PART-B (PERIODIC PROPERTIES)

PERIODICITY :

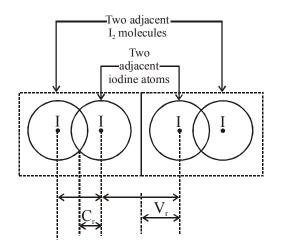
- (a) The regular gradation in properties from top to bottom in a group and from left to right in a period is called periodicity in properties.
- (b) In a period, the ultimate shell remain same, but the number of electrons gradually increases.
- (c) In a group, the number of electrons in the ultimate shell remains same, but the values of n increases.

Cause of periodicity

- (a) The cause of periodicity in properties is due to the same outermost shell electronic configuration repeating over regular intervals.
- (b) In the periodic table, elements with similar properties occur at intervals of 2, 8, 8, 18, 18 and 32. These numbers are called magic numbers.

ATOMIC RADIUS :

Since there is a problem in calculating actual size of atom, three types of radii can be defined :


Type-I Covalent radius :
$$C_r = \frac{d}{2}$$

[Used for H₂, Cl₂ and such molecules]

Type-II Metallic Radius :
$$M_r = \frac{d}{2}$$

[Used for metals]

<u>Type-III</u> VanderWaal's Radius or Collision radius

VanderWaal's radius = $\frac{1}{2}$ × Internuclear distance between nuclei of two neighbouring atoms

belonging to nearest molecules.

VanderWaal's radius > Metallic radius > Covalent radius

The VanderWaal's radius and covalent radius of chlorine atom are 1.80 Å and 0.99 Å respectively.

36 JEE-Chemistry

Ionic Radius

A neutral atom changes to a cation by the loss of one or more electrons and to an anion by the gain of one or more electrons. The magnitude of charge on cation and anion is equal to the number of electrons lost or gained respectively. The ionic radii of the ions present in an ionic crystal may be calculated from the internuclear distance between the two ions.

(a) Radius of Cation

Radius of cation is smaller than that of corresponding atom. Since due to removal of electron(s), Z_{eff} increases.

(b) Radius of an Anion

Radius of an anion is invariably larger than that of the corresponding atom, since due to addition of electron(s) Z_{eff} decreases.

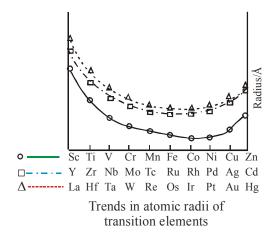
Factors affecting atomic radius:

- (a) Z_{eff} increases, atomic radius decreases
- (b) Number of shell(n) increases, atomic radius increases
- (c) Screening effect increases, atomic radius increases.
- (d) Magnitude of -ve charge increases, atomic radius increases O
- (e) Magnitude of +ve charge increases, atomic radius decreases Mn >
- (f) Bond order increases, atomic radius decreases

Periodic Trend :

- (a) For normal elements:
- (i) Across a period : It decreases from left to right in a period as $Z_{eff.}$ increases. Ex. Ne > Li > Be > B > C > N > O > F
- (ii) In a group: It increases from top to bottom in a group as number of shells increases.
 Ex. Li < Na < K < Rb < Cs

Solution Note : In III A group size of Al and Ga is nearly same (transition contraction)


(b) For inert gases:

In respective period generally, the atomic radius of inert gas is largest, because for inert gas VanderWaal's radius is defined. The VanderWaal's radius of inert gases also increases on moving from top to bottom in the group.

(c) For transition elements:

From left to right in a period:

Element	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Covalent radius (Å)	1.44	1.32	1.22	1.17	1.17	1.17	1.16	1.15	1.17	1.25

Li > Be > B > C > N > O > FLi < Na < K < Rb < Cs

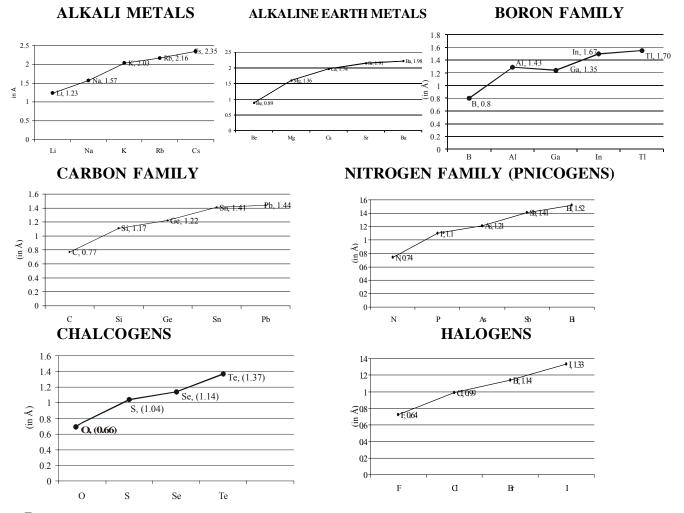
$$0 < 0^{-} < 0^{-2}$$

$$Mn > Mn^{+2} > Mn^{+3} > Mn^{+4}$$

$$N - N < N = N = N$$

In a group :

- (i) The atomic radius of elements increases on moving down the first transition series (3d) to second transition series (4d). This is due to the increases in number of shells with the increase in atomic number.
- (ii) The atomic radii of second (4d) and third (5d) transition series in a group is almost same except Y(39) and La(57)


(d) For inner transition elements:

As we move along the lanthanide series, there is a decrease in atomic as well as ionic radius. The decrease in size is regular in ions but not so regular in atoms. This is called lanthanide contraction*.

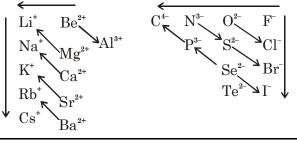
Exceptions :

- (1) Noble gases have largest atomic sizes [Vander waal radii]. However, their covalent radii are smaller e.g. Xe.
- (2) Size of Al > Ga, $[Z_{eff} increasing]$
- (3) Size of Hf & Zr are same (lanthanide contraction)

Graphical representation of atomic radius :

[(•) what can you predict or say about the increment in size along a group and decrement along a period]

ISOELECTRONIC **MONOATOMIC SPECIES** [Size ∝ 1/Z] :


(i)
$$S^{2-}$$
, Cl^- , K^+ , Ca^{2+} , Sc^{3+} (ii) H^- , He , Li^+

radius of cation Z_{eff} of Anion O^{-2} , F^{-} , Na^{+} , Mg^{+2} , Al^{+3} (iii) (iv)

radius of anion

Z_{eff} of Cation

Note:- In the direction of arrow (\rightarrow) ionic size increases.

IONISATION ENERGY:

Amount of energy required to remove the most loosely bonded electron from an isolated gaseous atom from its ground state electronic configuration.

Units : $kJ mol^{-1}$, k cal mol⁻¹, eV per atom.

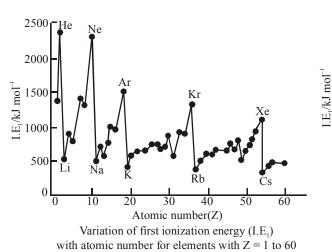
Ionisation is endothermic (endoergic) i.e. requires energy. Hence $\Delta H_{ionsation}$ is +ve.

M + Energy (IE₁) \longrightarrow M⁺ + e⁻ $M \longrightarrow M^+ + e^ \Delta H = IE_1$ $\begin{array}{c} M^+ \longrightarrow M^{+2} + e^- & \Delta H = IE_2 \\ M^{+2} \longrightarrow M^{+3} + e^- & \Delta H = IE_3 \end{array}$ Successive ionisation energy

 $IE_3 > IE_2 > IE_1$ (always)

FACTORS AFFECTING IONISATION ENERGY:

- (1)Atomic size : Varies inversely
- (2)Screening effect : Varies inversely
- (3) Nuclear charge (Z) : Varies directly
- Special electronic configuration of outermost electron (half filled / fully filled) (4)


2500

Type of orbitals involved in Ionisation :s > p > d > f. (5)

Note : Half filled and full filled inner orbitals, affects d-block and *f*-block trends.

General Trend: Along period I.E. increases [with some exception] $[Z_{eff} \uparrow]$

Along a group I.E. decrease $[Z_{eff} \text{ constant}, n \uparrow]$

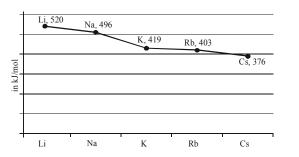
First ionization energy $(I.E_1)$ of elements of the second period as a function of atomic number(Z)

Exception :

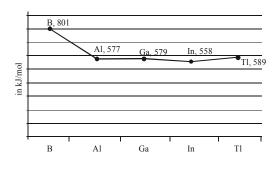
- Along a period, half filled and fully filled configurations have higher I.E.
 e.g. Be > B and N > O.
- (2) along a group, $Ga \simeq Al$

PROPERTIES AFFECTED BY IONISATION ENERGY :

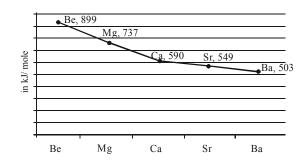
- (1) Metallic character (Varies inversely)
- (2) Reducing power (Varies inversely)
- (3) Tendency to stay in which state A^{+1} . A^{+2} or A^{+3}

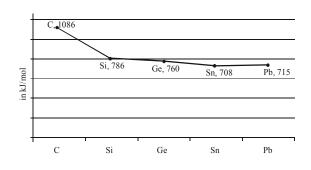

Solution Note :

- (a) Helium (He) has the highest ionisation energy (IE_1) among all the elements and Caesium (Cs) has the least (IE_1) value.
- (b) Ionisation potential of inert gases is very high due to most stable s^2p^6 electronic configuration.

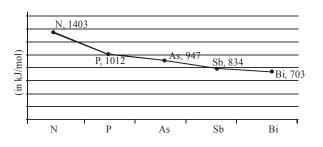

Element	Не	Ne	Ar	Kr	Xe	Rn
$IE_1(eV)$	24.5	21.6	15.8	14.0	12.1	10.7

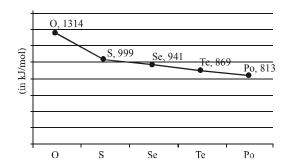
(c) For isoelectronic species I.E. increases with positive charge and decreases with negative charge. e.g. $Al^{+3} > Mg^{+2} > Na^+ > F^- > O^{-2} > N^{-3}$


Graphical representation of ionisation energy : ALKALI METALS

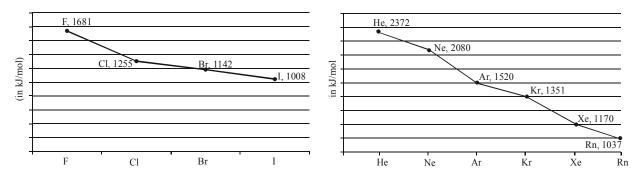


ALKALINE EARTH METALS




CARBON FAMILY

NITROGEN FAMILY (PNICOGENS)



HALOGENS

Ionisation energy of d-block elements :

1st, 2nd, 3rd IE's are increasing from left to right for 1st Transition series, but not regularly.

For 2^{nd} IE Cr > Fe > Mn and Cu > Zn

For 3^{rd} IE Mn > Cr > Fe and Zn has highest.

Element		Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
Atomic number Electronic configu	ration	21	22	23	24	25	26	27	28	29	30
Electronic conligu	M	$3d^14s^2$	$3d^{2}4s^{2}$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{10}4s^2$	$3d^{10}4s^{1}$	$3d^{10}4s^2$
	M^{2^+}	$3d^1$	$3d^2$	$3d^3$	$3d^4$	$3d^5$	$3d^6$	$3d^7$	$3d^8$	$3d^9$	$3d^{10}$
	M ³⁺	[Ar]	$3d^{1}$	$3d^2$	$3d^3$	$3d^4$	$3d^5$	$3d^6$	$3d^7$	-	_
Enthalpy of atom	sation, Δ										
Ionisation Enthalp	у, Δ	$^{326}_{H^{\circ}/kJ \text{ mol}^{-1}}$	473	515	397	281	416	425	430	339	126
$\Delta_l H^{\odot}$	I II III	631 1235 2393	656 1309 2657	650 1414 2833	653 1592 2990	717 1509 3260	762 1561 2962	758 1644 3243	736 1752 3402	745 1958 3556	906 1734 3829

ELECTRON AFFINITY & ELECTRON GAIN ENTHALPY (EGE) :

Electron Affinity : Amount of energy released when an electron is added to an isolated gaseous atom.

Units : k J mol $^{-1}$, k Cal mol $^{-1}$ and eV per atom.

Addition of electron results in release of energy in most of the cases but for addition of second electron energy is always required. The sum of $EA_1 \& EA_2$ is +ve (energy required)

E A $\alpha \frac{1}{\text{atomic size}} \alpha Z_{eff}$ (Cl has the highest E.A.)

Electron gain Enthalpy (EGE): When expressed in terms of enthalpy change (ΔH_{eg}) then it is termed as EGE Remember that $\Delta H = -ve$ for exothermic change.

For EA_1 , energy is released

For EA₂, EA₃energy is required

In general $EA_1 + EA_2$, energy is required.

Note : $\Delta H_{e.g.} \simeq -EA$

$$M_{(g)} \xrightarrow[E.A. \ of \ M_{(g)}]{} M_{(g)}^+$$

 $\therefore \quad \Delta H_{eg1} = - \text{ ve (Not always)}$ $\therefore \quad \Delta H_{eg2} = + \text{ ve (always)}$ $\therefore \quad (\Delta H_{eg1} + \Delta H_{eg2}) > 0$

Ionisation energy of element is equal to electron affinity of it's cation.

FACTORS AFFECTING ELECTRON AFFINITY :

- (1) *Atomic size* : Varies inversely
- (2) *Nuclear charge :* Varies directly
- (3) For stable electronic configuration i.e. half filled and fully filled shells EA decreases.

General Trend: Along a period, electron affinity increases [with a few exceptions] as Z_{eff} [↑]. Along a group, electron affinity decreases after 3rd period. Between 2nd and 3rd period in p block electron affinity of 2nd period is lesser.

Exception :

- (1) A fully filled and half filled configuration have low values of EA or even sometimes energy is required rather than getting released.
- (2) 2^{nd} period has lower value than 3^{rd} owing to repulsion between electrons in small sized 2^{nd} period elements.

1							18
Н							Не
+0.754	2	13	14	15	16	17	-0.5
Li	Be	В	С	Ν	0	F	Ne
+0.618	≤ 0	≤ +0.277	+1.263	-0.07	+1.461	+3.399	-1.2
Na	Mg	Al	Si	Р	S	C1	Ar
+0.548	≤ 0	+0.441	+1.385	+0.747	+2.077	+3.617	-1.0
K	Ca	Ga	Ge	As	Se	Br	Kr
+0.502	-	+0.03	+1.2	+0.81	+2.021	+3.365	-1.0
Rb	Sr	In	Sn	Sb	Те	Ι	Xe
+0.486	-	+0.3	+1.2	+1.07	+1.971	+3.059	-0.8

Electron affinity of the main-group elements (in electron volts)

ELECTRO NEGATIVITY :

Property of an atom in a moleculeF has highest electronegativity in the periodic table.Decreasing order → F > O > Cl ≃ N > Br > S ≃ C > I > H.Pauling Scale : |X_A - X_B| = 0.208√Δ_{A-B} Δ in kcal/mol|X_A - X_B| = 0.102 √Δ_{A-B} Δ in kJ/molΔ_{A-B} = E_{A-B} - (E_{A-A} x E_{B-B})^{1/2}Where, E_{A-B} = Bond energy of A-B; E_{A-A} = Bond energy of A-A; E_{B-B} = Bond energy of B-BMulliken's Scale : X_M = $\frac{IP + EA}{2}$ (IP & EA are expressed in eV)Mulliken's values of E N are about 2.8 times higher than values on Pauling's scale.i.e. X_p = $\frac{X_M}{2.8}$

Allred-*Rochow's Scale* : $X_{AR} = \frac{0.359Z_{eff}}{r^2}$; $X_P = X_{AR} + 0.744$

r = covalent radius of atom (in Å)

 Z_{eff} = Effective nuclear charge on periphery

FACTORS AFFECTING ELECTRO NEGATIVITY :

- (1) *Nuclear attraction :* Varies directly
- (2) *Atomic radius :* Varies inversely
- (3) *Charge on ions :* More positive charge, more electronegativity and more –ve charge, less electronegativity.
- (4) *Hybridisation* : To be discussed later in chemical bonding chapter.

General Trends : Along a period, electronegativity increases

Along a group, electronegativity decreases

Exceptions : Not Noteworthy.

Source: Electronegativity of F > Cl but Electron affinity of Cl > F Electronegativity of Some Elements (on Paulling's Scale)

Н 2.1							In Pauling's Scale , elements having almost same electronegativity are-
Li	Be	B	C	N	0	F	$C \simeq S \simeq I \simeq 2.5$
1.0	1.5	2.0	2.5	3.0	3.5	4.0	
Na	Mg	Al	Si	P	S	C1	N = Cl = 3.0
0.9	1.2	1.5	1.8	2.1	2.5	3.0	P = H = 2.1
K	Ca	Ga	Ge	As	Se	Br	Cs = Fr = 0.7 $Be = Al = 1.5$
0.8	1.0	1.6	1.8	2.0	2.4	2.8	
Rb	Sr	In	Sn	Sb	Те	I	
0.8	1.0	1.7	1.8	1.9	2.1	2.5	
Cs	Ba	T1	Pb	Bi	Po	At	
0.7	0.9	1.8	1.8	1.9	2.0	2.2	
Fr 0.7	Ra 0.9					5	

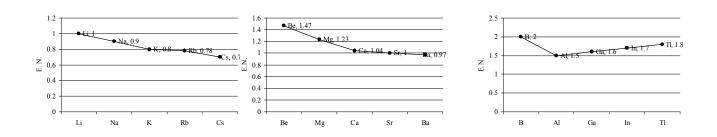
PROPERTIES DEPENDENT ON ELECTRO NEGATIVITY :

(1) % ionic character

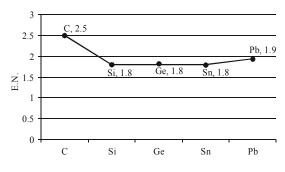
(2) Strength of bond

Nature of hydrides

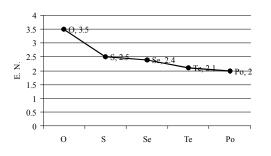
- (3) Bond Length
- (5) Nature of hydroxide.

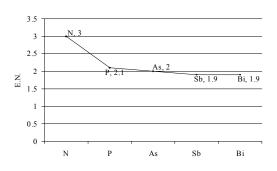

Graphical representation of Electronegativity :

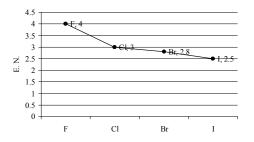
ALKALI METALS


ALKALINE EARTH METALS

(4)


BORON FAMILY


CARBON FAMILY


CHALCOGENS

NITROGEN FAMILY (PNICOGENS)

HALOGENS

44 JEE-Chemistry

LATTICE ENERGY :

The amount of energy released during the formation of 1 mole crystal lattice from consituent gaseous ions.

$$Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$$
 Lattice energy = -788 kJ mol⁻¹

OR

The lattice energy of an ionic compound is the energy required to separate 1 mole of solid ionic substance completely into gaseous ions.

 $NaCl(s) \rightarrow Na^{+}(g) + Cl^{-}(g)$ Lattice energy = +788 kJ mol⁻¹

Lattice energies are large and positive because of attraction between positive and negative ions. The potential energy of two interacting charged particles is given by:

$$E = K \frac{Q_1 Q_2}{r}$$
 where, $r = r^+ + r^-$; $r^+ \rightarrow$ radius of cation, $r^- \rightarrow$ radius of anion

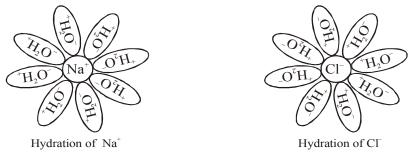
Where Q_1 and Q_2 are the charge on the particles in coulombs, and r is the distance between their centres in meters. The constant K has the value 9.0×10^9 J – m/C².

Factors affecting lattice energy :

- (a) The lattice energy increases as the charge on the ions increases and as their radii decreases.
- (b) The magnitude of lattice energies however depends primarily on the ionic charges because ionic radii do not vary over a wide range.

For Example :

The lattice energy order for some compounds is given below.


LiI < LiBr < LiCl < LiF (Due to small size of halide ion F⁻ alongwith small Li^+)

HYDRATION ENERGY :

It is the energy released when 1 mol of gaseous ions are hydrated in water. It is directly proportional to nuclear charge and inversely proportional to size. It always decreases down the group.

(a) As the charge density of ion increases hydrated size (or aqueous radius) increases.

Size : $Li^{+}(aq) > Na^{+}(aq) > K^{+}(aq) > Rb^{+}(aq) > Cs^{+}(aq)$

(b) As the hydrated size of ion increases ionic mobility decreases, which thus, decreases conductivity of ions.

Mobility : $Li^{+}(aq) < Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq)$ **Conductivity :** $Li^{+}(aq) < Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq)$

(c) Hydration energy also affects the solubility of ionic compounds. If hydration energy is greater than lattice energy then ionic compound will be soluble in water. More is the hydration energy, greater is the solubility, whereas, if lattice energy decreases, solubility of ionic compound increases.

BORN-HABER CYCLE :

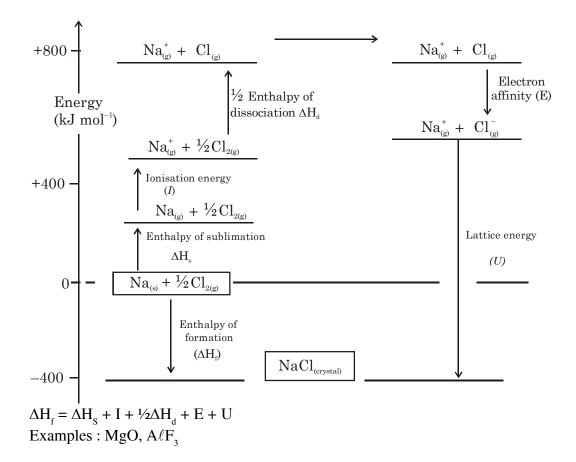
The Born-Haber cycle is an approach to analyze reaction energies.

Various energy terms

⇒ Heat of sublimation ($\Delta H_{sub.}$): It is heat required to change one mole of a substance from solid state to gaseous state.

 $A_{(s)} \longrightarrow A_{(g)}; \quad \Delta H_{sub.} = +ive$

 $\Rightarrow \quad \text{Heat of vaporisation } (\Delta H_{vap.}) : \text{ It is heat required to change one mole of liquid substance into gas.}$


 $A_{(\ell)} \longrightarrow A_{(g)}; \quad \Delta H_{vap.} = +ive$

- $\Rightarrow \quad \text{Heat of fusion } (\Delta H_{fus}) : \text{ It is heat required to change one mole of solid substance into liquid.} \\ A_{(s)} \longrightarrow A_{(\ell)}; \quad \Delta H_{fus.} = +ive$
- \Rightarrow Heat of atomization (ΔH_{atm}) : It is change in enthalpy when one mole of a substance is converted into its constituent gaseous atoms.
- \Rightarrow Heat of solution ($\Delta H_{sol.}$): It is the change in enthlapy when one mole of a solute is dissolved in excess amount of solvent.

 $\text{NaCl}_{(S)}$ + aq. \longrightarrow $\text{Na}^+_{(aq.)}$ + $\text{Cl}^-_{(aq.)}$, $\Delta H_{\text{sol. of NaCl}(s)}$

- ⇒ Bond dissociation energy (B.D.E.) and Bond Energy (B.E.) : It is the amount of heat require to break one mole of bond between two atoms of a gaseous molecule into gaseous atoms.
- \Rightarrow Heat of formation (ΔH_{f}): It is the change in enthalpy when one mole of substance is formed from it's element in standard state.

Born -Haber cycle for NaCl_(s)

MISCELLANEOUS CHEMICAL PROPERTIES :

1. Periodicity of hydra acids :

- (a) Acidic character of hydra acid increases from left to right in a period.
- (b) Acidic character of hydra acid increases from top to bottom in a group.

2. Periodicity of oxy acids :

- (a) Acidic character of oxy acid increases from left to right in a period.
- (b) Acidic character of oxy acid decreases from top to bottom in a group.

3. Periodicity of nature of oxide :

(a) On moving from left to right in a period acidic nature of oxide generally increases.

e.g. $CO_2 < P_2O_5 < SO_3 < Cl_2O_7$

(b) On moving from top to bottom in a group acidic nature of oxide generally decreases.

4. General trends

- (a) *Hydration energy* decreases along a group.
- (b) *Lattice energy* decreases along a group.

:: Some points to Remember ::

(without considering radioactive elements)

- 1. Second most electronegative element is Oxygen
- 2. Hydrogen is the lightest element and Lithium is lightest metal.
- **3.** Helium has the highest value of I.P.
- 4. In periodic table metalloids are only in p-block.
- 5. Total gaseous elements are 11 (He, Ne, Ar, Kr, Xe, Rn, H_2 , N_2 , O_2 , Cl_2 , F_2)
- 6. Liquid metal at room temperature is Hg.
- 7. Diamond is hardest natural substance.
- 8. Halogens have highest electron affinity and amongst them, Cl has the highest amongst them.
- 9. The largest cation of the periodic table = Cs^+ .
- **10.** The smallest cation of the periodic table = H^+ .
- **11.** The smallest anion of the periodic table = F^- .
- **12.** The biggest element of periodic table = Fr.
- **13.** The smallest element of periodic table = H.
- 14. Br is liquid non-metal element at room temperature.
- **15.** Osmium is the heaviest element known.
- **16.** Fluorine is the most electronegative element.

		EXERC	;ISE # 0-1						
		Per	iodic Table						
1.	Which is not anomal	lous pair of elements i	n the Mendeleev's period	c table:-					
	(A) Ar and K	(B) Co and Ni	(C) Te and I	(D) Al and Si					
					PT000 1				
2.	Representative elem	ents belong to :							
	(A) s-and p-block	(B) d-block	(C) d- and f-block	(D) f-block					
					PT0002				
3.	True statement is :-								
	(A) All the transurar	nic elements are synthe	etic elements						
	(B) Elements of third	d period are called trar	nsition elements						
	(D) Electronic confi	guration of elements of	of a group is same						
					PT0003				
4.	Which of the following match is correct :-								
	(A) Last natural eler	(A) Last natural element – Uub							
	(B) General electronic configuration of IA group –ns ²								
	(C) Inert gas elements lies between $2^{nd} - 6^{th}$ period								
	(D) Typical element	$s - 3^{rd}$ period elements	8						
					PT000 4				
5.	The electronic config	guration of elements X	and Z are $1s^2 2s^2 2p^6 3s^2 3$	p^5 and $1s^2 2s^2 2p^5$ re	espectively				
	What is the position	of element X with re	espect to position of Z in t	he periodic table -					
	(A) Just below elem	ent Z	(B) Just above Z						
	(C) Left to the Z		(D) right to the Z						
					PT0005				
5.	Which of the follow	ing is not a Dobereine	er triad :						
	(A) H, F, Cl	(B) N, O, F	(C) P, As, Sb	(D) S, Se, Te					
					РТ0006				
7.	Select the incorrect s	statement for Lother N	leyer's curve :						
	(A) Curve is plotted	between atomic weig	ht and atomic volume						
	(B) Alkali metals oc	cupy maxima of curve							
	(C) Halogens occup	y descending portions	of the curve						
	(D) Transition metal	s occupy bottom porti	ons of the curve						
					DTAAA7				

	•	Atomic &	Ionic Radii				
8.	The size of the follow	ing species increases in	the order:				
	(A) $Mg^{2+} < Na^+ < F^-$		(B) $F^- < Na^+ < Mg^{2+}$				
	(C) $Mg^{2+} < F^- < Na^+$		(D) Na ⁺ < F^- < Mg ²⁺				
					РТ0008		
9.	Highest size will be of	f					
	(A) Br-	(B) I	(C) I ⁻	(D) I ⁺			
					РТ0009		
10.	Element Cu has two c	oxidation states Cu ⁺¹ &	Cu ⁺² . the right order of	radii of these ions.			
	(A) $Cu^{+1} > Cu^{+2}$	(B) $Cu^{+2} > Cu^{+1}$	(C) $Cu^{+1} = Cu^{+2}$	(D) $Cu^{+2} \ge Cu^{+1}$			
					РТ0010		
11.	The correct order of in	ncreasing atomic size of	f element N,F, Si & P.				
	(A) $N < F < Si < P$	(B) $F > N < P < Si$	(C) F < N < P < Si	(D) F < N < Si < 1	Р		
					РТ0011		
12.	The correct order of a	tomic or ionic size					
	(A) N < Li < B	(B) $Cl < Mg < Ca$	(C) $Ca^{+2} < S^{-2} < Cl^{-1}$	(D) $Na^+ < Mg^{+2} <$	Cl		
					PT0012		
13.	• In isoelectronic series largest difference between size is observed in N^{3-} , O^{2-} , F^{-} , Na^+ , Mg^{2+} :						
	(A) N ³⁻ , Mg ²⁺	(B) N^{3-} , O^{2-}		(D) F ⁻ , Na ⁺	-		
					PT0013		
14.	Mg, Mg ²⁺ , Al and Al ³⁺	are arranged in decreasing	ng order of size $1 > 2 > 3$	> 4. Species which are	e present		
	at 1 and 4 position res	1 0					
	(A) Al, Mg^{2+}	(B) Mg, Al^{3+}	(C) Mg^{2+} , Al	(D) Al^{3+} , Mg			
		Lauin dian En			РТ0014		
15.	In which of the follow		ation, ionisation energy	will be maximum in			
13.			(C) [Ne] $3s^2 3p^3$				
	(11) [110] 55 5p	(b) [1(c] 55 5p	(C) [1(C] 55 5p		тр РТ0015		
16.	The correct order of s	econd ionisation potent	tial of C, N, O and F is:				
		-	(C) $O > F > N > C$	(D) $F > O > N > 0$	С		
					РТ0016		
17.	The ionization energy	will be maximum for y	which process?				
	(A) $Ba \rightarrow Ba^+$	(B) Be \rightarrow Be ⁺	(C) $Cs \rightarrow Cs^+$	(D) $Li \rightarrow Li^+$			
					PT0017		
18.	-	g, the incorrect stateme					
	(A) IE_1 (Al) < IE_1 (M	-	(B) IE_1 (Na) < IE_1 (M				
	(C) IE_2 (Mg) > IE_2 (N	Na)	(D) $IE_3 (Mg) > IE_3 (A)$		DECASO		
					РТ0018		

•								
19.	Decreasing ionization	n potential for K, Ca &	z Ba is					
	(A) Ba> K > Ca		(B) $Ca > Ba > K$					
	(C) $K > Ba > Ca$		(D) $K > Ca > Ba$					
					PT0019			
20.	Alkaline earth metals	s always form dipositiv	e ions due to					
	(A) $IE_2 - IE_1 > 10 e$	V	(B) $IE_2 - IE_1 = 17 e$	eV				
	(C) $IE_2 - IE_1 < 10 e$	V	(D) None of these					
					PT0020			
21.	The correct order of	f second I.P.						
	(A) Na $<$ Mg $>$ Al \cdot	< Si	(B) Na > Mg < Al > S	Si				
	(C) Na > Mg > Al $<$	< Si	(D) Na > Mg > Al > \mathcal{A}	Si				
					PT0021			
		Electron affinity or	Electron Gain Enthalpy	v				
22.	The process requires	absorption of energy is	S					
	(A) $F \rightarrow F^-$	(B) $Cl \rightarrow Cl^{-}$	(C) $O^- \rightarrow O^{2-}$	(D) $H \to H^-$				
					PT0022			
23.	Of the following eler	nents, which possesses	the highest electron affi	nity?				
	(A) As	(B) O	(C) S	(D) Se				
					PT0023			
24.	Electron affinities of	O,F,S and Cl are in th	e order.					
	(A) $O < S < Cl < F$		(B) $O < S < F < Cl$					
	(C) $S < O < Cl < F$		(D) $S < O < F < Cl$					
					PT0024			
25.	Increasing order of E	lectron affinity for follo	owing configuration.					
	(a) $1s^2$, $2s^2 2p^2$		(b) $1s^2$, $2s^2 2p^4$					
	(c) $1s^2$, $2s^2 2p^6 3s^2 3$	3p ⁴	(d) $1s^2$, $2s^2 2p^6$, $3s^2$	3p ³				
	(A) $d < a < b < c$	(B) $d < a < c < b$	(C) $a < b < c < d$	(D) a < b < d <	c			
					PT0025			
26.	Highest electron affin	nity is shown by						
	(A) F	(B) Cl	(C) Li ⁺	(D) Na ⁺				
					PT0026			
27.	Which of the followi	ng statements is not tru	ie?					
	(A) F atom can hold	additional electron mo	re tightly than Cl atom					
	(B) Cl atom can hold	l additional electron mo	ore tightly than F atom					
	(C) The incoming ele	ectron encounters great	er repulsion for F atom	than for Cl atom				

(D) It is easier to remove an electron from F^- than Cl^- .

20	The sector sector 1		ctronegativity	1	•			
28.	(A) $ns^2 np^3$	ectronic configuration o (B) ns ² np ⁴	(C) $ns^2 np^5$	(D) ns ² np ⁶	-			
	(A) iis lip	(b) its lip	(C) iis iip	(D) lis lip	PT0028			
29.	In the following,	which is the correct rep	resentation ?					
	δ+ δ-	(B) $\begin{array}{c} \delta^+ & \delta^+ \\ C - Cl \end{array}$	$\delta + \delta -$	$\delta - \delta +$				
	(A) C – F	(B) $C-C1$	(C) $F-Cl$	(D) O-F				
					PT0029			
30.	-	electronegativity scale,						
	(A) Cl	(B) O	(C) Br	(D) Ne	DEAAAA			
21	W/h : - h - m - i - m - t				РТ0030			
31.	(A) $F > Cl > Br$	correct order of electron	• •	(B) $Si > Al > Mg > Na$				
	(A) $F > CI > BI$ (C) Cl > S > P >		(D) None of these	-				
	(C) CI > 5 > 1 >	> 51	(D) None of thes		PT0031			
32.	The increasing o	order of acidic nature of	Li.O. BeO. B.O.		110031			
020	(A) $\text{Li}_2\text{O} > \text{BeO}$		2 2 3	(B) $\text{Li}_2\text{O} < \text{BeO} < \text{B}_2\text{O}_3$				
	(C) $\text{Li}_{2}^{2}\text{O} < \text{BeO}$	1 0	(D) $Li_{2}^{2}O > BeO$	2 3				
	2	2 5		2 3	PT0032			
33.	The lowest electr	ronegativity of the eleme	ent from the following a	tomic number is.				
	(A) 37	(B) 55	(C) 9	(D) 35				
					PT0033			
			iscellaneous					
34.		lowing does not reflect t						
	(A) Bonding beh		(B) Electronegativity					
	(C) Ionisation po	tential	(D) Neutron/ Proton ratio					
35	A mong the follow	wing, which species is/a	ro poromognatic ?		PT0034			
35.	(i) Sr^{2+}	(ii) Fe ³⁺	(iii) Co ²⁺	(iv) S ²⁻	(\mathbf{v}) Pb ²⁺			
	(A) i, iv, v	(B) i, ii, iii	(C) ii, iii	(D) iv, v	())10			
	(11) 1, 17, 7		(0) II, III		PT0035			
36.	Choose the s-blo	ck element from the foll	owing:					
		$3s^2$, $3p^6$, $3d^5$, $4s^1$	U U	, 3s ² , 3p ⁶ , 3d ¹⁰ , 4s	s^1			
	(C) $1s^2$, $2s^2$, $2p^6$		(D) all of the abo	-				
					PT0036			
37.	False statement f	or periodic classification	of elements is					
		es of the elements are pe						
		netallic elements is less						
		on energy of elements doe	es not increase regularly	with the increase in	n atomic number			
	in a period.	filled by finel electre	ith in an again a starrist	mbonofingert	aition alors ants			
	(D) u-subsnell 1s	filled by final electron w	ini increasing atomic nu	moet of inner tran	sition elements.			

38.	Which of the followin	ng order is incorrect aga	ainst the property indicate	ted :						
	(A) $Mg < Ar < Na$ (2)	nd I.E.)	(B) Be $<$ F $<$ Cl (Δ H	I _{eg})						
	(C) $Rb < Na < K > C$	a (atomic radius)	(D) $P < S < N$ (electr	onegativity)						
					PT0038					
39.	If each orbital can hold	a maximum of three ele	ectrons, the number of ele	ements in 9 th period	of periodic					
	table (long form) will	be								
	(A) 48	(B) 162	(C) 5 0	(D) 75						
					PT0039					
40.	Which of the followin	ig element has highest i	metallic character.							
	Element	IP								
	(A) P	17 eV								
	(B) Q	2 eV								
	(C) R	10 eV								
	(D) S	13 eV								
					PT0040					
41.	The electronic configu	The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^4$. The atomic number and the group								
	number of the element	'X' which is just below	the above element in the	periodic table are re	spectively.					
	(A) 24 & 6	(B) 24 & 15	(C) 34 & 16	(D) 34 & 8						
					PT0041					
42.	The number of d- elec	ctrons in Mn ²⁺ is equal	to that of							
	(A) p-electrons in N		(B) s-electrons in Na							
	(C) d-electrons in Fe ⁺	2	(D) p-electrons in O-	2						
					PT0042					
43.	Which of the followin	ng has the maximum nu	mber of unpaired electr	ons						
	(A) Mg^{2+}	(B) Ti ³⁺	(C) V ³⁺	(D) Fe ²⁺						
					PT0043					
44.	EN of the element (A) is E_1 and IP is E_2 . He	ence EA will be according	ng to mulliken						
	(A) $2E_1 - E_2$	(B) $E_1 - E_2$	(C) $E_1 - 2E_2$	(D) $(E_1 + E_2)/2$						
					PT0044					
45.	Moving from right to	left in a periodic table,	the atomic size is:							
	(A) Increased	(B) Decreased	(C) Remains constant	(D) None of the	se					
					РТ0045					
46.			onic configuration is 1s ²	$2s^{2} 2p^{6}$, $3s^{2} 3p^{6} 4s^{6}$	¹ . The true					
	statement for that elen									
	(A) High value of IE	(B) Transition elemer	nt (C) Isotone with $_{18}$ Ar	³⁸ (D) None						
					PT0046					
47.	The number of paired	electrons in oxygen at	om is:							
	(A) 6	(B) 16	(C) 8	(D) 32						
					РТ0047					
48.		$f K^+, Ca^{2+}, Cl^- \& S^{2-} fc$								
	(A) $K^+ > Ca^{+2} > S^{-2} >$		(B) $K^+ > Ca^{+2} > Cl^-$							
	(C) $Ca^{+2} > K^+ > Cl^- >$	S ⁻²	(D) $S^{-2} > Cl^- > K^+ > Ca^{+2}$							
					PT0048					

EXERCISE : 0-2

		Atomic & I	Ionic Radius		
1.	Select correct order o	f size :			
	(A) $Ti^{2+} < Ti < Zr$	(B) $Ti^{2+} < Ti < Hf$	(C) $Zr^{2+} < Zr \approx Hf$	(D) $Hf^{2+} < Hf \approx Zr$	
				PT0049	
2.	Which of the following	ng orders of atomic / Ioi	nic radius is correct?		
	(A) B < Al \approx Ga	(B) $Sc > Cu < Zn$	(C) $C < O < N$	(D) $Al^{+3} < Al^{+2} < Al^{+}$	
				РТ0050	
		Electro	n Affinity		
3.	Which of the following	ng is correct order of EA	A.		
	(A) N < C < O < F	(B) $F > Cl > Br > I$	(C) $Cl > F > Br > I$	(D) $C < N < O < F$	
				PT0051	
4.	The electron affinity	of the members of oxyg	en family of the periodi	ic table, follows the sequence	
	(A) O > S > Se	(B) $S > O < Se$	(C) $O < S > Se$	(D) Se > O > S	
				РТ0052	
		Ionisatic	on Energy		
5.	Considering the follo	wing ionisation steps :			
	$A(g) \rightarrow A^+(g) + e^-$	$\Delta H = 100 \text{ eV}$	$A(g) \rightarrow A^{2+}(g) + 2e^{-1}$	$\Delta H = 250 \text{ eV}$	
	Select the correct stat	ements :			
	(A) IE_1 of A(g) is 10	0 eV	(B) IE_1 of $A^+(g)$ is 150 eV		
	(C) IE_2 of A(g) is 15	0 eV	(D) IE_2 of A(g) is 250 eV		
				PT0053	
6.	Which of the following	-			
	(A) $IE_2(Mg) < IE_2$ (N		(B) EA (N) < EA (P)		
	(C) Atomic size Mg ⁺	2 > Atomic size (Li ⁺)	(D) IP of Na $<$ Mg $<$		
				РТ0054	
-	A		negativty		
7.	e e	ng statements, which is /			
		of sulphur is greater that			
	•	of oxygen is smaller tha halpy of fluorine is mos	-		
	-	halpy of chlorine is mos	-		
		marpy or enforme is mos	n noguri vo	РТ0055	
				110000	

8. An element 'E' have IE = x eV/atom and EA = y eV / atom and EN on Pauling scale is 1.2. Find EN of 'E' on Mullikan scale :

(A)
$$\frac{x+y}{2}$$
 (B) 1.2×2.8 (C) $\frac{x+y}{2.8} - 1.2$ (D) $1.2 - \frac{x+y}{2}$

Hydration Energy

- 9. Choose the INCORRECT order of hydrated size of the ions -
 - (A) $F_{(aq.)}^{\Theta} > Cl_{(aq.)}^{\Theta} > Br_{(aq.)}^{\Theta} > I_{(aq.)}^{\Theta}$ (B) $Rb_{(aq.)}^{\oplus} > K_{(aq.)}^{\oplus} > Na_{(aq.)}^{\oplus} > Li_{(aq.)}^{\oplus}$ (C) $Na_{(aq.)}^{\oplus} > Mg_{(aq.)}^{2+} > Al_{(aq.)}^{3+}$ (D) $Be_{(aq.)}^{2+} > Mg_{(aq.)}^{2+} > Ca_{(aq.)}^{2+} > Sr_{(aq.)}^{2+}$ **PT0057**

10. Find the correct ionic mobility order in aqueous solution from the following options-(A) $Li^+ < Na^+$ (B) $Mg^{2+} < Sr^{2+}$ (C) $Na^+ < K^+$ (D) $F^- < Cl^-$

PT0058

Miscellaneous

11. Select the correct statement(s).

- (A) The value of electron gain enthalpy of an element can be -ve or +ve.
- (B) In the periodic table, metallic character of the elements increases down the group and decreases across the period
- (C) The Cl^- & S^{2-} are isoelectronic species but first one is not smaller in size than the second
- (D) Ionization enthalpy of an atom is equal to electron gain enthalpy of cation

				PT0059				
12.	In halogens, which of the following prop	erties increase from iod	ine to fluroine					
	(A) Ionisation energy	(B) Electronegati	vity					
	(C) Bond length	(D) Electron affir	nity					
				PT0060				
13.	In which of the following set of elements	^{1 st} element is more me	etallic than second.					
	(A) Ba, Ca (B) Sb, Sn	(C) Ge, S	(D) Na, F					
				PT0061				
14.	• Which of the following order(s) is / are CORRECT :							
	(A) $\text{Li} < \text{Be} < \text{B} < \text{C} (\text{IE}_1)$							
	(B) HF < HCl < HBr < HI (Bond length	l)						
	(C) $Na_2O < MgO < Al_2O_3 < SiO_2 < P_2O_3$	₅ (Acidic)						
	(D) $Li^{+}(g) < Na^{+}(g) < K^{+}(g) < Cs^{+}(g)$ (Io	nic radius)						
				PT0062				
15.	Which of the following order is correct :							
	(A) P < Si < Be < Mg < Na (Metallic ch	aracter)						
	(B) $Mg^{+2} < Na^{+} < F^{-} < O^{2-}$ (Ionic radius)							
	(C) $Li < B < Be < C < N < O$ (2 nd ionization)	ation energy)						
	(D) $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$ (Ionic r	nobility)						

JEE-Chemistry 54

16.	The ionic compound $A^+ B^-$ is formed easily when the					
	(A) electron affinity of B is high	(B) ionization energy of A is low				
	(C) lattice energy of AB is high	(D) lattice energy of AB is low				
			PT0064			
17.	Which of the following is/are correct?					
	(A) For A(g) + $e^- \longrightarrow A^-(g) \Delta H$ may be negative					
	(D) For $A^{-}(g) + e^{-} \rightarrow A^{2-}(g) A H$ may be negative					

- (B) For $A^{-}(g) + e^{-} \longrightarrow A^{2-}(g) \Delta H$ may be negative (C) For $A^{-}(g) + e^{-} \longrightarrow A^{2-}(g) \Delta H$ must be positive (D) For Ne(g) + e⁻ \longrightarrow Ne⁻ (g) ΔH may be zero

	EXERCISE # S-1
1.	Find out the atomic number of element whose IUPAC name is Unnilpentium.
	Fill your answer as sum of digits (excluding decimal places) till you get the single digit answer.
	PT0066
2.	Select total number of acidic compounds out of given below.
	CsOH, OC(OH) ₂ , SO ₂ (OH) ₂ , Sr(OH) ₂ , Ca(OH) ₂ , Ba(OH) ₂ , BrOH, NaOH, O ₂ NOH
	PT0067
3.	Total number of enthalpy(s) (out of given eight) of A(g) which is/are not associated with conversion of $A_{(g)}^{-} \longrightarrow A_{(g)}^{+4}$:
	IE_1 , IE_2 , IE_3 , IE_4 , IE_5 , IE_6 , EGE_1 , EGE_2
	(IE = ionization energy, EGE = electron gain enthalpy)
	PT0068
4.	Write the number of pairs in which size of first element or ion is higher as compared to II nd out of following eight pairs.
	(O,S), (He, Ne), (Kr, Ne), (Na, Na ⁺), (Cl, Cl ⁻), (l ⁻ , Cl ⁻), (Li, Na), (Li ⁺ , Na ⁺)
	PT0069
5.	Total number of elements which have less IE_1 than that of 'N'.
	Be, B, C, F, P, He
	PT0070
6.	Size of H^{-} is smaller than how many elements among these ?
	H, Li, Be, B, C, N, O, F, F ⁻
	PT0071
7.	How many orders are CORRECT
	(a) Acidic strength \Rightarrow ClOH < BrOH < IOH
	(b) Basic strength \Rightarrow MgO < CaO < SrO < BeO
	(c) Electronegativity \Rightarrow I < Br < N < O < F
	(d) Electron affinity \Rightarrow Mg < Na < Si < S < Cl
	(e) % Ionic character \Rightarrow NaF < KF < RbF
	PT0072
8.	is higher for fluorine as compared to chlorine.
	Find the number of properties given below to fill the blank space to make a correct statement.
	Atomic mass, Covalent radius, Ionic radius (X ⁻), Ionization energy, Electron affinity, Electronegativity,

Hydration energy of uninegative ion (X^{-}) ,

JEE-Chemistry 56

9. Upto argon find the number of elements which have lower IE_1 as compared to He.

PT0074

PT0075

PT0076

PT0077

- 10. The number of pairs, in which EA of the second element is more than that of the first element is : [O, S], [C, N], [O, N], [N, P], [Cl⁺, F⁺], [K⁺, Na⁺]
- For an element the successive ionisation energy values (in eV/atom), are given below. 11. 14.534, 29.601, 47.448, 77.472, 97.888, 552.057, 667.029 Find the number of valence shell electrons in that element.

Subjective :

- 12. Calculate E.N. of chlorine atom on Pauling scale if I.E. of Cl⁻ is 4eV & of E.A. of Cl⁺ is + 13.0 eV.
- Increasing order of ionic size : 13. N³⁻, Na⁺, F⁻, O²⁻, Mg²⁺

EXERCISE # S-2

Paragraph for Questions 1 to 2

		kJ	-		
	First electron gain e	nthalpy (in $\frac{\text{RS}}{\text{mol}}$) of few	elements are given	below:	
		Elements	ΔH_{eg}		
		I	 		
		II	-45		
		III	-328		
		IV	-295		
		V	+ 48		
	Answer the following	ng questions on the basis	of above data:		
1.	Which element may	be an inert gas			
	(A) I	(B) III	(C) IV	(D) V	
					PT0079
2.	Which alamant is m	ost non motallic among	all the alamante		110077
4.		ost non-metallic among a			
	(A) I	(B) II	(C) III	(D) IV	
					РТ0079
		Paragraph fo	r Questions 3 to 4		
	The IE ₁ and the IE	₂ in KJ/mol of a few el	ements designated	by U, V, W, X are sh	nown below.
	Atom	IE ₁	IE ₂		
	U	2464	6110		
	V	610	7542		
	W	928	1810		
	Х	1588	3410		
	Based on the above	e information answer the)n :-	
3.		ents represent a noble g	• •	, 	
J•	(A) U	(B) V	(C) W	(D) X	
	$(\mathbf{A}) \mathbf{U}$	(D) V	(\mathbf{C}) w	$(D) \Lambda$	DTAAQA
4.	Which of the follow	wing element belongs to	aroup 1 (IA)		PT0080
4.		• •			
	(A) U	(B) V	(C) W	(D) X	
					PT0080
		Paragraph fo	or Question 5 to 7		
	Nature of bond can b	be predicted on the basis	of electronegativity	of bonded atoms, great	ter difference

Nature of bond can be predicted on the basis of electronegativity of bonded atoms, greater difference in electronegativity (X), more will be the polarity of bond, and polar bond are easily broken in polar solvent like water. For hydroxy acids $X_O - X_A$ difference predict the nature of oxide formed by the element A.

 $|X_{O} - X_{A}| > |X_{O} - X_{H}|$ then A–O–H show basic nature (NaOH) $|X_{O} - X_{A}| < |X_{O} - X_{H}|$ then A–O–H show acidic nature (H–O–Cl) With the help of EN values [EN_A = 1.8, EN_B = 2.6, EN_C = 1.6, EN_D = 2.8] answer the following questions for the compounds HAO, HBO, HCO, HDO.

5. Compounds whose aqueous solution is acidic and order of their acidic strength

(A) AOH, COH ;	AOH < COH	(B) HDO, HBO ;	HDO > HBO
(C) AOH, COH ;	AOH > COH	(D) HDO, HBO ;	HDO < HBO

58 JEE-Chemistry

(A) 42.42%

6.	Compounds whose aqueous solution is basic and order of their basic strength						
	(A) AOH, COH ;	AOH < COH	(B) HDO, HBO ;	HDO > HBO			
	(C) AOH, COH ;	AOH > COH	(D) HDO, HBO ;	HDO < HBO			
					PT0081		
7.	Percentage ionic character of compound AB is						

(B) 24.24%

Paragraph for Question 8 to 12

All the simple salt dissolve in water, producing ions and consequently the solution conduct electricity. In this process water molecule surround both the cations and anions & release energy. This process is called hydration & energy released is called hydration energy & it depends on size of gaseous ions. Answer the following questions with respect to given cations.

(C) 15.04%

8.	Order of extent of hydration	
	(A) $Na^+ = Mg^{2+} = Al^{3+}$	(B) $Na^+ > Mg^{2+} > Al^{3+}$
	(C) $Al^{+3} > Mg^{2+} > Na^+$	(D) $Al^{+3} > Mg^{2+} < Na^+$
9.	Order of hydration energy	

(A) $Na^+ = Mg^{2+} = Al^{3+}$ (B) $Na^+ > Mg^{2+} > Al^{3+}$ (C) $Al^{+3} > Mg^{2+} > Na^+$ (D) $Al^{+3} > Mg^{2+} < Na^+$

PT0082

PT0082

PT0081

(D) None of these

10. Order of size of hydrated ion.

(A)
$$Na^{+} = Mg^{2+} = Al^{3+}$$

(B) $Na^{+} > Mg^{2+} > Al^{3+}$
(C) $Al^{+3} > Mg^{2+} > Na^{+}$
(D) $Al^{+3} > Mg^{2+} < Na^{+}$

- PT0082
- **11.** Order of ionic mobility
(A) $Na^+ = Mg^{2+} = Al^{3+}$
(C) $Al^{+3} > Mg^{2+} > Na^+$ (B) $Na^+ > Mg^{2+} > Al^{3+}$
(D) $Al^{+3} > Mg^{2+} < Na^+$
- PT0082

12. Order of size of gaseous ions.

(A)
$$Na^{+} = Mg^{2+} = Al^{3+}$$
 (B) $Na^{+} > Mg^{2+} > Al^{3+}$

(C)
$$Al^{+3} > Mg^{2+} > Na^{+}$$
 (D) $Al^{+3} > Mg^{2+} < Na^{+}$

PT0083

• Paragraph for Question 13 to 14 are based on the following information.									
	Four elements P, Q, R & S have ground state electronic configuration as:								
	$P \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^3$	$Q \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3$	3s ² 3p ¹						
	$R \rightarrow 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10}$	$4s^2 4p^3 S \rightarrow 1s^2 2s^2 2p^6 3$	$3s^2 3p^6 3d^{10} 4s^2 4p^1$						
13.	Comment which of the following	option represent the correct order	of true (T) & false (F) statement.						
	$\mathbf{I} \text{ size of } \mathbf{P} < \text{size of } \mathbf{Q} \qquad \qquad \mathbf{II} \text{ size of } \mathbf{R} < \text{size of } \mathbf{S}$								
	III size of P < size of R (appreci	able difference) IV size of $Q < size$	e of S (appreciable difference)						
	(A) TTTT (B) TTT	F (C) FFTT	(D) TTFF						
			PT0083						

Order of IE_1 values among the following is 14. (A) P > R > S > Q (B) P < R < S < Q

(C) R > S > P > Q (D) P > S > R > Q

Matching List

1140010018	LUSU					
15.	Colu	ımn-I			Column-II	
	Elen	nent			Period and group number respectively	
(P)	Si				(1) 4, 3	
(Q)	Sc				(2) 3, 14	
(R)	Ga				(3) 6, 13	
(S)	$T\ell$				(4) 4, 13	
Code :						
	Р	Q	R	S		
(A)	2	1	3	4		
(B)	1	2	4	3		

(B)	1	2	4	3
(C)	2	1	4	3
(D)	4	3	1	2

Match the column

Match the column : 16.

Column I

- (A) Highest density
- (B) Metallic character
- (C) Lightest Metal
- (D) Liquid at room temperature

Column II

- (P) Lithium
- (Q) Osmium
- (R) Mercury
- (S) Bromine

PT0085

17. If electrons are filled in the sub shells of an atom in the following order 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f...... then match the following element in List I with block in List II.

List-I	List-II
(A) K(19)	(P) s-Block
(B) Fe(26)	(Q) p-Block
(C) Ga(31)	(R) d-Block
(D) Sn(50)	(S) f-block

PT0086

18. Match the characteristics mentioned in List II with the process in List I.

List I

- (A) O (g) + $e^- \rightarrow O^-(g)$
- (B) $O^-(g) + e^- \rightarrow O^{2^-}(g)$
- (C) $Na^{-}(g) \rightarrow Na(g) + e^{-}$
- (D) Mg⁺ (g) + e⁻ \rightarrow Mg (g)

19. Match the column :

Column I

(A) Cl

- (B) F
- (C) Cu
- (D) He

List II

- (P) Positve electron gain enthalpy
- (Q) Negative electron gain enthalpy
- (R) Exothermic
- (S) Endothermic

PT0087

Column II

- (P) Metal
- (Q) Highest negative electron gain enthalpy
- (R) Most Electronegative element
- (S) Highest ionisation energy.

•	EVE	DCIGE		1	
			# JEE-MAIN		· · · ·
1.	The correct order of electron gain		th negative sign of F, Cl	l, Br and I, hav	-
	9, 17, 35 and 53 respectively, is	5:-			[AIEEE-2011]
	(1) I > Br > Cl > F		(2) F > Cl > Br >		
	(3) Cl > F > Br > I		(4) Br > Cl > I > l	Fí	
_					PT0089
2.	The increasing order of the ioni	c radii of the	•	•	[AIEEE-2012]
	(1) K^+ , S^{2-} , Ca^{2+} , Cl^-		(2) Cl ⁻ , Ca ²⁺ , K ⁺ ,		
	(3) S^{2-} , Cl^{-} , Ca^{2+} , K^{+}		(4) Ca^{2+} , K^+ , Cl^- ,	S^{2-}	
					РТ0090
3.	Which of the following represent	ts the correct	t order of increasing first	st ionization e	enthalpy for Ca, Ba,
	S, Se and Ar ?			[,	JEE-MAIN-2013]
	(1) $Ca < S < Ba < Se < Ar$		(2) $S < Se < Ca <$	Ba < Ar	
	(3) Ba < Ca < Se < S < Ar		(4) Ca < Ba < S <	Se < Ar	
					PT0091
4.	The first ionisation potential of	Na is 5.1 eV	7. The value of electron	n gain enthalj	py of Na ⁺ will be :-
				[,	JEE-MAIN-2013]
	(1) - 2.55 eV $(2) - 5.2$	1 eV	(3) – 10.2 eV	(4) + 2.	55 eV
					РТ0092
5.	Electron gain enthalpy with neg	gative sign o	f fluorine is less than t	hat of chlorin	ne due to :
				[JEE-MAIN	N 2013 (On-Line)]
	(1) Smaller size of chlorine ator	n	(2) Bigger size of 2	2p orbital of	fluorine
	(3) High ionization enthalpy of	fluorine	(4) Smaller size of	fluorine ator	n
					РТ0093
6.	Given			[JEE-MAIN	N 2013 (On-Line)]
	Reaction	Energy	Change (in kJ)	-	· · · · · ·
	$Li(s) \longrightarrow Li(g)$	161	0		
	$\text{Li}(g) \longrightarrow \text{Li}^+(g)$	520			
	$\frac{1}{2}F_2(g) \longrightarrow F(g)$	77			
	2				
	$F(g) + e^{-} \longrightarrow F^{-}(g)$		n gain enthalpy)		
	$\text{Li}^+(g) + F^-(g) \longrightarrow \text{Li}F(g)$	-1047			
	$\operatorname{Li}(s) + \frac{1}{2}\operatorname{F}_2(g) \longrightarrow \operatorname{Li} \operatorname{F}(s)$	-617			
	Based on data provided, the val	ue of electro	on gain enthalpy of flu	orine would	be :
	-		$(3) -350 \text{ kJ mol}^{-1}$		
					РТ0094

7.

		0		[JEE-MAIN 2013 (On-Line)
	(1) $As < S < O < Se$		(2) O < S < As <	: Se
	(3) Se < S < As < O		(4) O < S < Se <	As
				РТ009
8.	Which is the correct	order of second ioniza	tion potential of C, N	I, O and F in the following ? [JEE-MAIN 2013 (On-Line)
	(1) $O > F > N > C$		(2) $O > N > F >$	С
	(3) $C > N > O > F$		(4) $F > O > N >$	
				PT009
9.	Which of the follow	ing series correctly r	enresents relations h	etween the elements from X t
	Y ?	ing series concerty i	epresents relations by	[JEE-MAIN 2014 (On-Line)
	$X \longrightarrow Y$			
	(1) $_{18}\text{Ar} \rightarrow {}_{54}\text{Xe}$	Noble character inc	reases	
	(2) $_{3}\text{Li} \rightarrow {}_{19}\text{K}$	Ionization enthalpy	increases	
	$(3)_{6}C \rightarrow {}_{32}Ge$	Atomic radii increas	ses	
	$(4)_{9}F \rightarrow {}_{35}Br$	Electron gain enthal	py with negative sign	increases
				РТ009
10.	The ionic radii (in Å) of N ^{3–} , O ^{2–} and F [–] and	re respectively :-	[JEE-MAIN 2015 (Off-Line)
	(1) 1.71, 1.40 and 1.2	36	(2) 1.71, 1.36 and	1.40
	(3) 1.36, 1.40 and 1.7	71	(4) 1.36, 1.71 and	1.40
				PT009
11.	-	-	ence shell electronic co	onfiguration of 5s ² 5p ⁴ correspond
	to the element presen			[JEE-MAIN 2015 (On-Line)
	(1) Group 16 and per(3) Group 17 and per		(2) Group 17 and (4) Group 16 and	
		100 5	(4) Oroup 10 and	PT009
12.	Which of the followi	ng atoms has the highe	est first ionization ene	
		0		[JEE-MAIN 2016 (Off-Line)
	(1) Sc	(2) Rb	(3) Na	(4) K
10			••••	РТ010
13.	The non-metal that d	oes not exhibit positive	e oxidation state is :	[JEE-MAIN 2016 (On-Line)
	(1) Oxygen	(2) Fluorine	(3) Iodine	(4) Chlorine
	(-),8	(_)	(0) - 0 - 0 - 0 - 0	PT010
14.	The electronic config	uration with the highe	st ionization enthalpy	is:- [JEE-MAIN 2017]
	(1) [Ar] $3d^{10}4s^2 4p^3$		(2) [Ne] $3s^2 3p^1$	
	(3) [Ne] $3s^2 3p^2$		(4) [Ne] $3s^2 3p^3$	DTO 4 0
				РТ010

The order of increasing sizes of atomic radii among the elements O, S, Se and As is :

15. Consider the following ionization enthalpies of two elements 'A' and 'B' :

	Element	Ionizatio	on enthalpy	(k.I/mol)					
		1 st	2 nd	3rd					
	А	899	1757	14847				[JEE-MAI	N 2017]
	В	737	1450	7731				-	-
	Which of	f the follo	wing stat	ements is	correct	?			
			-			A comes below E	3		
			U	0 1		A comes below B			
	(3) Both	A and B	belong to	group-1	where I	B comes below A	Υ.		
	(4) Both	A and B	belong to	group-2	where l	B comes below A	L		
									PT0103
16.	In the fol	lowing re	eactions, Z	ZnO is res	pective	ly acting as a/an	:	[JEE-MAI	N 2017]
	(a) ZnO	+ Na ₂ O -	→ Na ₂ Zn	O ₂					
	(b) ZnO	$+ CO_2 \rightarrow$	> ZnCO ₃						
	(1) base a	and acid	(2) t	base and b	ase	(3) acid and aci	d (4) ac	id and base	
									PT0104
17.	The grou	p having	isoelectro	onic specie	es is :-			[JEE-MAI	N 2017]
	$(1) O^{2-}, $	F ⁻ , Na ⁺ ,	Mg ²⁺			(2) O ⁻ , F ⁻ , Na	, Mg ⁺		
	$(3) O^{2-}, 3$	F , Na,	Mg ²⁺			(4) 0 ⁻ , F ⁻ , Na	+, Mg ²⁺		
									PT0105
18.	The corre	ect order o	of electro	n affinity i	is :-			[JEE-MAI	N 2018]
	(1) $Cl > 1$	F > 0	(2)	F>0>(1	(3) $F > Cl > O$		(4) $O > F >$	> C1
			(_)					(1) 0 7 1 7	PT0106
19.	For Na+,	Mg ²⁺ , F ⁻	and O ^{2–}	; the corre	ct orde	r of increasing io	nic radii is :	[JEE-MAI	
	(1) Mg ²⁺	< Na+ <	$F^{-} < O^{2-}$			(2) $O^{2-} < F^- <$	$Na^+ < Mg^{2+}$		
	(3) Na+ <	< Mg ²⁺ <	$F^{-} < O^{2-}$			(4) $Mg^{2+} < O^{2-}$	- < Na+ < F-		
									PT0107
20.	The ampl	•					JEE-MAIN)19]
	$(1) \operatorname{Ca}(O)$	H) ₂	(2)	Be(OH) ₂		(3) $Sr(OH)_2$	(4) M	g(OH) ₂	PT0108
21.	The corre	ect option	with resp	pect to the	Pauling	g electronegativit	y values of th	e elements is	
	(1) Ga <		. ,	Si < Al	-	-	JEE-MAIN	ONLINE 20)19]
	(3) $P > S$		(4)	Ге > Se					

64 JEE-Chemistry

- 22. The effect of lanthanoid contraction in the lanthanoid series of elements by and large means :
 - (1) decrease in both atomic and ionic radii [JEE-MAIN ONLINE 2019]
 - (2) increase in atomic radii and decrease in ionic radii
 - (3) increase in both atomic and ionic radii
 - (4) decrease in atomic radii and increase in ionic radii

PT0110

- 23. When the first electron gain enthalpy $(\Delta_{eg}H)$ of oxygen is -141 kJ/mol, its second electron gain enthalpy is : [JEE-MAIN ONLINE 2019]
 - (1) almost the same as that of the first
 - (2) negative , but less negative than the first
 - (3) a positive value
 - (4) a more negative value than the first

PT0111

- 24. The correct order of hydration enthalpies of alkali metal ions is [JEE-MAIN ONLINE 2019]
 - (1) $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$
 - (2) $Li^+ > Na^+ > K^+ > Cs^+ > Rb^+$
 - (3) $Na^+ > Li^+ > K^+ > Rb^+ > Cs^+$
 - (4) $Na^+ > Li^+ > K^+ > Cs^+ > Rb^+$

25.	The IUPAC symbol for	r the element with atomic	c number 119 would be	: [JEE-MAIN ONLINE 2019]
	(1) unh	(2) uun	(3) une	(4) uue	
				PT011	3
26.	The element having g	reatest difference betwe	en its first and second	ionization energies, is :	
			[,	JEE-MAIN ONLINE 2019]	l
	(1) Ca	(2) K	(3) Ba	(4) Sc	
				PT011	4
27.	The correct statements	s among I to III regardi	ng group 13 element o	oxides are,	
	(I) Boron trioxide is a	cidic.	[JE	E-MAIN ONLINE 2019]	
	(II) Oxides of alumini	um and gallium are am	photeric.		
	(III) Oxides of indium	and thallium are basic.			
	(1) (I), (II) and (III)	(2) (II) and (III) only	(3) (I) and (III) only	(4) (I) and (II) only	
				PT011 :	5
28.	Consider the hydrates	ions of Ti ²⁺ , V ²⁺ , Ti ³⁺ a	nd Sc ³⁺ . The correct or	der of their spin-only magneti	с
	moments is :		[JE	E-MAIN ONLINE 2019]	
	(1) $Sc^{3+} < Ti^{3+} < Ti^{2+}$	$< V^{2+}$	(2) $Ti^{3+} < Ti^{2+} < Sc^{3+}$	$^{+} < V^{2+}$	
	(3) $Sc^{3+} < Ti^{3+} < V^{2+}$	< Ti ²⁺	(4) $V^{2+} < Ti^{2+} < Ti^{3+}$	$- < Sc^{3+}$	
				PT011	6

				Periodic T	able 65
29.	The pair that has sin	nilar atomic radii is :	[JEE-MAIN ONLINE	2019]
	(1) Sc and Ni	(2) Ti and Hf	(3) Mo and W	(4) Mn and Re	
					PT0117
30.	more energy upon a (1) F, Se and Na (2) F, S and Li	elements of F & Cl , S & an electron gain are-		spectively, the elements JEE-MAIN ONLINE	
	(3) Cl, S and Li				
	(4) Cl, Se and Na				PT0118
31.	The atomic radius of	of Agris closest to :	r	JEE-MAIN ONLINE	
51.	(1) Cu	(2) Hg	(3) Au	(4) Ni	2020]
	(1) Cu	(2) 115	(5) / 14		PT0119
32.	The third ionization	enthalpy is minimum for	nr. [JEE-MAIN ONLINE	
	(1) Fe	(2) Ni	(3) Co	(4) Mn	
	(1)10	(2) \mathbf{N}	(5) 00	(+) 1111	DT0130
33.	(I) It is easier to re(II) 2p electron of B	t ionization enthalpy the move 2p electron than is more shielded from the	2s electron	following statements : core of electrons than the	PT0120 2s electrons
	of Be.				
		more penetration powe of B is more than Be	er than 2p electron.		
	(Atomic number B				
	The correct stateme (1) (I), (II) and (III) (2) (II), (III) and (IV (3) (I), (III) and (IV (4) (I), (II) and (IV)	nts are : V) V)	[JEE-MAIN ONLINE	2020]
	(-) (1), (11) and (1V)	1			DT0131

EXERCISE # JEE-ADVANCED

- Statement-1 : F atom has a less negative electron gain enthalpy than Cl atom. [JEE 2000]
 Statement-2 : Additional electron is repelled more efficiently by 3p electron in Cl atom than by 2p electron in F atom.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

PT0122

- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

2. The correct order of radii is: [JEE 2000] (D) $Fe^{3+} < Fe^{2+} < Fe^{4+}$ (B) $F^- < O^{2-} < N^{3-}$ (C) Na < Li < K (A) N < Be < B**PT0123** The IE_1 of Be is greater than that of B. 3. [**T**/**F**] [JEE 2001] **PT0124** 4. The set representing correct order of IP_1 is [JEE 2001] (A) K > Na > Li(B) Be > Mg > Ca(C) B > C > N(D) Fe > Si > C**PT0125** 5. Identify the least stable ion amongst the following: [JEE 2002] (A) Li-(B) Be⁻ (C) B⁻ (D) C-**PT0126** 6. The increasing order of atomic radii of the following group 13 elements is [JEE 2016] (A) Al < Ga < In < Tl(B) Ga < Al < In < Tl(D) Al < Ga < Tl < In(C) Al < In < Ga < Tl**PT0127** 7. The option(s) with only amphoteric oxides is (are): [JEE 2017] (A) Cr₂O₃, CrO, SnO, PbO (B) NO, B_2O_3 , PbO, SnO_2 (C) Cr₂O₃, BeO, SnO, SnO₂ (D) ZnO, Al₂O₃, PbO, PbO₂ **PT0128**

ANSWERS KEY

EXERCISE # 0-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	А	А	D	А	В	С	А	С	А
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	С	В	А	В	С	С	В	С	В	С
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	В	С	С	В	А	С	А	С	А	В
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	D	В	В	D	С	С	D	С	D	В
Que.	41	42	43	44	45	46	47	48		
Ans.	С	В	D	А	А	С	А	D		

EXERCISE # 0-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A,B,C,D	A, B, D	A, C	B, C	A, B, C	A, B	B, D	A, B	B, C	A,B,C,D
Que.	11	12	13	14	15	16	17			
Ans.	A, B, D	A, B	A, C, D	B, C, D	A, B, D	A, B, C	A, C			

EXERCISE # S-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	6	4	3	3	4	0	3	3	17	4
Que.	11	12		13						
Ans.	5	3.03 (Pauling)	$Mg^{2+} < N$	[a ⁺ < F [−] <	$0^{2-} < N^{3-}$					

EXERCISE # S-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	С	А	В	В	Α	С	С	С	С
Que.	11	12	13	14	15			16		
Ans.	В	В	В	А	С	(A	$A) \rightarrow Q;(B) \rightarrow Q$	P,Q,R ;(C)	→P;(D)→F	R, S
Que.			17					18		
Ans.	(A	$\rightarrow R; (B)$	$\rightarrow R$; (C)-	→Q ; (D)–	→ S	$(A) \to 0$	Q,R;(B)-	$\rightarrow P,S$; (C	$) \rightarrow S; (D)$	$) \rightarrow Q, R$
Que.			19							
Ans.	(A) -	$\rightarrow Q$; (B)	$\rightarrow R$; (C)	\rightarrow P; (D)	\rightarrow S					

EXERCISE # JEE-MAIN

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	4	3	2	4	2	4	1	3	1
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	1	2	4	4	4	1	1	1	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	3	1	4	2	1	1	3	3
Que.	31	32	33		·					
Ans.	3	1	1							

EXERCISE # JEE-ADVANCED

Que.	1	2	3	4	5	6	7
Ans.	С	В	Т	В	В	В	C, D