

MCQs with One Correct Answer

- Small quantities of solutions of compounds TX, TY and TZ are put into separate test tubes containing X, Y and Z solution. TX does not react with any of these. TY reacts with both X and Z. TZ reacts with X. The decreasing order of state of oxidation of the anions X-, Y-, Z- is
 - (a) Y^-, Z^-, X^-
- (b) Z^-, X^-, Y^-
- (c) Y^-, X^-, Z^-
- (d) X^{-}, Z^{-}, Y^{-}
- Following cell has EMF 0.7995V. $Pt | H_2(1 \text{ atm}) | HNO_3(1M) | AgNO_3(1M) | Ag$ If we add enough KCl to the Ag cell so that the final Cl- is 1M. Now the measured emf of the cell is 0.222V. The K_{sp} of AgCl would be –
 - (a) $1 \times 10^{-9.8}$
- (b) $1 \times 10^{-19.6}$
- (c) 2×10^{-10}
- (d) 2.64×10^{-14}
- $Sn^{4+} + 2e^{-} \longrightarrow Sn^{2+} E^{\circ} = 0.13 V$ 3.

$$Br_2 + 2e^- \longrightarrow 2Br^- \quad E^\circ = 1.08 \text{ V}$$

Calculate $K_{\rm eq}$ for the cell formed by two electrodes

- (a) 10^{41}
- (b) 10^{32}
- (c) 10⁻³²
- 10^{-42} (d)
- The standard reduction potential for Cu²⁺/Cu 4. is + 0.34. The reduction potential at pH = 14 for the above couple. $(K_{sp} \text{Cu}(\text{OH})_2 = 1 \times 10^{-19}) \text{ is:}$

- (a) -0.22 V
- (b) +0.22 V
- (c) -0.44 V
- (d) +0.44 V
- The equilibrium constant for disproportionation reaction

$$2Cu(aq) \longrightarrow Cu(s) + Cu^{2+}(aq)$$

at 25° C (E° Cu⁺ / Cu = 0.52V,

$$E^{o}Cu^{2+}/Cu = 0.16V$$
) is

- (a) 6×10^4
- 6×10^{6}
- (c) 1.2×10^6
- (d) 1.2×10^{-6}
- The electrode potentials for

$$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq)$$

and $Cu^{+}(aq) + e^{-} \longrightarrow Cu(s)$

and
$$Cu^+(aa) + e^- \longrightarrow Cu(s)$$

are +0.15 V and +0.50, respectively. The value of $E^{\circ}_{\text{Cu}^{2+}/\text{Cu}}$ will be:

- (a) 0.500 V
- (b) 0.325 V
- (c) 0.650V
- (d) 0.150V
- Calculate ΔG° for the reaction:

$$Cu^{2+}(aq) + Fe(s) \rightleftharpoons Fe^{2+}(aq) + Cu(s)$$

Given that : $E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = +0.34 \text{ V}$,

$$E_{\rm Fe^{2+}/Fe}^{\circ} = -0.44 \text{ V}$$

- (a) 180.55 kJ
- 140.35 kJ (b)
- (c) -130.15 kJ
- (d) -150.54 kJ

- 8. The e.m.f. of the cell $Zn \mid Zn^{2+} (0.01M) \mid \mid Fe^{2+} (0.001M) \mid Fe$ at 298 K is 0.2905 then the value of equilibrium for the cell reaction is
 - (a) $e^{\frac{0.32}{0.0295}}$
- (b) $10^{\frac{0.32}{0.0295}}$

(d)

- $0.26 \\ 10^{0.0295}$
- $0.32 \\ 10^{0.0591}$
- 9. For a cell reaction

$$2H_2(g)+O_2 \notin \longrightarrow 2H_2O(1)$$

$$\Delta_r S_{298}^{\circ} = -0.32 \, \text{kJ/K}$$
.

What is the value of $\Delta_r S_{298}^{\circ} \left(H_2 O, l~? \right)$

Given:

$$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(1);$$

$$E^{\circ} = 1.23 \text{ V}$$

- (a) $-285.07 \, \text{kJ/mol}$
- (b) $-570.14 \, \text{kJ/mol}$
- (c) 285.07 kJ/mol
- (d) None of these
- 10. If 0.01 M solution of an electrolyte has a resistance of 40 ohms in a cell having a cell constant of 0.4 cm⁻¹, then its molar conductance in ohm⁻¹ cm² mol⁻¹ is
 - (a) 10^2
- (b) 10^4
- (c) 10
- (d) 10^3
- 11. When electric current is passed through acidified water, 112 mL of hydrogen gas at STP collected at the cathode in 965 seconds. The current passed in amperes is
 - (a) 1.0
- (b) 0.5
- (c) 0.1
- (d) 2.0
- 12. $\Lambda_{CICH_{2}COONa} = 224 \text{ ohm}^{-1} \text{cm}^{2} \text{g eq}^{-1}$,

$$\Lambda_{\text{NaCl}} = 38.2 \text{ ohm}^{-1} \text{cm}^2 \text{g eq}^{-1},$$

$$\Lambda_{HCl} = 203 \text{ ohm}^{-1} \text{cm}^2 \text{g eq}^{-1},$$

What is the value of Λ_{CICH_2COOH}

- (a) $288.5 \text{ ohm}^{-1}\text{cm}^2\text{g eq}^{-1}$
- (b) $289.5 \text{ ohm}^{-1}\text{cm}^2\text{g eq}^{-1}$
- (c) $388.8 \text{ ohm}^{-1}\text{cm}^2\text{g eq}^{-1}$
- (d) 59.5 ohm⁻¹cm²g eq⁻¹
- 13. Equivalent conductance at infinite dilution, λ° of NH₄Cl, NaOH and NaCl are 128.0, 217.8 and 109.3 ohm⁻¹ cm² eq⁻¹ respectively. The

equivalent conductance of $0.01 \text{ N NH}_4\text{OH}$ is $9.30 \text{ ohm}^{-1} \text{ cm}^2 \text{ eq}^{-1}$, then the degree of ionization of NH_4OH at this temperature would be

- (a) 0.04
- (b) 0.1
- (c) 0.39
- (d) 0.62
- 14. Dissociation constant of a weak acid (HA) in terms of Λ_m^∞ and Λ_m is:

(a)
$$K_a = \frac{c\Lambda_m^{\infty}}{\left(\Lambda_m - \Lambda^{\infty}\right)}$$

(b)
$$K_a = \frac{c\Lambda_m^2}{\Lambda_m^{\infty} \left(\Lambda_m^{\infty} - \Lambda_m\right)}$$

(c)
$$K_a = \frac{c(\Lambda_m^{\infty})^2}{\Lambda_m^{\infty}(\Lambda_m^{\infty} - \Lambda_m)}$$

- (d) None of these
- **15.** Given the ionic equivalent conductivities for the following ions:

$$\lambda_{eq}^{\circ} K^{+} = 73.5 \text{ cm}^{2} \text{ ohm}^{-1} \text{ eq}^{-1}$$

$$\lambda_{\text{eq}}^{\text{eq}} \text{Al}^{3+} = 149 \text{ cm}^2 \text{ ohm}^{-1} \text{ eq}^{-1}$$

$$\lambda_{eq}^{eq} SO_4^{2-} = 85.8 \text{ cm}^2 \text{ ohm}^{-1} \text{ eq}^{-1}$$

The Λ_{eq}° for potash alum $(K_2 SO_4. Al_2(SO_4)_3. 24H_2O)$ is

- (a) 215.92
- (b) 348.3
- (c) 368.2
- (d) 108.52
- 16. On passing a current of 1.0 ampere for 16 min and 5 sec through one litre solution of CuCl₂, all copper of the solution was deposited at cathode. The strength of CuCl₂ solution was (Molar mass of Cu=63.5; Faraday constant = 96500 Cmol⁻¹)
 - (a) 0.01 N
- (b) 0.01 M
- (c) $0.02 \,\mathrm{M}$
- (d) 0.2 N
- 17. Given the following molar conductivities at 25°C:, HCl, $426\Omega^{-1}$ cm²mol⁻¹; NaCl, $126\Omega^{-1}$ cm² mol⁻¹; NaC (sodium crotonate), 83 Ω^{-1} cm²mol⁻¹. What is the dissociation constant of crotonic acid, if the conductivity of a 0.001 M crotonic acid solution is $3.83 \times 10^{-5} \Omega^{-1}$ cm⁻¹?
 - (a) 10^{-5}
- (b) 1.11×10^{-5}
- (c) 1.11×10^{-4}
- (d) 0.01

- 18. A lead storage battery containing 5.0 L of (1N) H_2SO_4 solution is operated for $9.65 \times 10^5 \text{ s}$ with a steady current of 100 mA. Assuming volume of the solution remaining constant, normality of H_2SO_4 will
 - (a) remain unchanged (b) increases by 0.20
 - (c) increase by unity (d) decrease by 0.40
- 19. In an electrolysis experiment current was passed for 5 hours through two cells connected in series. The first cell contains a solution of gold and the second contains copper sulphate solution. 9.85 g of gold was deposited in the first cell. If the oxidation number of gold is +3, the amount of copper deposited on the cathode of the second cell and magnitude of the current in amperes is.

(1 faraday = 96,500 coulombs)

- (a) 4.95 g, 0.8 A
- (b) 5.5 g, 0.9 A
- (c) 4.76 g, 0.8 A
- (d) 5.85 g, 0.5 A
- 20. For the electrochemical cell shown below $Pt \mid H_2(p=1 \text{ atm}) \mid H^+(aq., x M) \mid$

 $|\operatorname{Cu}^{2+}(aq., 1.0 \,\mathrm{M})| |\operatorname{Cu}(s)|$

The potential is 0.49 V at 298 K. The pH of the solution is closest to:

[Given, standard reduction potential, E° for Cu^{2+} / Cu is 0.34 V.

Gas constant, R is 8.31 J K⁻¹ mol⁻¹

Faraday constant, F is $9.65 \times 10^4 \,\mathrm{J}\,\mathrm{V}^{-1}\,\mathrm{mol}^{-1}$]

- (a) 1.2
- (b) 8.3
- (c) 2.5
- (d) 8.2

Numeric Value Answer

21. What is the standard electrode porential for the reduction of HClO?

$$HClO(aq) + H^{+}(aq) + 2e^{-} \longrightarrow$$

$$Cl^{-}(aq) + H_2O(1)$$

Given:
$$Cr^{2+}(aq) \longrightarrow Cr^{3+}(aq) + e^{-}$$
,

$$E^{\circ} = 0.41 \text{ V}$$

$$HClO(aq) + H^+ (aq) + 2Cr^{2+} aq(\longrightarrow)$$

$$2Cr^{3+}(aq) + Cl^{-}(aq) + H_2O(l), E^{\circ} = 1.80$$

22. What is the potential of an electrode (in V) which originally contained 0.1 M NO₃ and 0.4 M H⁺ and which has been treated by 80% of the cadmium necessary to reduce all the NO₃ to NO(g) at 1 bar?

Given: $NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$; $E^\circ = 0.96 \text{ V}; \log 2 = 0.3$

- 23. On passing current through two cells, connected in series containing solution of AgNO₃ and CuSO₄, 0.18 g of Ag is deposited. The amount of the Cu (in g) deposited is:
- **24.** $E_{\text{cell}}^{\text{o}} = 0.74 \,\text{V}$ for the cell,

 $Cr | Cr^{3+}(1 M) | H^{+}(1 M) | Pt(H_2)(1 bar)$ and $E_{cell}^{o} = 0.80 V$ for the cell (1 bar) $Pt(H_2) | H^{+}(1 M)$ $| Ag^{+}(1 M) | Ag$

What is the value of cell EMF for the cell Ag $|Ag^+(0.1 \text{ M})| Cr^{3+}(0.1 \text{ M}) | Cr$?

25. For Daniell's cell, the reaction quotient is Q. A variation of E_{cell} with log Q has been plotted. At start, the molar concentration of CuSO₄ and ZnSO₄ are equal. When concentration of Zn²⁺ increases to 1.5 mol/L, the cell EMF becomes 1.07 V. What is the value of [Cu²⁺] at this point. Take 2.303 RT/F = 0.06

26. For a hydrazine fuel cell, following data are given at 298 K:

$$E_{N_2H_4/N_2}^o = -0.9 \text{ V}, \ E_{\frac{1}{2}O_2/H_2O}^o = +1.23 \text{ V}$$

Assuming 60% efficiency, what is the maximum amount of energy (in KJ) that can be obtained?

27. During discharging of lead storage battery, the density of 38% H₂SO₄ (w/w)fell from 1.274 g/mL to 1.2 g/mL of 19.6 % (w/w) H₂SO₄. What is the number of faradays that have been exchanged during the discharging process? (vol. of H₂SO₄ in lead storage battery = 2.36 L)

28. The photoelectric current from Na (work function, $w_0 = 2.3 \text{ eV}$) is stopped by the output voltage of the cell

Pt(s)|H₂(g, 1 bar)|HCl(aq., pH=1)|AgCl(s)|Ag(s). The pH of aq. HCl required to stop the photoelectric current from K(w₀ = 2.25 eV), all other conditions remaining the same, is $\times 10^{-2}$ (to the nearest integer).

Given.

$$2.303 \frac{RT}{F} = 0.06 \text{ V}; \text{ E}_{AgCl|Ag|Cl}^{0} = 0.22 \text{ V}$$

- 29. For an electrochemical cell $Sn(s)|Sn^{2+}$ (aq, 1M) $||Pb^{2+}$ (aq, 1M)||Pb(s)| the ratio $\frac{[Sn^{2+}]}{[Pb^{2+}]}$ when this cell attains equilibrium is
- **30.** When 9.65 ampere current was passed for 1.0 hour into nitrobenzene in acidic medium, the amount of *p*-amino-phenol (in g) produced is _____.

ANSWER KEY																			
1	(a)	4	(a)	7	(d)	10	(d)	13	(a)	16	(a)	19	(c)	22	(0.84)	25	(0.15)	28	(142)
2	(a)	5	(c)	8	(b)	11	(a)	14	(b)	17	(b)	20	(c)	23	(0.0529)	26	(76.43)	29	(2.15)
3	(b)	6	(b)	9	(a)	12	(c)	15	(a)	18	(d)	21	(1.39)	24	(1.5)	27	(6)	30	(9.81)

Hints & Solutions

Electrochemistry

1. (a) Oxidising tendency $\propto \frac{1}{\text{Electrode potential}}$

TX → No reaction

 $TY \longrightarrow X, Z$

 $TZ \longrightarrow X$

⇒ order of electrode potential is

TY < TZ < TX

 \Rightarrow Order of oxidation of the anion is

$$Y^->Z^->X^-$$

2. (a) $2Ag^{+} + H_{2} \longrightarrow 2H^{+} + 2Ag$

$$E = E^{\circ} - \frac{0.0591}{2} \log \frac{[H^{+}]^{2}}{P_{H_{2}} \times [Ag^{+}]^{2}}$$

$$0.222 = 0.7995 - \frac{0.0591}{2} log \frac{1}{[Ag^+]^2}$$

$$[Ag^+] = 10^{-9.8}$$

$$K_{sp} = [Ag^+][Cl^-] = (10^{-9.8}) \times (1) = 10^{-9.8}$$

3. **(b)**
$$\operatorname{Sn}^{4+} + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}$$
; $E^{\circ} = 0.13 \text{V}$

$$Br_2 + 2e^- \longrightarrow 2Br^-$$
; $E^{\circ} = 1.08V$

 E° value shows Br_2 has higher reduction potential.

Hence

$$E_{cell} = E_{Br_2/Br^-} - E_{Sn^{+4}/Sn^{+2}}$$

= 1.08 - 0.13 = 0.95 V

Now
$$-\Delta G = nF E_{cell}$$

$$n=2, F=96500$$

$$-\Delta G = 2 \times 96500 \times 0.95 \text{ kJ/mol}.$$

Also,
$$\Delta G = -2.303 \,\mathrm{RT} \log K_{\mathrm{eq}}$$

$$\log K_{\rm eq} = -\frac{\Delta G}{2.303 \times R \times T}$$

$$=\frac{-(-2\times96500\times0.95)}{2.303\times8.314\times298}=32.13$$

$$K_{\rm eq} = \text{antilog } 32.682 \approx 10^{32}$$

4. (a) When pH=14 [H⁺] =
$$10^{-14}$$
 and [OH⁻]=1 M

$$K_{sp} = [Cu^{2+}][OH^{-}]^{2} = 10^{-19}$$

$$\therefore \quad [Cu^{2+}] = \frac{10^{-19}}{[OH^{-}]^{2}} = 10^{-19}$$

The half cell reaction

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$

$$E = E^{\circ} - \frac{0.059}{2} \log \frac{1}{[\text{Cu}^{2+}]}$$

$$=0.34 - \frac{0.059}{2} \log \frac{1}{10^{-19}} = -0.22 \text{ V}$$

5. (c) The reaction

$$2 \operatorname{Cu}^+(aq) \longrightarrow \operatorname{Cu}(s) + \operatorname{Cu}^{2+}(aq)$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.059}{1} \log \frac{[\text{Cu}^{2+}]}{[\text{Cu}^{+}]^{2}}$$

At equilibrium $E_{\text{cell}} = 0$

$$\therefore E_{\text{cell}}^{\circ} = 0.059 \log K_{\text{eq}}$$

or,
$$\log K_{\text{eq}} = \frac{0.52 - 0.16}{0.059}$$

$$K_{\rm eq} = 1.2 \times 10^6$$

6. (b) $Cu^{2+} + 1e^{-} \longrightarrow Cu^{+}$

$$E_1^{\text{o}} = 0.15 \text{V}; \Delta G_1^{\text{o}} = -n_1 E_1^{\text{o}} F$$

$$Cu^+ + 1e^- \longrightarrow Cu$$

$$E_2^{\text{o}} = 0.50 \text{V}; \Delta G_2^{\text{o}} = -n_2 E_2^{\text{o}} F$$

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$
 $\Delta G^{\circ} = \Delta G^{\circ}_{1} + \Delta G^{\circ}_{2}$

$$-nE^{\circ} F = -1 n_1 E_1^{\circ} F + (-1) n_2 E_2^{\circ} F$$

- $nE^{\circ} F = -1 (n_1 E_1^{\circ} F + n_2 E_2^{\circ} F)$

$$E^{\circ} = \frac{n_1 E_1^{\circ} + n_2 E_2^{\circ}}{n} = \frac{0.15 \times 1 + 0.50 \times 1}{2}$$

 $\Rightarrow 0.325$

7. (d) The cell reactions are:

At anode:
$$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$$

At cathode:
$$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$$

We know that:

$$\Delta G^{\circ} = -nF \ E_{\text{cell}}^{\circ} \ ; n = 2 \text{ mol}$$

$$E_{\text{cell}}^{\circ} = \left[E_{(\text{Cu}^{2+}/\text{Cu})}^{\circ} - E_{(\text{Fe}^{2+}/\text{Fe})}^{\circ}\right]$$
$$= (+0.34 \text{ V}) - (-0.44 \text{ V}) = +0.78 \text{ V}$$

$$F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$$

:.
$$\Delta G^{\circ} = -nFE_{\text{cell}}^{\circ}$$

= -(2 mol) × (96500 C mol⁻¹) × (+0.78 V)

$$=-150540 \text{ CV} = -150540 \text{ J} \text{ (} \because 1 \text{ CV} = 1 \text{ J} \text{)}$$

 $=-150.54 \, kJ$

8. (b) For this cell, reaction is;

$$Zn + Fe^{2+} \rightarrow Zn^{2+} + Fe$$

$$E = E^{\circ} - \frac{0.0591}{n} log \frac{c_1}{c_2}; \ E^{\circ} = E + \frac{0.0591}{n} log \frac{c_1}{c_2}$$

$$E^{\circ} = 0.2905 + \frac{0.0591}{2} \log \frac{10^{-2}}{10^{-3}} = 0.32 \text{ V}.$$

$$E^{\circ} = \frac{0.0591}{2} \log K_{eq}$$

$$\log K_{eq} = \frac{0.32 \times 2}{0.0591} = \frac{0.32}{0.0295}$$

$$\therefore K_{eq} = 10^{\frac{0.32}{0.0295}}.$$

9. (a) We know

$$2H_2(g) \longrightarrow 4H^+ + 4e^-; E = 0.0 V$$

$$\frac{O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(1); E = 1.23 \text{ V}}{2H_2(g) + O_2(g) \longrightarrow 2H_2O(1); E_{cell}^\circ = 1.23 \text{ V}}$$

$$\Delta G_{298}^{\circ} = -nFE^{\circ} = -4 \times 96500 \times 1.23 = -474.78 \text{ kJ}$$

$$\Delta_f \overset{\circ}{H_{298}} = \Delta_r \overset{\circ}{G_{298}} + T.\Delta_r \overset{\circ}{S_{298}}$$

=
$$(-474.78) + 298 \times (-0.32)$$

= -570.14 kJ/mol

$$\Delta_{\rm f} H_{298}^{\circ} = -285.07 \, {\rm kJ/mol}$$

10. (d) Molarity = $0.01 \,\text{M}$; Resistance = $40 \,\text{ohm}$;

Cell constant
$$\frac{l}{A} = 0.4 \,\mathrm{cm}^{-1}$$
.

Specific conductivity (κ)

$$= \frac{\text{cell constant}}{\text{resistance}} = \frac{0.4}{40} = 0.01 \text{ ohm}^{-1} \text{ cm}^{-1}$$

Molar conductance
$$(\land_m) = \frac{1000\kappa}{\text{Molarity}}$$

$$= \frac{1000 \times 0.01}{0.01} = 10^3 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$$

11. (a) $2H^+ + 2e^- \longrightarrow H_2$

$$E_{H}(Eq. wt) = \frac{2}{2} = 1 g$$

$$= \frac{22400}{2} = 11200 \text{ mL (STP)}$$

Total charge passed =
$$\frac{96500 \times 112}{11200} = 965$$

$$Q = It = 965$$

$$I = \frac{965}{965} = 1 \text{ amp.}$$

12. (c) ClCH₂COONa + HCl →

$$\Lambda_{\text{CICH}_2\text{COONa}} + \Lambda_{\text{HCl}} = \Lambda_{\text{CICH}_2\text{COOH}} + \Lambda_{\text{NaCl}}$$

$$224 + 203 = \Lambda_{\text{CICH}_2\text{COOH}} + 38.2$$

$$\Lambda_{\rm CICH_2COOH} = 427 - 38.2$$

$$=388.8 \text{ ohm}^{-1}\text{cm}^2\text{g eq}^{-1}$$

13. (a) $\Lambda_{eq}^{\infty}(NH_4OH) = \Lambda_{eq}^{\infty}(NH_4Cl) +$

$$\Lambda_{eq}^{\infty}(NaOH) - \Lambda_{eq}^{\infty}(NaCl)$$

$$=129.8 + 217.8 - 109.3 = 238.3 \text{ ohm}^{-1} \text{cm}^2 \text{eq}^{-1}$$

$$\alpha = \frac{\Lambda_{eq}}{\Lambda_{aq}^{\infty}} = \frac{9.30}{238.3} = 0.04$$

14. **(b)**
$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$
 $c\alpha$

$$K_a = \frac{c\alpha^2}{1-\alpha}$$
; where $\alpha = \frac{\Lambda_m}{\Lambda_m^{\infty}}$

$$\dot{K}_{a} = \frac{c\left(\frac{\Lambda_{m}}{\Lambda_{m}^{\infty}}\right)^{2}}{\left(1 - \frac{\Lambda_{m}}{\Lambda_{m}^{\infty}}\right)}$$

$$= \frac{c\Lambda_{m}^{2}}{\Lambda_{m}^{\infty} \left(\Lambda_{m}^{\infty} - \Lambda_{m}^{\infty}\right)}$$

$$\Lambda_{\rm m}^{\infty} \left(\Lambda_{\rm m}^{\infty} - \Lambda_{\rm m} \right)$$

$$[K^+] = \frac{1}{8} \text{ mole} \times 2 = \frac{1}{4} \text{ mole} = \frac{1}{4} \text{ Eq.}$$

$$[Al^{3+}] = \frac{6}{8} = \frac{3}{4} Eq.$$

$$[SO_4^{2-}] = \frac{8}{8} = 1 \text{ Eq.}$$

$$\Lambda_{\rm eq}^{\circ} K_2 SO_4 \cdot Al_2 (SO_4)_3 \cdot 24H_2O$$

$$= \lambda_{eq}^{\circ} (K^{+}) + \lambda_{eq}^{\circ} (Al^{3+}) + \lambda_{eq}^{\circ} (SO_{4}^{2-})$$

$$= \frac{1}{4} \times 73.5 + 149 \times \frac{3}{4} + 85.8 \times 1$$

$$=18.375+111.75+85.8=215.92$$

$$\frac{W}{E} = \frac{Q}{96500}$$

(where Q = it = charge of ion)

We know that no. of gram equivalent

$$=\frac{W}{E}=\frac{it}{96500}=\frac{1\times965}{96500}=\frac{1}{100}$$

(where i = 1 A, $t = 16 \times 60 + 5 = 965 sec.$)

Since, we know that

Normality =
$$\frac{\text{No. of gram equivalent}}{\text{Volume (in litre)}} = \frac{\frac{1}{100}}{1}$$

 $=0.01 \, \text{N}$

17. (b) The molar conductivity of the dissociated form of crotonic acid is

$$\Lambda_{m}(HC) = \Lambda_{m}(HCl) + \Lambda_{m}(NaC) - \Lambda_{m}(NaCl)$$

=
$$(426 + 83 - 126) \Omega^{-1} \text{ cm}^2 \text{mol}^{-1}$$

= $383 \Omega^{-1} \text{ cm}^2 \text{mol}^{-1}$

The molar conductivity of HC,

$$\begin{split} \Lambda_{\rm m} \big({\rm HC} \ \, & \frac{1}{2} \frac{\kappa}{C} = \frac{3.83 \times 10^{-5} \Omega^{-1} {\rm cm}^{-1}}{0.001} \times 1000 \\ & = 38.3 \ \Omega^{-1} \ {\rm cm}^2 {\rm mol}^{-1} \end{split}$$

The degree of dissociation,

$$\alpha = \frac{\Lambda_{m}(HC)}{\Lambda_{m}^{\infty}(HC)} = \frac{\left(38.3\Omega^{-1}cm^{2}mol^{-1}\right)}{\left(383\Omega^{-1}cm^{2}mol^{-1}\right)} = 0.1$$

$$K_a = \frac{C\alpha^2}{1-\alpha} = \frac{\left(10^{-3}\right)\left(0.1\right)^2}{1-0.1} = 1.11 \times 10^{-5}$$

18. (d)
$$Pb + SO_4^{--} \longrightarrow PbSO_4 + 2e^{--}$$

$$PbO_2 + 4H^+ + SO_4^{--} + 2e^- \longrightarrow PbSO_4 + 2H_2O$$

$$Pb + PbO_2 + 2H_2SO_4 \longrightarrow 2PbSO_4 + 2H_2O$$

The reaction indicates that 2 moles of H_2SO_4

corresponds to $2\times96500~\mathrm{C}$ and $2~\mathrm{mol}~H_2\mathrm{SO}_4$

$$\equiv$$
 4 equiv. of H₂SO₄.

2 × 96500 C consumed 4 equiv. of H₂SO₄

and $100 \times 10^{-3} \times 9.65 \times 10^{5}$ C consumed

$$= \frac{4 \times 100 \times 10^{-3} \times 9.65 \times 10^{5}}{2 \times 96500} = 2 \text{ equiv. H}_2 \text{SO}_4$$

$$\therefore$$
 Decrease in normality = $\frac{2}{5}$ = 0.40

19. (c) Gold deposited in the first cell = 9.85 g At. wt. of Gold = 197, Oxidation number of gold = +3

Eq. Wt. of Gold =
$$\frac{197}{3}$$

W = Zit

(where W stands for the weight of ions deposited, i for current and t for time and Z for electro-chemical equivalent of the electrolyte.)

.. Charge required to deposit 1 g eq. of gold = 1F = 96,500 C

:. Charge required to deposit 9.85 g of gold or

$$\frac{9.85}{197/3}$$
 g eq. of gold = $\frac{96,500 \times 9.85 \times 3}{197}$ C
= 14475 C

According to Faraday's second law,

$$\frac{Wt. of \ Cu}{Eq. \ wt. of \ Cu} = \frac{Wt. of \ Gold}{Eq. \ wt. of \ Gold}$$

⇒ Wt. of Cu deposited

$$= \frac{9.85 \times 3}{197} \times \frac{63.5}{2} = 4.76g$$

Current =
$$\frac{Q}{t} = \frac{14475}{5 \times 3600} \text{ A} = \frac{193}{240} \text{ A} = 0.80 \text{ A}$$

20. (c)
$$Cu^{2+}(aq) + H_2 \Longrightarrow 2H^+ + Cu(s)$$

For the given electrochemical cell

 $Pt | H_2(p = 1 \text{ atm}) |$

 H^+ (aq. xM) || Cu^{2+} (aq. 1.0 M) | Cu(s)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log \frac{[\text{H}^+]^2}{[\text{Cu}^{2+}]}$$

$$0.49 = 0.37 - \frac{0.0591}{2} \log \frac{x^2}{1}$$

$$0.49 = 0.37 - \frac{0.0591}{2} \times 2 \log x$$

$$0.15 = -0.0591 \times \log x$$

$$2.54 = -\log x$$

Also, $-\log [H^+] = pH$

$$\therefore$$
 pH = $-\log x$

$$\Rightarrow$$
 pH = 2.54 \approx 2.5

21. (1.39)
$$Cr^{2+}(aq) \longrightarrow Cr^{3+} aq(+)e^{-}, E^{\circ} = 0.41 V$$

$$HClO(ag) + H^{+}(ag) + 2Cr^{2+}(ag) \longrightarrow$$

$$2Cr^{3+}(aq) + Cl^{-}(aq) + H_2O(1), E^{\circ} = 1.8V$$
 ...(ii)

[Reaction (i)] $\times -2 +$ [Reaction (ii)] we get.

$$HCIO(aq) + H^{+}(aq) + 2e^{-} \longrightarrow CI^{-}(aq) + H_{2}O(1)$$

$$\Delta G^{\circ} = -2FE^{\circ} - 2(-1 \times FE^{\circ})$$

$$-2FE^{\circ} = -2F(1.8) + 2F(0.41)$$

$$E^{\circ} = +1.8 - 0.41 = 1.39 \text{ V}$$

22. (0.84) After addition of Cd and its oxidation into Cd²⁺.

$$NO_3^-(aq) + 4H^+ a(q + 3e^- \longrightarrow NO(g) + 2H_2O(l)$$

0.1-x 0.4-4x;

where x = 0.08

$$\left[\text{NO}_{3}^{-} \right]$$
 remaining = 0.02 M; $\left[\text{H}^{+} \right]$ remaining=0.08 M

$$\mathrm{E}_{\mathrm{NO}_{3}^{-}|\mathrm{NO}}^{} - \mathrm{E}_{\mathrm{NO}_{3}^{-}|\mathrm{NO}}^{\circ} - \frac{0.0591}{3} log \frac{1}{\left\lceil \mathrm{NO}_{3}^{0-} \right\rceil \left\lceil \mathrm{H}^{+} \right\rceil^{4}}$$

$$=0.96 - \frac{0.0591}{3} \log \frac{1}{(0.02)(0.08^{-4})} = 0.84 \text{ V}$$

23. (0.0529) Using Faraday's second law of electrolysis,

 $\frac{\text{Weight of Cu deposited}}{\text{Weight of Ag deposited}} = \frac{\text{Equ. wt. of Cu}}{\text{Equ. wt. of Ag}}$

$$\Rightarrow \frac{w_{Cu}}{0.18} = \frac{63.5}{2} \times \frac{1}{108}$$

$$\Rightarrow$$
 $W_{Cu} = \frac{63.5 \times 18}{2 \times 108 \times 100} = 0.0529 \text{ g}.$

24. (1.5)

For the cell:

(anode) (cathode)

$$Cr | Cr^{3+}(1 M) | H^{+}(1 M) | Pt (H_{2}) (1 bar)$$

$$E_{cell}^{o} = E_{H^{+}/H_{2}}^{o} - E_{Cr^{3+}/Cr}^{o}$$

$$0.74 = 0 - E_{Cr^{3+}/Cr}^{o}$$

$$E_{Cr^{3+}/Cr}^{o} = -0.74 \text{ V}$$

For the cell:

 $(1 \text{ bar}) \text{ Pt} (H_2) | H^+(1 \text{ M}) | Ag^+(1 \text{ M}) | Ag$

$$E_{cell}^{o}\!=\!E_{Ag^{+}/Ag}^{o}-E_{H^{+}/H_{2}}^{o}$$

$$0.80 = E_{Ag^+/Ag}^o - 0$$

$$E_{Ag^+/Ag}^o = +0.80 \text{ V}$$

For the cell:

 $Ag | Ag^{+}(0.1 M) | Cr^{3+}(0.1 M) | Cr$

Reduction at cathode:

(i)
$$Cr^{3+} + 3e^{-} \rightarrow Cr$$
; $E^{o}_{Cr^{3+}/Cr} = -0.74 \text{ V}$

Oxidation at anode:

(ii)
$$Ag \rightarrow Ag^+ + e^-; E^o_{Ag^+/Ag} = +0.80 \text{ V}$$

eq. (i)
$$+3 \times eq.$$
 (ii)

$$Cr^{3+} + 3 Ag \rightarrow Cr + 3 Ag^{+}; n = 3$$

$$E_{cell}^{o} = E_{Cr^{3+}/Cr}^{o} - E_{Ag^{+}/Ag}^{o}$$

$$E_{cell}^{o} = -0.74 - 0.80 = -1.54 V$$

$$E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} log \frac{[Ag^{+}]^{3}}{[Cr^{3+}]}$$

$$= -1.54 - \frac{0.06}{3} log \frac{(0.1)^{3}}{(0.1)} = -1.54 - \frac{0.06}{3} \times (-2)$$

=-1.5 V25. (0.15)

Cell reaction for Daniell's cell:

$$Zn(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Zn^{2+}(aq)$$

Reaction quotient Q =
$$\frac{[Zn^{2+}]}{[Cu^{2+}]}$$

At start,
$$Q = 1$$
 as $[Zn^{2+}] = [Cu^{2+}]$
also log $Q = 0$ at point O for $Q = 1$

This is the maximum EMF, the cell can generate. As the reaction proceeds, [Zn²⁺] will increase and [Cu²⁺] will decrease. Thus, the value of Q will increase and the cell EMF will decrease.

$$E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

$$E_{cell} = 1.07 \text{ V}, \ E_{cell}^{o} = 1.10 \text{ V}, n = 2$$

$$1.07 = 1.10 - \frac{0.06}{2} \log \frac{1.5}{[Cu^{2+}]}$$

$$0.03 = 0.03 \log \frac{1.5}{[Cu^{2+}]}$$
$$\log \frac{1.5}{[Cu^{2+}]} = 1$$
$$\Rightarrow \frac{1.5}{[Cu^{2+}]} = 10$$
$$\Rightarrow [Cu^{2+}] = 0.15 \text{ mol/L}$$

26. (76.43)

Reduction at cathode:

$$_{\mathrm{O}_{2}}^{\mathrm{o}}$$
 \rightarrow $_{\mathrm{2H}_{2}}\overset{^{-2}}{\mathrm{O}}$

$$O_2 + 4 H^+ + 4e^- \rightarrow 2 H_2O, E^0 = +1.23 V$$

Oxidation at anode:

$${}^{-2}_{N_2}_{H_4} \rightarrow {}^{o}_{N_2}$$

$$N_2 H_4 \rightarrow N_2 + 4 H^+ + 4e^- \stackrel{o}{E}, = -0.9 V$$

Overall cell reaction:

$$N_2 H_4 (aq) + O_2(g) \rightarrow N_2(g) + 2H_2O(l); n = 4$$

$$\begin{split} E_{cell}^{o} &= E_{\frac{1}{2}O_{2}/H_{2}O}^{o} - E_{N_{2}/N_{2}H_{4}}^{o} \\ &= (1.23 - 0.9)V = +0.33 \text{ V} \end{split}$$

Maximum available potential $E_{cell}^0 = 0.33 \text{ V}$

Maximum amount of energy = $-\Delta G$

$$= nF E^{\circ} = 4 \times 96500 \times 0.33 J = 1,27,380 J$$

Assuming 60% efficiency

$$W_{\text{max}} = 127380 \times \frac{60}{100} J = 76.43 \text{ KJ}$$

(6) Molecular mass of $H_2SO_4 = 98 \text{ g/mol}$ Molarity of initial solution

$$=\frac{\%W/W \times 10 \times d}{\text{moleculer mass}} = \frac{38 \times 10 \times 1.274}{98} = 4.94$$

Molarity of final solution

$$=\frac{19.6\times10\times1.2}{98}=2.4\,\mathrm{M}$$

Decrease in amount of H2SO4 during this discharging process

$$= (4.94 - 2.4) \times 98 \times 2.36 g = 6 \times 98 g$$

Overall reaction during discharging

$$Pb(s) + PbO_2(s) + 2H_2SO_4(aq.) \rightarrow$$

$$2PbSO_4(s) + 2H_2O(1); n = 2$$

∴ For 1 mole of H₂SO₄+1 F is required $6 \times 98 \text{ g H}_2\text{SO}_4 = 6 \text{ moles of H}_2\text{SO}_4$

Thus, number of Faradays required = 6

28. (142) Sodium metal:

$$E = E_0 + (KE)_{max}; E_{cell}^0 = 0.22 \text{ V}$$

Cell reaction

Cathode:
$$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$$

Anode:
$$\frac{1}{2}H_2(g) \longrightarrow H^+(aq) + e^-$$

Overall:

$$AgCl(s) + \frac{1}{2}H_2(g) \longrightarrow Ag(s) + H^+(aq) + Cl^-(aq)$$

$$E_{cell} = E_{cell}^0 - \frac{0.06}{1} \log[H^+][Cl^-]$$

$$E_{cell} = 0.22 - \frac{0.06}{1} \log[10^{-1}][10^{-1}]$$
$$= 0.22 + 0.12 = 0.34 \text{ V}$$

$$(KE)_{max} = E_{cell} = 0.34 \, eV$$

So,
$$E = 2.3 + 0.34 = 2.64$$
 eV = Energy of photon incident

For potassium metal:

$$E=E_0 + (KE)_{max}$$

2.64=2.25+(KE)_{max}
(KE)_{max}=0.39=E_{cell}
Cell reaction

Cathode:
$$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$$

Anode:
$$\frac{1}{2}H_2(g) \longrightarrow H^+(aq) + e^-$$

Overall: AgCl(s) +
$$\frac{1}{2}$$
H₂(g) \longrightarrow

$$Ag(s) + H^{+}(aq) + Cl^{-}(aq)$$

$$E_{cell} = E_{cell}^0 - \frac{0.06}{1} log[H^+][Cl^-]$$

$$0.39 = 0.22 - 0.06 \log [H^{+}]^{2}$$

$$0.39 = 0.22 - 0.12 \log[H^{+}]$$

$$0.17 = 0.12 \times pH$$

$$pH = 17/12 = 1.4166 \approx 1.42 = 142 \times 10^{-2}$$

29. (2.15)

At equilibrium state $E_{cell} = 0$; $E_{cell}^0 = 0.01 \text{ V}$

$$Sn + Pb^{2+} \longrightarrow Sn^{2+} + Pb$$

$$E = E_{cell}^{0} - \frac{0.06}{n} log \frac{[P]}{[R]}$$

$$0 = 0.01 - \frac{0.06}{2} \log \frac{[Sn^{2+}]}{[Pb^{2+}]}$$

$$-0.01 = -\frac{0.06}{2} log \frac{[Sn^{2+}]}{[Pb^{2+}]}$$

$$\frac{1}{3} = \log \frac{[Sn^{2+}]}{[Pb^{2+}]}$$

$$\frac{[Sb^{2+}]}{[Pb^{2+}]} = 10^{1/3} = 2.15$$

30. (9.81) 9.65 ampere current was passed for 1.0 hour (3600 seconds)

Number of moles of electrons passed

$$= \frac{I(A) \times t(s)}{96500} = \frac{9.65A \times 3600s}{96500} = 0.36 \text{ moles}$$

- : 4 moles of electrons reduces 1 mole of nitrobenzene to *p*-aminophenol.
- $\therefore \quad 0.36 \,\text{moles of electrons will reduce} \, \frac{0.36}{4} = 0.09$

moles of nitrobenzene to *p*-aminophenol. *p*-aminophenol molar mass = 109.14 g/mol Mass of *p*-aminophenol obtained = 109.14 g/mol × 0.09 mol = 9.81 g