_1 = \frac{R_1}{R_1 + R_2 + \dots + R_n} V ; V_2 = \frac{R_2}{R_1 + R_2 + \dots + R_n} V ;$$

2. Resistances in Parallel:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

11. WHEATSTONE NETWORK: (4 TERMINAL NETWORK)



When current through the galvanometer is zero (null point or balance

point)
$$\frac{P}{Q} = \frac{R}{S}$$
, then PS = QR

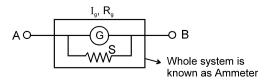
13. GROUPING OF CELLS 13.1 Cells in Series:

13.2 Cells in Parallel:

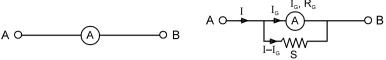
$$E_{eq} = \frac{\frac{\epsilon_1}{r_1} + \frac{\epsilon_2}{r_2} + \dots + \frac{\epsilon_n}{r_n}}{\frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}} \quad \text{[Use emf with polarity]} \quad \text{A} = \frac{\frac{\epsilon_1}{r_1} + \frac{\epsilon_2}{r_2} + \dots + \frac{\epsilon_n}{r_n}}{\frac{\epsilon_n}{r_n} + \frac{1}{r_2} + \dots + \frac{1}{r_n}} \quad \text{[Use emf with polarity]} \quad \text{A} = \frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}$$

15. AMMETER

A shunt (small resistance) is connected in parallel with galvanometer to convert it into ammeter. An ideal ammeter has zero resistance



Ammeter is represented as follows -



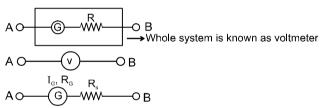
If maximum value of current to be measured by ammeter is I then I_{c} . $R_{c} = (I - I_{c})S$

$$S = \frac{I_G.R_G}{I-I_G} \hspace{1cm} S = \frac{I_G\times R_G}{I} \hspace{1cm} \text{when} \hspace{1cm} I>> I_{G}.$$

where I = Maximum current that can be measured using the given ammeter.

16. VOLTMETER

A high resistance is put in series with galvanometer. It is used to measure potential difference across a resistor in a circuit.



For maximum potential difference

$$\begin{aligned} \mathbf{V} &= \mathbf{I}_{\mathrm{G}} \cdot \mathbf{R}_{\mathrm{S}} + \mathbf{I}_{\mathrm{G}} \, \mathbf{R}_{\mathrm{G}} \\ \mathbf{R}_{\mathrm{S}} &= \frac{\mathbf{V}}{\mathbf{I}_{\mathrm{G}}} - \mathbf{R}_{\mathrm{G}} \qquad \text{if} \qquad \qquad \mathbf{R}_{\mathrm{G}} << \mathbf{R}_{\mathrm{S}} \Rightarrow \ \mathbf{R}_{\mathrm{S}} \approx \frac{\mathbf{V}}{\mathbf{I}_{\mathrm{G}}} \end{aligned}$$

17. POTENTIOMETER

$$I = \frac{\varepsilon}{r + R}$$

$$I = \frac{\varepsilon}{r + R}$$

$$E, r$$
Potentiometer wire Resistance = R

$$V_A - V_B = \frac{\varepsilon}{R + r} . R$$

Potential gradient $(x) \rightarrow$ Potential difference per unit length of wire

$$x = \frac{V_A - V_B}{L} = \frac{\varepsilon}{R + r} \cdot \frac{R}{L}$$

Application of potentiometer

(a) To find emf of unknown cell and compare emf of two cells.

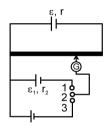
In case I.

In figure (1) is joint to (2) then balance length =
$$\ell_1$$
 $\epsilon_1 = x \ell_1$ (1)

in case II,

In figure (3) is joint to (2) then balance length = ℓ_2 $\epsilon_2 = x \ell_2$ (2)

$$\frac{\varepsilon_1}{\varepsilon_2} = \frac{\ell_1}{\ell_2}$$



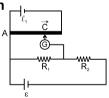
If any one of ε_1 or ε_2 is known the other can be found. If x is known then both ε_1 and ε_2 can be found

(b) To find current if resistance is known

$$V_{A} - V_{C} = x \ell_{1}$$

$$IR_{1} = x \ell_{1}$$

$$I = \frac{x\ell_1}{R_1}$$



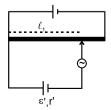
Similarly, we can find the value of R₂ also.

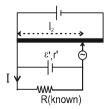
Potentiometer is ideal voltmeter because it does not draw any current from circuit, at the balance point.

(c) To find the internal resistance of cell.

Ist arrangement

2nd arrangement





by first arrangement
$$\epsilon' = x \ell_1$$
 ...(1) by second arrangement $IR = x \ell_2$

$$I = \frac{x\ell_2}{R}, \qquad \text{also } I = \frac{\epsilon'}{r' + R}$$

$$\therefore \qquad \frac{\epsilon'}{r' + R} = \frac{x\ell_2}{R} \qquad \qquad \Rightarrow \qquad \frac{x\ell_1}{r' + R} = \frac{x\ell_2}{R}$$

$$r' = \left\lceil \frac{\ell_1 - \ell_2}{\ell_2} \right\rceil R$$

- (d)Ammeter and voltmeter can be graduated by potentiometer.
- (e)Ammeter and voltmeter can be calibrated by potentiometer.

18. METRE BRIDGE (USE TO MEASURE UNKNOWN RESISTANCE)

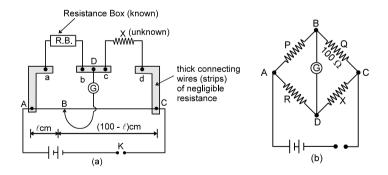
If AB = ℓ cm, then BC = $(100 - \ell)$ cm.

Resistance of the wire between A and B , R $\propto \ell$

[\because Specific resistance ρ and cross-sectional area A are same for whole of the wire]

or
$$R = \sigma \ell$$
 ...(1)

where σ is resistance per cm of wire.



If P is the resistance of wire between A and B then

$$P \propto \ell \Rightarrow P = \sigma(\ell)$$

Similarly, if ${\bf Q}$ is resistance of the wire between ${\bf B}$ and ${\bf C},$ then

Q
$$\propto$$
 100 − ℓ
Q = σ (100 − ℓ)(2)

Dividing (1) by (2),
$$\frac{P}{Q} = \frac{\ell}{100 - \ell}$$

٠.

Applying the condition for balanced Wheatstone bridge, we get R Q = P X

$$\therefore \qquad x = R \frac{Q}{P} \qquad \qquad \text{or} \qquad X = \frac{100 - \ell}{\ell} R$$

Since R and ℓ are known, therefore, the value of X can be calculated.