Remainder Theorem and Factor Theorem 7

STUDY NOTES

- The value of a polynomial p(x) at x = α is obtained by substituting x = α in the given polynomial and is denoted by p(α). *Remainder Theorem*
- If a polynomial p(x) is divided by $(x \alpha)$, then the remainder is $p(\alpha)$.
- When p(x) is divided by $(x + \alpha)$, then remainder = $p(-\alpha)$.
- When p(x) is divided by (ax + b), then remainder $= p \left[-\frac{b}{a} \right]$
- A polynomial g(x) is called a factor of polynomial p(x) if g(x) divides p(x) exactly, i.e., on dividing p(x) by g(x), we get 0 as remainder.
- Factor Theorem Let p(x) be a polynomial and α be a real number. Then, $(x - \alpha)$ is a factor of p(x) if $p(\alpha) = 0$
- $(x + \alpha)$ is a factor of p(x) if $p(-\alpha) = 0$
- (ax + b) is a factor of p(x) if $p\left(\frac{-b}{a}\right) = 0$

QUESTION BANK

A. Multiple Choice Questions

Choose the correct option:

1.	(x + 1) is a factor of :					
	(a) $x^3 + 4x^2 + 5x + 2$	(b) $x^3 - 4x^2 - 5x + 2$	(c) $x^3 - 3x^2 - 7x - 1$	(d) $2x^3 - 4x^2 - 5x + 1$		
2.	On dividing $mx^3 + 9x^2 + 4x - 10$ by $(x + 3)$, the remainder is 5. The value of m is :					
	(a) -1	(b) 2	(c) -2	(d) 3		
3.	When $x^4 + 1$ is divided by $(x + 1)$, the remainder is :					
	(a) 0	(b) 2	(c) 1	(d) -1		
4.	If a polynomial $p(x)$ is divided by $(x + \alpha)$, then the remainder is :					
	(a) $p(\alpha)$	(b) $p(-\alpha)$	(c) $\alpha p(x)$	(d) $p(x) + \alpha$		
5.	The remainder when $x^4 - x^3 + x^2 - x + 1$ is divided by $(x - 1)$ is :					
	(a) 0	(b) 1	(c) -1	(d) 2		
6.	If $(x - 2)$ is a factor $x^2 + mx - 2$, then the value of m is :					
	(a) 1	(b) -1	(c) 0	(d) -2		
7.	When $f(x)$ is divided by $(ax - b)$, then the remainder is :					
	(a) $f(a)$	(b) <i>f</i> (<i>ab</i>)	(c) $f(-b/a)$	(d) <i>f</i> (<i>b</i> / <i>a</i>)		
8.	When a polynomial $f(x)$ is divided by $(3x + 4)$, the remainder is :					
	(a) $f\left(\frac{3}{4}\right)$	(b) $f\left(\frac{4}{3}\right)$	(c) $f\left(-\frac{3}{4}\right)$	(d) $f\left(-\frac{4}{3}\right)$		
9.	If $(x - 2)$ is a factor of $x^2 - 4x + m$, then the value of m is :					
	(a) -4	(b) 4	(c) 0	(d) -1		
10.	If $(x - 1)$ is a factor of $x^3 + 2x^2 - x + k$, then the value of k is :					
	(a) 1	(b) 2	(c) -2	(d) -1		

[1 Mark]

11.	If $(2x - 1)$ is a factor of $f(x) = 2x^2 + px - 5$, then the value of p is :						
	(a) 10	(b) 9	(c) 8	(d) 5			
12.	• If $(x - 2)$ is a factor of $f(x) = x^3 + kx^2 - 5x - 6$, then the value of k is :						
	(a) 2	(b) 1	(c) -1	(d) -2			
13.	Given $f(x) = 3x^2 - 5x + p$. If $(x - 2)$ is a factor of $f(x)$, then the value of p is :						
	(a) -2	(b) 2	(c) -1	(d) 1			
14.	If $(x - 1)$ and $(x + 2)$ are factors of $f(x) = x^3 + 10x^2 + ax + b$, then the value of b is :						
	(a) 10	(b) 12	(c) 18	(d) -18			
15.	5. When the polynomials $f(x) = (px^3 + 3x^2 - 3)$ and $g(x) = (2x^3 - 5x + p)$ are divided by $(x - 4)$, they leave the sam remainder. The value of p is :						
	(a) -1	(b) 0	(c) 1	(d) 2			
16.	Given $f(x) = x^3 + (kx + 8) x + k$. If $f(x)$ is divided by $(x + 1)$, the remainder is :						
	(a) $2k - 9$	(b) $2k + 9$	(c) $2k$	(d) 0			
17.	7. If $(x - 3)$ is a factor of $f(x) = x^2 - kx + 12$, then the other factor of $f(x)$ is :						
	(a) $x - 4$	(b) $x - 1$	(c) $x - 2$	(d) $x + 4$			
18.	8. $(x + 2)$ and $(x + 3)$ are factors of $f(x) = x^3 + ax + b$, then the value of $f(-3)$ is :						
	(a) 1	(b) 2	(c) -1	(d) 0			
19. Given $f(x) = (3k + 2) x^3 + (k - 1)$. If $f(x)$ is divided by $(2x + 1)$, the remainder is :							
	(a) $f\left(\frac{1}{2}\right)$	(b) $f\left(-\frac{1}{2}\right)$	(c) <i>f</i> (2)	(d) <i>f</i> (-2)			
20. On dividing $x^2 - 4x + m$ by $(x - 2)$, the remainder is -1. The value of m is :							
	(a) 1	(b) 2	(c) -2	(d) 3			
Answers							
1. (a) 2. (b) 3. (b)	4. (b) 5. (b) 6.	(b) 7. (d) 8. (d)	d) 9. (b) 10. (c)			
11. (b) 12. (a) 13. (a) 1	4. (d) 15. (c) 16.	(a) 17. (a) 18. (c	d) 19. (b) 20. (d)			

B. Short Answer Type Questions

1. Using remainder theorem, find the value of k if on dividing $2x^3 + 3x^2 - kx + 5$ by (x - 2), leaves a remainder 7. Sol. Since, x - 2 is a factor of $p(x) = 2x^3 + 3x^2 - kx + 5$, so

 $\begin{array}{l} x - 2 = 0 \Rightarrow x = 2 \\ p(2) = 7 \Rightarrow 2 \ (2)^3 + 3(2)^2 - 2k + 5 = 7 \\ \Rightarrow 16 + 12 + 5 - 2k = 7 \Rightarrow k = 13. \end{array}$

2. What must be subtracted from $16x^3 - 8x^2 + 4x + 7$ so that the resulting expression has (2x + 1) as a factor?

Sol. Let us find the remainder when $p(x) = 16x^3 - 8x^2 + 4x + 7$ is divided by (2x + 1), we find $p\left(-\frac{1}{2}\right)$

$$p\left(-\frac{1}{2}\right) = 16 \times \left(\frac{-1}{2}\right)^{3} - 8 \times \left(-\frac{1}{2}\right)^{2} + 4 \times \left(-\frac{1}{2}\right) + 7 = 1$$

Since the remainder is 1, so 1 must be subtracted from p(x), so that the resulting expression has (2x + 1), as a factor.

3. When divided by (x - 3), the polynomials $f(x) = x^3 - px^2 + x + 6$ and $g(x) = 2x^3 - x^2 - (p + 3)x - 6$ leave the same remainder. Find the value of p. Also, find the remainder.

Sol. $f(x) = x^3 - px^2 + x + 6$ $f(3) = (3)^3 - p(3)^2 + 3 + 6 = 36 - 9p$ and $g(x) = 2x^3 - x^2 - (p + 3)x - 6$ Then $g(3) = 2(3)^3 - (3)^2 - (p + 3)3 - 6 = 30 - 3p$ f(3) = g(3) $\Rightarrow 36 - 9p = 30 - 3p \Rightarrow 6p = 6 \Rightarrow p = 1$ Remainder = $36 - 9 \times 1 = 27$.

4. Find the value of k, if (x - 2) is a factor of $x^3 + 2x^2 - kx + 10$. Hence, determine whether (x + 5) is also a factor. Sol. $\therefore (x - 2)$ is a factor of $p(x) = x^3 + 2x^2 - kx + 10$, so, p(2) = 0.

$$\Rightarrow (2)^3 + 2(2)^2 - k \times 2 + 10 = 0$$

[3 Marks]

 $\Rightarrow 8 + 8 + 10 - 2k = 0 \Rightarrow -2k = -26 \Rightarrow k = 13.$ So, $p(x) = x^3 + 2x^2 - 13x + 10$ Now, we find p(-5)Since p(-5) = 0, so (x + 5) is a factor of p(x). $p(-5) = (-5)^3 + 2 (-5)^2 - 13 \times (-5) + 10 = -125 + 50 + 65 + 10 = 0.$ 5. Find a, if the two polynomials $ax^3 + 3x^2 - 9$ and $2x^3 + 4x + a$ leave the same remainder when divided by (x + 3). Also, find the remainder. **Sol.** Let $p(x) = ax^3 + 3x^2 - 9$ $\therefore p(-3) = a(-3)^3 + 3(-3)^2 - 9 = -27a + 18$ and let $q(x) = 2x^3 + 4x + a$ $\therefore q(-3) = 2(-3)^3 + 4(-3) + a = a - 66$ Given, p(-3) = q(-3) $\Rightarrow -27a + 18 = a - 66$ $\Rightarrow -28a = -84 \Rightarrow a = 3.$ \therefore Remainder = $-27 \times 3 + 18 = -63$. 6. If $p(x) = 2x^3 + 3x^2 - ax - b$ is divided by (x - 1), the remainder is 6, then find the value of a + b. **Sol.** Let $p(x) = 2x^3 + 3x^2 - ax - b$ $\Rightarrow p(1) = 2(1)^3 + 3(1)^2 - a \times 1 - b = 6$ $\Rightarrow 2 + 3 - (a + b) = 6 \Rightarrow a + b = -1$ 7. Find the value of p if $x^3 + px + 2p - 2$ is exactly divisible by (x + 1). **Sol.** Let $f(x) = x^3 + px + 2p - 2$ $\therefore f(-1) = (-1)^3 + p(-1) + 2p - 2 = 0$ $\Rightarrow -1 - p + 2p - 2 = 0 \Rightarrow p = 3.$ C. Long Answer Type Questions [4 Marks] 1. If (x + 2) and (x + 3) are factors of $x^3 + ax + b$, find the values of a and b. **Sol.** Let $f(x) = x^3 + ax + b$ $f(-2) = 0 \implies (-2)^3 + a (-2) + b = 0$ $\Rightarrow -2a + b = 8$...(i) $\therefore f(-3) = 0 \implies (-3)^3 + a(-3) + b = 0$ $\Rightarrow -3a + b = 27$...(ii) Solving eq. (i) and (ii), we get, a = -19 and b = -30. 2. Use factor theorem to factorise $6x^3 + 17x^2 + 4x - 12$ completely. **Sol.** Let $f(x) = 6x^3 + 17x^2 + 4x - 12$ $f(-2) = 6 (-2)^3 + 17 (-2)^2 + 4(-2) - 12 = -48 + 68 - 8 - 12 = 0$ \therefore (x + 2) is a factor of f(x). Now $6x^3 + 17x^2 + 4x - 12$ $= 6x^3 + 12x^2 + 5x^2 + 10x - 6x - 12$ $= 6x^{2}(x + 2) + 5x(x + 2) - 6(x + 2)$ $= (x + 2) (6x^{2} + 5x - 6)$ $= (x + 2) (6x^{2} + 9x - 4x - 6)$ = (x + 2)[3x(2x + 3) - 2(2x + 3)]= (x + 2)(3x - 2)(2x + 3).

3. If (x - 2) is a factor of $2x^3 - x^2 - px - 2$,

(a) find the value of p. (b) with the value of p, factorise the above expression completely.

- **Sol.** $\therefore x 2$ is a factor of given polynomial
 - (a) Let $f(x) = 2x^3 x^2 px 2$, then $f(2) = 2(2)^3 - (2)^2 - p(2) - 2 = 0$ $\Rightarrow 16 - 4 - 2p - 2 = 0 \Rightarrow p = 5.$

(b)
$$f(x) = 2x^{3} - x^{2} - 5x - 2$$
$$= 2x^{3} - 4x^{2} + 3x^{2} - 6x + x - 2$$
$$= 2x^{2}(x - 2) + 3x(x - 2) + 1(x - 2)$$
$$= (x - 2)(2x^{2} + 3x + 1)$$
$$= (x - 2) (2x^{2} + 2x + x + 1)$$
$$= (x - 2) [2x(x + 1) + 1 (x + 1)]$$
$$= (x - 2) (x + 1) (2x + 1)$$

4. Given that (x + 2) and (x + 3) are factors of $2x^3 + ax^2 + 7x - b$. Determine the values of a and b.

Sol. Let $f(x) = 2x^3 + ax^2 + 7x - b$

 $\therefore f(-2) = 2(-2)^3 + a(-2)^2 + 7 (-2) - b = 0$ $\Rightarrow -16 + 4a - 14 - b = 0$ $\Rightarrow 4a - b = 30 \qquad (i)$ $\therefore f(-3) = 2(-3)^3 + a(-3)^2 + 7 (-3) - b = 0$ $\Rightarrow 9a - b = 75 \qquad (ii)$ Solving (i) and (ii), we get a = 9 and b = 6.

5. Using the remainder theorem, factorise completely the following polynomial : $3x^3 + 2x^2 - 19x + 6$.

Sol. Let $f(x) = 3x^3 + 2x^2 - 19x + 6$ $f(2) = 3(2)^3 + 2(2)^2 - 19 \times 2 + 6 = 24 + 8 - 38 + 6 = 0$. So, (x - 2) is a factor of f(x). Now, $3x^3 + 2x^2 - 19x + 6$ $= 3x^3 - 6x^2 + 8x^2 - 16x - 3x + 6$ $= 3x^2 (x - 2) + 8x (x - 2) - 3 (x - 2)$ $= (x - 2) (3x^2 + 8x - 3)$ $= (x - 2) (3x^2 + 9x - x - 3)$ = (x - 2) (3x(x + 3) - 1(x - 3)]= (x - 2) (x + 3) (3x - 1).

6. If (x - 2) is a factor of the expression, $2x^3 + ax^2 + bx - 14$ and when the expression is divided by (x - 3), it leaves a remainder 52, find the values of a and b.

Sol. Let
$$f(x) = 2x^3 + ax^2 + bx - 14$$

 $\therefore f(2) = 2(2)^3 + a(2)^2 + b(2) - 14 = 0$
 $\Rightarrow 16 + 4a + 2b - 14 = 0$
 $\Rightarrow 2a + b = -1$ (i)
 $f(3) = 2(3)^3 + a(3)^2 + b(3) - 14 = 52$
 $\Rightarrow 54 + 9a + 3b = 66$
 $\Rightarrow 3a + b = 4$ (ii)
Solving (i) and (ii), we get
 $a = 5$ and $b = -11$.

7. Using the remainder theorem and factor theorem, factorise the following polynomial : $x^3 + 10x^2 - 37x + 26$. Sol. Let $f(x) = x^3 + 10x^2 - 37x + 26$

 $f(1) = (1)^{3} + 10(1)^{2} - 37 \times 1 + 26 = 1 + 10 - 37 + 26 = 0$ So, (x - 1) is a factor of f(x). $x^{3} + 10x^{2} - 37x + 26$ $= x^{3} - x^{2} + 11x^{2} - 11x - 26x + 26$ $= x^{2}(x - 1) + 11x(x - 1) - 26(x - 1)$ $= (x - 1)(x^{2} + 13x - 2x - 26)$ = (x - 1)[x(x + 13) - 2(x + 13)]= (x - 1)(x + 13)(x - 2).