Assignment (Basic & Advance Level Questions)

 ${\mathcal A}$ ssignment Alternating Current, Voltage and Power Basic Level 1. Alternating current can not be measured by dc ammeter because [AIEEE 2004] (a) Average value of current for complete cycle is zero (b) ac changes direction (c) ac can not pass through dc ammeter (d) dc Ammeter will get damaged The peak value of an ac emf E given by $E = E_0 \cos \omega t$ is 10 V and its frequency is 50 Hz. At a time $t = \frac{1}{600}S$, the instantaneous 2. value of emf is [MP PET 2004] (b) $5\sqrt{3}V$ (a) 10 V (c) 5*V* (d) 1 V 3. A lamp consumes only 50% of peak power in an ac circuit. What is the phase difference between the applied voltage and the circuit current [MP PMT 2004] (a) $\frac{\pi}{6}$ (b) (C) (d) 4. For high frequency, a capacitor offers [CPMT 1999; CBSE 1999; AFMC 2001; J & K CET 2004] (a) More reactance (b) Less reactance (c) Zero reactance (d) Infinite reactance The power loss in an ac circuit will be minimum, when [J & K CET 2004] 5. (a) Resistance is high, inductance is high (b) Resistance is high, inductance is low (c) Resistance is low, inductance is low (d) Resistance is low, inductance is high An ac source is rated at 220 V, 50 Hz. The time taken for voltage to change from its peak value to zero is 6. [Orissa JEE 2003] (a) 50 sec (b) 0.02 sec (c) 5 *sec* (d) 5×10⁻³ sec 7. The r.m.s. value of an ac of 50 Hz is 10 amp. The time taken by the alternating current in reaching from zero to maximum value and the peak value will be [MP PET 1993; KCET 2003] (a) 2×10^{-2} sec and 14.14 amp (b) 1×10^{-2} sec and 7.07 amp (c) 5×10^{-3} sec and 7.07 amp (d) 5×10^{-3} sec and 14.14 amp

ior I

8. The ratio of peak value and *r.m.s.* value of an alternating current is

	(a) 1	(b) $\frac{1}{2}$	(c) $\sqrt{2}$	(d) $1/\sqrt{2}$
9.	An alternating voltage is rep	presented as $E = 20 \sin 300 t$.	he average value of voltage ov	er one cycle will be [MP PMT 2002]
	(a) Zero	(b) 10 <i>volt</i>	(c) $20\sqrt{2}$ volt	(d) $\frac{20}{\sqrt{2}}$ volt
10.	If an ac main supply is given	n to be 220 V. What would be the	e average <i>e.m.f.</i> during a positive	e half cycle [MH CET 2002]
	(a) 198 <i>V</i>	(b) 386 <i>V</i>	(c) 256 <i>V</i>	(d) None of these
11.	The inductive reactance of a	an inductor of $\frac{1}{\pi}$ <i>henry</i> at 50 Hz	r frequency is	[MP PET 2001, 2002]
	(a) $\frac{50}{\pi}ohm$	(b) $\frac{\pi}{50}$ ohm	(c) 100 <i>ohm</i>	(d) 50 <i>ohm</i>
12.	The frequency of an alterna	ting voltage is 50 <i>cycles/sec</i> and	its amplitude is 120 V. Then the	<i>r.m.s.</i> value of voltage is
			[BHU 19	999; MH CET (Med.) 2001; KCET (Med.) 2001]
	(a) 101.3 V	(b) 84.8 V	(c) 70.7 <i>V</i>	(d) 56.5 V
13.	An ac supply gives 30 V r.m	a.s. which passes through a 10 Ω	resistance. The power dissipated	d in it is
	(a) $90\sqrt{2}W$	(b) 90 W	(c) $45\sqrt{2}W$	(d) 45 W
14.	The reactance of a coil when the coil is nearly	n used in the domestic ac power	supply (220 <i>volts.</i> 50 cycles per	r second) is 50 <i>ohms</i> . The inductance of [MP PMT 2000]
	(a) 2.2 <i>henry</i>	(b) 0.22 <i>henry</i>	(c) 1.6 <i>henry</i>	(d) 0.16 <i>henry</i>
15.	The capacity of a pure capa	citor is 1 <i>farad</i> . In dc circuits, its e	effective resistance will be	[MP PMT 2000]
	(a) Zero	(b) Infinite	(c) 1 <i>ohm</i>	(d) 1/2 <i>ohm</i>
16.	If instantaneous current is g	iven by $i = 4\cos(\omega t + \phi)$ ampered	es, then the <i>r.m.s.</i> value of curre	nt is
	(a) 4 <i>amperes</i>	(b) $2\sqrt{2}$ amperes	(c) $4\sqrt{2}$ amperes	(d) Zero <i>amperes</i>
17.		across the current <i>i</i> flowing t 2 sin ωt amperes (where $\omega = 2$	5	nc circuit of frequency <i>f</i> are given by the instrument is
	(a) Zero	(b) 10 <i>watt</i>	(c) 5 <i>watt</i>	(d) 2.5 <i>watt</i>
18.	In an ac circuit with voltage	V and current <i>i</i> , the power dissip	pated is	
	(a) Vi		(b) $\frac{1}{2}Vi$	
	(c) $\frac{1}{\sqrt{2}}Vi$		(d) Depends on the phase b	etween V and i
19.	In an ac circuit, the instanta	neous values of <i>e.m.f.</i> and curre	ent are $e = 200 \sin 314 \ t \ volt$ ar	nd $i = \sin\left(314t + \frac{\pi}{3}\right)amp$. The average
	power consumed in <i>watt</i> is			[NCERT 1990; RPMT 1997]
	(a) 200	(b) 100	(c) 50	(d) 25
20.		ed to 220 <i>V</i> , 50 <i>Hz</i> supply. Then		[AFMC 1996]
	(a) 210 V	(b) 211 V	(c) 311 V	(d) 320 V

21. The voltage of domestic ac is 220 volt. What does this represent **IMP PMT 19961** (a) Mean voltage (b) Peak voltage (c) Root mean voltage (d) Root mean square voltage If a current *i* given by $i_0 \sin\left(\omega t - \frac{\pi}{2}\right)$ flows in an ac circuit across which an ac potential of $E = E_0 \sin \omega t$ has been applied, then 22. the power consumption P in the circuit will be [CPMT 1986; Roorkee 1992; MP PMT 1994; SCRA 1996; [CPMT 1986; Roorkee 1992; SCRA 1996; MP PMT 1994; RPET 2001; MP PET 2001, 02] (c) $P = \frac{E_0 i_0}{2}$ (a) $P = \frac{E_0 i_0}{\sqrt{2}}$ (b) $P = \sqrt{2} E_0 i_0$ (d) P = 023. What will be the phase difference between virtual voltage and virtual current, when the current in the circuit is wattless [RPET 1996] (a) 90° (b) 45° (c) 180° (d) 60° An alternating current is given by the equation $i = i_1 \cos \omega t + i_2 \sin \omega t$. The *r.m.s.* current is given by 24. [MP PMT 1994] (b) $\frac{1}{\sqrt{2}}(i_1 + i_2)^2$ (c) $\frac{1}{\sqrt{2}}(i_1^2 + i_2^2)^{1/2}$ (d) $\frac{1}{2}(i_1^2 + i_2^2)^{1/2}$ (a) $\frac{1}{\sqrt{2}}(i_1 + i_2)$ 25. In general in an alternating current circuit [MP PMT 1994] (b) Average value of square of current is zero (a) Average value of current is zero (c) Average power dissipation is zero (d) Phase difference between voltage and current is zero 26. A generator produces a voltage that is given by $V = 240 \sin 120 t$, where t is in seconds. The frequency and r.m.s. voltage are [MP PMT 1990; MP PET 1993] (a) 60 *Hz* and 240 *V* (b) 19 *Hz* and 120 *V* (c) 19 *Hz* and 170 *V* (d) 754 *Hz* and 70 *V* 27. The ratio of the mean value over half cycle to the *r.m.s.* value of an ac is (b) $2\sqrt{2}$: π (c) $\sqrt{2}:\pi$ (d) $\sqrt{2}$:1 (a) $2:\pi$ An ac voltage $e = 240 \sin 2\pi \times 50 \times t$ has a peak-to-peak value of 28. (d) $240 / \sqrt{2}V$ (b) $240\sqrt{2}V$ (a) 240 V (c) 480 V The time required for a 50 Hz alternating current to increase from zero to 70.7% of its peak value is 29. (a) 2.5 ms (c) 20 ms (b) 10 ms (d) 14.14 ms An ac circuit draws 5A at 160 V and the power consumption is 600 W. Then the power factor is 30. (a) 1 (b) 0.75 (c) 0.50 (d) Zero What is the equation of an alternating current of frequency 60 Hz and r.m.s. value 10 A? Given that current i = 0 at t = 031. (c) $i = 10\sqrt{2} \sin(120 \pi t)$ (d) $i = 10\sqrt{2} \cos(120 \pi t)$ (b) $i = 10 \cos(120 \pi t)$ (a) $i = 10 \sin(120 \pi t)$ 32. Indicate the correct statements (1) 50 Hz ac changes its direction 100 times in a second (2) A 200 V, 60 W bulb can withstand upto 281 V dc (3) In ac circuits voltage across an element may greater than supply

	(4) To increase the fr	equency of ac number of poles s	hould be increased		
	(a) 1, 2, 3	(b) 2, 3, 4	(c) 3, 4, 1	(d) All	
33.	lf instantaneous value	of current is $i = 10 \sin(314t) A$ th	en the average current for the	e half cycle will be	
	(a) 10 <i>A</i>	(b) 7.07 A	(c) 6.37 <i>A</i>	(d) 3.53 A	
34.	The voltage of an ac s	ource varies with time according	to the equation $V = 120 \sin 10$	00 <i>πt</i> cos(100 <i>πt</i>) then	[MP PMT 1996]
	(a) The peak voltage	of the source is 120 <i>volts</i>	(b) The peak voltage	of the source is 60 <i>volts</i>	
	(c) The peak voltage	of the source is $\frac{120}{\sqrt{2}}$ volts	(d) The frequency of	the source is 50 <i>Hz</i>	
35.	An ac source is of 120	<i>volts</i> $-$ 60 <i>Hz</i> . the value of the vo	bltage after $\frac{1}{720}$ sec from the	e start will be	
	(a) 84.8 <i>volts</i>	(b) 42.4 <i>volts</i>	(c) 106.8 <i>volts</i>	(d) 20.2 <i>volts</i>	
36.	· · · · · ·	e between the alternating cur	rent and voltage represent	ed by the following equat	tion $i = i_0 \sin \omega t$,
	$E = E_0 \cos\left(\omega t + \frac{\pi}{3}\right),$	will be			
	(a) $\frac{\pi}{3}$	(b) $\frac{4\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{5\pi}{6}$	
37.	What should be the va becomes 10 ⁶ <i>rad sec</i>	alue of capacitive reactance for a	capacitance of 10 ⁻⁶ farad whi	le the angular frequency of a	lternating current
	(a) 2Ω	(b) 1Ω	(c) 100 Ω	(d) 10 Ω	
38.	The reactance of a cap	pacitor is X_1 for frequency n_1 and	X_2 for frequency n_2 then X_1 : λ	√₂ is	
	(a) 1:1	(b) $n_1 : n_2$	(c) $n_2 : n_1$	(d) $n_1^2 : n_2^2$	
39.	1 1	tage the impedance be increased	d in an ac circuit keeping the	e resistance constant so that	the power factor
	changes from $\frac{1}{2}$ to $\frac{1}{4}$	- - -			
	(a) 100%	(b) 200%	(c) 50%	(d) 25%	
40.	If the <i>r.m.s.</i> value of ac	t is i_{ms} then peak to peak value i	S		
	(a) $\sqrt{2} i_{ms} . / 2$	(b) $i_{rms} / \sqrt{2}$	(c) $2\sqrt{2} i_{rms}$	(d) 2 <i>i</i> _{rms}	
		_			0
		A	dvance Level		

41. A group of electric lamps having a total power rating of 1000 *watt* is supplied by an ac voltage $E = 200 \sin(310t + 60^{\circ})$. Then the *r.m.s.* value of the circuit current is

(a) 10 A (b) $10\sqrt{2} A$ (c) 20 A (d) $20\sqrt{2} A$

The instantaneous values of alternating current and *e.m.f.* in an ac circuit are $i = \frac{1}{\sqrt{2}} \sin 314 t$. A and $E = \sqrt{2} \sin(314 t - \frac{\pi}{6})$ volt 42. respectively. The phase difference between *E* and *i* will be (b) $-\frac{\pi}{6}$ radian (c) $\frac{\pi}{3}$ radian (d) $-\frac{\pi}{3}$ radian (a) $\frac{\pi}{6}$ radian In a certain circuit $E = 200 \cos(314 t)$ and $i = \sin(314 t + \pi/4)$. Their vector representation is 43. π/4 (C) *₹π*/4 3π/4 (b) (d) (a) In a certain circuit current changes with time according to $i = 2\sqrt{t}$. r.m.s. value of current between t = 2 to t = 4s will be 44. (b) $3\sqrt{3}A$ (c) $2\sqrt{3}A$ (d) $(2 - \sqrt{2})A$ (a) 3A An ac current is given by $i = i_0 + i_1 \sin \omega t$ then its *r.m.s.* value will be 45. (a) $\sqrt{i_0^2 + 0.5i_1^2}$ (b) $\sqrt{i_1^2 + 0.5i_0^2}$ (d) $i_0 / \sqrt{2}$ (c) 0 46. The correctly marked ammeter for ac current is shown in (a) (b) 2 3 4 5 6 7 2 3 (d) None of these (C) 2 3 n 1 Δ 47. Heat is produced in a wire by allowing the ac of peak value 14 A to flow in it. If dc of i ampere is used for producing the same amount of heat, then the value of / will be approximately (c) 12 A (a) 7 A (b) 10 A (d) 14 A 48. If the instantaneous value of current is $i = 10 \sin 314t$ amp. then the average value of i^2 will be (d) 25.0 (a) 100 (b) 70.7 (c) 50.0 49. A square wave current switching rapidly between 0.4 A and -0.4 A is passed through an ac ammeter. The reading of the ammeter will be (b) $0.4\sqrt{2}A$ (c) 0.8 A (a) 0 A (d) 0.4 A 50. Match the following Currents r.m.s. values (1) $x_0 \sin \omega t$ (i) X₀ (ii) $\frac{x_0}{\sqrt{2}}$ (2) $x_0 \sin \omega t \cos \omega t$

52.

(3) $x_0 \sin \omega t + x_0 \cos \omega t$	(iii) $\frac{x_0}{\sqrt{2}\sqrt{2}}$			
	(b) 1. (ii), 2. (iii), 3. (i)	. ,		(d) None of these hile in <i>B</i> , a bunch of 15 wires each of
cross-sectional are $\frac{x}{15}$ is use	ed. Then for the flow of high free	quen	cy ac, the	
(a) Cable <i>A</i> is more suitable	e than <i>B</i>	(b)	Cable <i>B</i> is more suitable th	nen A
(c) Both cables are equally	suitable	(d)	Nothing specific can be pr	redicted
				Different ac circuits (Series)
	Basi	ic Le	vel	
	(a) 1. (i), 2. (ii), 3. (iii) Consider two cables A and cross-sectional are $\frac{x}{15}$ is us (a) Cable A is more suitable	(2 $\sqrt{2}$) (a) 1. (i), 2. (ii), 3. (iii) (b) 1. (ii), 2. (iii), 3. (i) Consider two cables <i>A</i> and <i>B</i> . In <i>A</i> , a single copper wire of cross-sectional are $\frac{x}{15}$ is used. Then for the flow of high fre (a) Cable <i>A</i> is more suitable than <i>B</i> (c) Both cables are equally suitable	(a) 1. (i), 2. (ii), 3. (iii) (b) 1. (ii), 2. (iii), 3. (i) (c) Consider two cables A and B. In A, a single copper wire of cross cross-sectional are $\frac{x}{15}$ is used. Then for the flow of high frequence (a) Cable A is more suitable than B (b) (c) Both cables are equally suitable (d)	(a) 1. (i), 2. (ii), 3. (iii) (b) 1. (ii), 2. (iii), 3. (i) (c) 1. (i), 2. (iii), 3. (ii) Consider two cables A and B. In A, a single copper wire of cross-sectional area x is used, we cross-sectional are $\frac{x}{15}$ is used. Then for the flow of high frequency ac, the (a) Cable A is more suitable than B (b) Cable B is more suitable the

In an LCR series ac circuit, the voltage across each of the components, L, C and R is 50 V. The voltage across the LC combination will be (b) $50\sqrt{2} V$ (a) 100 V (c) 50 V (d) 0 V (zero) In a LCR circuit capacitance is changed from C to 2C. For the resonant frequency to remain unchanged, the inductance should be 53. changed from L to [AIEEE 2004] (b) 2 L (a) *L*/2 (c) 4 L (d) L/4 Radio frequency choke uses core of 54. [AFMC 2004] (a) Air (b) Iron (c) air and iron (d) None of these 55. In LR circuit, resistance is 8Ω and inductive reactance is 6Ω , then impedance is [MP PMT 2003; Bihar CECE 2004] (b) 14Ω (d) 10Ω (a) 2Ω (c) 4Ω 56. The current in *LCR* series circuit will be maximum when ω is [Kerala PMT 2004] (a) As large as possible (b) Equal to natural frequency of LCR system (d) $\sqrt{\frac{1}{LC}}$ (c) \sqrt{LC} 57. A coil has L = 0.04 H and $R = 12\Omega$. When it is connected to 220 V, 50 Hz supply the current flowing through the coil, in amperes is [Kerala PMT 2004] (a) 10.7 (b) 11.7 (c) 14.78 (d) 12.7 58. In a ac circuit of capacitance the current from potential is [CPMT 2003] (a) Forward (b) Backward (c) Both are in the same phase(d) None of these There is a 5 Ω resistance in an ac circuit. Inductance of 0.1 *H* is connected with it in series. if equation of ac *e.m.f.* is $5 \sin 50t$ then 59. the phase difference between current and e.m.f. is [RPET 2003]

	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{4}$	(d) 0
60.	A coil of 200 Ω resistance potential and current will b		ected to an ac source of freque	ency $200/2\pi Hz$. Phase angle between [MP PMT 2003]
	(a) 30 <i>°</i>	(b) 90°	(c) 45°	(d) 0^{o}
61.	A 280 <i>ohm</i> electric bulb is	connected to 200 V electric line.	The peak value of current in the	bulb will be [MP PET 2002]
	(a) About one ampere	(b) Zero	(c) About two ampere	(d) About four ampere
62.	An inductive circuit contair	ns a resistance of 10 <i>ohm</i> and ar	n inductance of 2.0 <i>henry</i> . If an	ac voltage of 120 <i>volt</i> and frequency of
	60 <i>Hz</i> is applied to this circ	cuit, the current in the circuit wou	Id be nearly	[CPMT 1990; MP PET 2002]
	(a) 0.32 <i>amp</i>	(b) 0.16 <i>amp</i>	(c) 0.48 <i>amp</i>	(d) 0.80 <i>amp</i>
63.	The power factor of an ac	circuit having resistance (<i>R</i>) and i	nductance (<i>L</i>) connected in serie	es and an angular velocity ω is
				[AIEEE 2002; MP PET 2000]
	(a) $R / \omega L$	(b) $R/(R^2 + \omega^2 L^2)^{1/2}$	(c) $\omega L/R$	(d) $R/(R^2 - \omega^2 L^2)^{1/2}$
64.	Reactance of a capacitor of	f capacitance $C\mu F$ for ac freque	ncy $\frac{400}{\pi}Hz$ is 25 Ω . The value of	Cis
	(a) $50 \mu F$	(b) 25 <i>µF</i>	(c) $100 \ \mu F$	(d) 75 μF
65.	A circuit has resistance of 1	11 Ω an inductive reactance of 25	$\boldsymbol{\Omega}$ and a capacitate reactance of	f 18 Ω . It is connected to an ac source of
	260 V and 50 Hz. The curre	ent through the circuit (in amper	es) is	[Kerala PMT 2002]
	(a) 11	(b) 15	(c) 18	(d) 20
66.	In a circuit, the current lags	s behind the voltage by a phase	difference of $\pi/2$. The circuit co	ontains which of the following
				[AIIMS 2001]
	(a) Only <i>R</i>	(b) Only L	(c) Only C	(d) R and C
67.	In the circuit shown in fig. r	neglecting source resistance the	voltmeter and ammeter reading	will respectively will be
				[KCET (Engg.) 2001]
	(a) 0 <i>V</i> , 3 <i>A</i>			
	(b) 150 V, 3A		$R = 30\Omega X_L = 25\Omega$	
	(c) 150 <i>V</i> , 6 <i>A</i>			240 V
	(d) 0 <i>V</i> , 8A			
68.	A resistance of 40 <i>ohm</i> and this combination is very ne		<i>ry</i> are connected in series in a 50	0 <i>cycle/sec</i> ac circuit. The impedance of

this combination is very nearly

(a) 30 *ohm* (b) 40 *ohm* (c) 50 *ohm* (d) 60 *ohm*

69.	In an ac circuit, the	e power factor			[Roorke	e 2000]
	(a) Is zero when	the circuit contains an ideal resistance	e only (b) Is	unity when th	ne circuit contains an ideal resistance only	
	(c) Is zero when the sideal inductance of	the circuit contains an ideal inductan	ce only (d)	Is unity when the circuit conta	ains an
70.	The value of the c and 50 <i>Hz</i> is	urrent through an inductance of 1H a	and of negligil	ble resistance,	, when connected through an ac source of [AFM	^E 200 <i>V</i> C 2000]
	(a) 0.637 A	(b) 1.637 <i>A</i>	(c) 2.0	637 A	(d) 3.637 A	
71.	An inductance <i>L</i> h inductance is	aving a resistance <i>R</i> is connected to	an alternating	g source of an	ngular frequency ω . The quality factor (Q) [CBSE PMT 2000; AFM	
	(a) $\frac{R}{\omega L}$	(b) $\left(\frac{R}{\omega L}\right)^{1/2}$	(C) ($\left(\frac{\omega L}{R}\right)^2$	(d) $\frac{\omega L}{R}$	
72.	In an ac circuit the current through th		resistance, the	e phase differ	rence between the voltage across the coil	to the
	(a) π/3	(b) <i>π</i> / 2	(C) π	/4	(d) $\pi / 6$	
73.	Power factor is ma	aximum in an <i>LCR</i> circuit when			[RPE	T 2000]
	(a) $X_L = X_C$	(b) $R = 0$	(C) <i>X</i>	$T_L = 0$	(d) $X_C = 0$	
74.		ce L has an inductive reactance of X material and has no resistance. The ra			the effective current is <i>i</i> . The coil is made ated in the coil is	from a
	(a) 0	(b) <i>LX</i> _{<i>L</i>}	(c) <i>i</i> ²	X_L	(d) LX_L^2	
75.	The phase differer	nce between the current and voltage	at resonance	in <i>RLC</i> series o	circuit is [CPM	IT 1999]
	(a) 0	(b) $\frac{\pi}{2}$	(C) π		(d) – <i>π</i>	
76.	Which of the follow	wing plots may represent the reactar	nce of a series			IT 1999]
	(a) <i>a</i>			Reactance	<i>b</i>	
	(b) <i>b</i>			Re	Frequency d	
	(c) <i>C</i>					
	(d) <i>d</i>					
77.		consist of an inductor and a capacit m in circuit then angular frequency w		ance and cap	pacitance is respectively 1 <i>henry</i> and 25 μ <i>F</i>	. If the IT 1999]

(a) 200 (b) 100 (d) 200/2π (c) 50

				[Roorkee 1999]							
	(a) The circuit is at resona	ance and its impedance is made	up only of a reactive part								
	(b) The current in the circ	uit is in phase with the applied ϵ	e.m.f. and the voltage across R	equals this applied <i>e.m.f.</i>							
	(c) The sum of the p.d.'s current in the circuit	across the inductance and capa	acitance equals the applied <i>e.</i>	<i>m.f.</i> which is 180° ahead of phase of the							
	(d) The quality factor of t	(d) The quality factor of the circuit is $\omega L/R$ or $1/\omega CR$ and this is a measure of the voltage magnification (produced by the									
	circuit at resonance) a	s well as the sharpness of resona	ance of the circuit								
79.	In a series <i>LCR</i> circuit, rest voltage is	sistance $R = 10\Omega$ and the imp	edance $Z = 20\Omega$. The phase	difference between the current and the							
				[KCET (Engg./Med.) 1999]							
	(a) 30°	(b) 45°	(c) 60°	(d) 90 <i>°</i>							
80.	The average power dissipation coil = <i>L</i> and current <i>i</i>)	ated in a pure inductor of ind	ctance $\it L$ when an ac current i	s passing through it, is (Inductance of the [CPMT 1974; RPMT 1997; MP PET 1999]							
	(a) $\frac{1}{2}Li^2$	(b) $\frac{1}{4}Li^2$	(c) 2 <i>LP</i>	(d) Zero							
81.	In an ac circuit, a resistanc 45° , the value of inductive		es with an inductance L If pha	ase angle between voltage and current be [MP PMT/PET 1998]							
	(a) $\frac{R}{4}$		(b) $\frac{R}{2}$								
	(c) <i>R</i>		(d) Cannot be found with	the given data							
82.			nce and resistance joined in s	series are respectively 16 V and 20 V . The							
	total potential difference a (a) 20.0 <i>V</i>	(b) $25.6 V$	(c) 31.9 V	[AFMC 1998] (d) 53.5 V							
83.) <i>ohm</i> in series. What is the current in the							
00.	circuit										
				[MNR 1998]							
	(a) 10 <i>A</i>	(b) 5 A	(c) 33.3 <i>A</i>	(d) 3.33 A							
84.	The phase angle between	e.m.f. and current in LCR series a	ac circuit is	[MP PMT /PET 1998]							
	(a) 0 to $\pi/2$	(b) π / 4	(c) <i>π</i> / 2	(d) π							
85.	For series <i>LCR</i> circuit, wron	ig statement is		[RPMT 1997]							
	(a) Applied <i>e.m.f.</i> and pot	tential difference across resistance	ce are in same phase								
	(b) Applied <i>e.m.f.</i> and pot	tential difference at inductor coil	have phase difference of $\pi/2$	2							

An alternating *e.m.f.* of frequency $v \left(= \frac{1}{2\pi\sqrt{LC}} \right)$ is applied to a series *LCR* circuit. For this frequency of the applied *e.m.f.*

78.

- (c) Potential difference at capacitor and inductor have phase difference of $\pi/2$
- (d) Potential difference across resistance and capacitor have phase difference of $\pi/2$
- 86. A 20 volts ac is applied to a circuit consisting of a resistance and a coil with negligible resistance. If the voltage across the resistance is 12 V_{c} the voltage across the coil is
 - (a) 16 volts (b) 10 volts (c) 8 *volts* (d) 6 volts
- An e.m.f. E=4 cos (1000 t) volt is applied to an LR-circuit of inductance 3 mH and resistance 4 ohms. The amplitude of current in 87. the circuit is **IMP PMT 19971**
 - (a) $\frac{4}{\sqrt{7}}A$ (c) $\frac{4}{7}A$ (b) 1.0A (d) 0.8 A
- In a *LR* circuit, the value of *L* is $\left(\frac{0.4}{\pi}\right)$ henry and the value of *R* is 30 ohm. If in the circuit, an alternating *e.m.f.* of 200 volt at 88. 50 cycles per sec is connected the impedance of the circuit and current will be [MP PET 1996] (b) 30.7 Ω, 6.5 A (c) 40.4 Ω, 5 A (d) 50 Ω, 4A (a) 11.4 Ω, 17.5 A
- 89. The resonant frequency of a circuit is f. If the capacitance is made 4 times the initial values, then the resonant frequency will become
 - (a) *f*/2 (b) 2*f* (d) f/4 (c) *f*
- In a series *LCR* circuit, operated with an ac of angular frequency ω , the total impedance is 90.
 - (a) $[R^{2} + (L\omega C\omega)^{2}]^{1/2}$ (b) $\left[R^{2} + \left(L\omega \frac{1}{C\omega}\right)^{2}\right]^{1/2}$ (c) $\left[R^{2} + \left(L\omega \frac{1}{C\omega}\right)^{2}\right]^{-1/2}$ (d) $\left[(R\omega)^{2} + \left(L\omega \frac{1}{C\omega}\right)^{2}\right]^{1/2}$
- 91. In the circuit given below. What will be reading of the voltmeter
 - (a) 300 V
 - (b) 900 V
 - (c) 200 V
 - (d) 400 V
- 92. The voltage across a pure inductor is represented by the following diagram. Which one of the following diagrams will represent the current [MP PMT 1995]

[MP PET 1996]

[RPET 1996]

Advance Level

98.	The ac current through a ca	apacitor $C = \frac{10^{-4}}{314}$ far	<i>rad</i> is given by	$i = 25\cos(314t + $	$+30^{\circ})mA$ then the	ne <i>e.m.f.</i> across the	e capacitor will
	be given by						
	(a) $e = 250 \cos(314 t - 60^\circ)$) volt	(b)	$e = 250 \sin(314)$	$4t+30^{\circ}$)volt		
	(c) Both of the above		(d)	None of the al	bove		
99.	One 10 V, 60 W bulb is to be	e connected to 100 V	line. The require	d induction coil	has self inductar	nce of value ($f = 50$) <i>Hz</i>)
							[RPET 1997]
	(a) 0.052 <i>H</i>	(b) 2.42 <i>H</i>	(C)	16.2 <i>mH</i>	(d)	1.62 <i>mH</i>	
100.	Al alternating <i>e.m.f.</i> of angu an angular frequency	lar frequency ω is ap	plied across an	inductance. The	instantaneous p	ower developed in	the circuit has [Roorkee 1999]
	(a) $\frac{\omega}{4}$	(b) $\frac{\omega}{2}$	(C)	ω	(d)	2ω	
101.	In a circuit current leads the and C is capacitance)	voltage by a phase o	of $\pi/3$. The cor	mponents of the	e circuit are (whe	re <i>R</i> is resistance,	L is inductance
	(a) R and L	(b) Only <i>R</i>		(c) R and C		(d) L and C	
102.	The vector diagram of curre	nt and voltage for a c	ircuit is as show	n. The compone	ents of the circuit	will be	
	 (a) <i>L-C-R</i> (b) <i>L-R</i> (c) <i>L-C-R</i> or <i>L-R</i> (d) None of these 				<i>E_{rmc} = 20</i>	V	
40.0							
103.	In the circuit shown here a The inductive reactance is	30 V dc source gives	a current 2.0 A,	and a 30 V ac	source of freque		a current 1.2 A.
	(a) 10 <i>ohm</i>					5	
	(b) 20 <i>ohm</i>			L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	(c) $5\sqrt{34}$ ohm			_			
	(d) 40 <i>ohm</i>						
104.	What is the reading of the v	oltmeter V_2 in the cir	cuit below, if the	e reading of V_1	is 3 V		
				Г			

- (a) 2*V*
- (b) 3*V*

- (c) 4*V*
- (d) 5*V*
- 105. The reading of ammeter in the circuit shown will be
 - (a) 2A
 - (b) 2.4 A
 - (c) Zero
 - (d) 1.7 A
- **106.** The resonance point in $X_L f$ and $X_C f$ curves is
 - (a) *P*
 - (b) *Q*
 - (c) *R*
 - (d) *S*
- **107.** An ac source of angular frequency ω is fed across a resistor *r* and a capacitor *C* in series. The current registered is *l*. If now the frequency of source is changed to ω / 3 (but maintaining the same voltage), the current in then circuit is found to be halved. Calculate the ratio of reactance to resistance at the original frequency ω
 - (a) $\sqrt{\frac{3}{5}}$ (b) $\sqrt{\frac{2}{5}}$ (c) $\sqrt{\frac{1}{5}}$
- **108.** The diagram shows a capacitor C and a resistor R connected in series to an ac source. V_1 and V_2 are voltmeters and A is an ammeter

(d) $\sqrt{\frac{4}{5}}$

Consider now the following statements

- I. Readings in A and V_2 are always in phase
- II. Reading in V_1 is ahead in phase with reading in V_2
- III. Readings in A and V_1 are always in phase which of these statements are/is correct

[AMU (Med.) 2001]

(a) I only (b) II only

(c) I and II only

(d) II and III only

- 109. A circuit drawn a power of 550 watt from a source of 220 volt, 50 Hz. The power factor of the circuit is 0.8 and the current lags in phase behind the potential difference. To make the power factor of circuit as 1.0, the capacitance required to be connected with it, will be
 - (a) 70.4 μF (b) 75 μF (c) 7.5 *μF* (d) 750 µF
- 110. The sharpness of resonance increases on
 - (c) Decreasing X_L (d) Increasing X_L (a) Decreasing R(b) Increasing R
- In the circuit shown in fig. the supply has constant r.m.s. value V but variable frequency f. Calculate the frequency at which the 111. voltage drop across R is maximum
 - (a) 100 *Hz*
 - (b) 500 Hz
 - (c) 300 Hz
 - (d) None of these
- 112. In the following circuit the values of L, C, R and E₀ are 0.01 H, 10⁻⁵ F, 25Ω and 220 volt respectively. The value of current flowing in the circuit at v = 0 and $f = \infty$ will respectively be
 - (a) 8 A and 0 A
 - (b) 0 A and 0 A
 - (c) 8 A and 8 A
 - (d) 0 A and 8 A

113. In the circuit shown below, the ac source has voltage $V = 20 \cos(\omega t)$ volts with $\omega = 2000 rad/sec$. the amplitude of the current will be nearest to

- (a) 2A
- (b) 3.3A
- (c) $2/\sqrt{5}A$
- (d) $\sqrt{5}A$
- 114. An LCR series circuit with a resistance of 100 ohm is connected to an ac source of 200 V (r.m.s.) and angular frequency 300 rad/s. When only the capacitor is removed, the current lags behind the voltage by 60°. When only the inductor is removed the current leads the voltage by 60°. The average power dissipated is

(a) 50 W	(b) 100 W	(c) 200 W	(d) 400 W
----------	-----------	-----------	-----------

0.01 <i>H</i>	10 ⁻⁵ <i>F</i>	25Ω
	$- \sum_{E_0} =$	= 220 <i>V</i>

V ന്നുണ്ണ 50µF 5 *mH*, 4 Ω

[AMU (Engg.) 2000]

115.		a 3000 <i>ohm</i> resistance are joined he power dissipated in it will resp		200 <i>volt</i> and 50 <i>sec</i> ⁻¹ frequency. The power
	(a) 0.6, 0.06 W	(b) 0.06, 0.6 <i>W</i>	(c) 0.6, 4.8 W	(d) 4.8, 0.6 W
116.	A virtual current of 4A a	nd 50 <i>Hz</i> flows in an ac circuit c	ontaining a coil. The power co	onsumed in the coil is 240 W . If the virtual
	voltage across the coil is	100 V its inductance will be		
	(a) $\frac{1}{3\pi}H$	(b) $\frac{1}{5\pi}H$	(c) $\frac{1}{7\pi}H$	(d) $\frac{1}{9\pi}H$
117.	A bulb and a capacitor a	re connected in series to a sour	ce of alternating current. If its	frequency is increased, while keeping the
	voltage of the source cor	istant, then		
	(a) Bulb will give more i	ntense light	(b) Bulb will give less inte	ense light
	(c) Bulb will give light of	f same intensity as before	(d) Bulb will stop radiatin	g light
118.	A 110 V, 60 W lamp is ru across the capacitor is ab	0	a capacitor in series with the la	amp, instead of a resistor then the voltage
	(a) 110 V	(b) 190 V	(c) 220 V	(d) 311 V
119.	When an ac generator o	f 100 V is connected in series wit	th a capacitor and a resistor o	of 30 <i>ohm</i> , the circuit carries a current 2 <i>A</i> .
	The potential difference a	across the capacitor will be		
	(a) 100 V	(b) 80 V	(c) Zero	(d) 120 V
120.		$V = 200\sqrt{2}$ sin 100 <i>t</i> where <i>V</i> is to through an ac ammeter. The		connected to a series combination of 1 μ F e [CPMT 1991]
	(a) $\sqrt{2} mA$	(b) $10\sqrt{2} mA$	(c) $2 mA$	(d) 20 <i>mA</i>
121.				<i>Hz</i> . The quality factor of the circuit will be
121.	(a) 40	(b) 20	(c) 10	(d) 5
122.		$= X_L = 2X_C$. The impedance of the		
	(a) $\frac{\sqrt{5}R}{2}$, $\tan^{-1}(2)$	(b) $\frac{\sqrt{5}R}{2}$, $\tan^{-1}\left(\frac{1}{2}\right)$	(c) $\sqrt{5} X_C$, tan ⁻¹ (2)	(d) $\sqrt{5}R$, $\tan^{-1}\left(\frac{1}{2}\right)$
123.	If the voltages across rest terms of V_R will be	sistor <i>R</i> , capacitor <i>C</i> and inducto	or <i>L</i> are $V_C = 2V_R$ and $V_L = 3$	V_R respectively, then the supply voltage in
	(a) $\sqrt{2} V_R$	(b) <i>V_R</i>	(c) $\frac{V_R}{\sqrt{2}}$	(d) $5V_R$
124.	An <i>LCR</i> circuit with 100 <i>c</i>	<i>hm</i> resistance is connected to an	n ac source of 200 <i>volt</i> and an	gular frequency 300 <i>rad/sec</i> . On removing
		cuit, the current lags behind the v The current flowing in the circuit		the inductance from the circuit, the current
	(a) 1 <i>amp</i>	(b) 1.5 <i>amp</i>	(c) 2.5 <i>amp</i>	(d) 2 <i>amp</i>
125.	In the LCR series circuit th	ne voltmeter and ammeter readir	ng are	400 V 400 V [CPMT 1988]
	(a) <i>V</i> = 100 <i>volt</i> , <i>i</i> = 2 <i>ar</i>	ηp		$\begin{array}{c} & & & \\ & & & \\ \hline \\ 0\Omega \\ \hline \\ \hline \\ \hline \\ 0\Omega \\ \hline \\ \hline \\ 00 \\ \hline \\ 100 \\ V, 50 \\ Hz \end{array}$

- (b) *V* = 100 *volt*, *i* = 5 *amp*
- (c) *V* = 300 *volt*, *i* = 2 *amp*
- (d) V = 300 V, i = 1 amp
- **126.** A resistor R, an inductor L, a capacitor C and voltmeters V_1 , V_2 and V_3 are connected to an oscillator in the circuit as shown in the adjoining diagram. When the frequency of the oscillator is increased, then at resonant frequency the reading of voltmeter V_3 is equal to
 - (a) That of voltmeter V_1
 - (b) That of voltmeter V_2
 - (c) Both of the voltmeters V_1 and V_2
 - (d) None of these
- 127. In the adjoining ac circuit the voltmeter whose reading will be zero at resonance is
 - (a) V₁
 - (b) V₂
 - (c) *V*₃
 - (d) V₄
- **128.** When $V = 100 \sin \omega t$ is applied across a series (*RLC*) circuit at resonance the current in resistance ($R = 100 \Omega$) is $i = i_0 \sin \omega t$, then power dissipation in circuit is

(c) 25 W

- (a) 50 W (b) 100 W
- **129.** Following figure shows an ac generator connected to a "block box" through a pair of terminals. The box contains possible *R*, *L*, *C* or their combination, whose elements and arrangements are not known to us. Measurements outside the box reveals that

 $e = 75 \sin(\sin \omega t) volt$, $i = 1.5 \sin(\omega t + 45^{\circ}) amp$

then, the wrong statement is

- (a) There must be a capacitor in the box
- (b) There must be an inductor in the box
- (c) There must be a resistance in the box
- (d) The power factor is 0.707

(d) Can't be calculated

130.	An ideal choke takes a curre	ent of 10 <i>amp</i> when connected to ar	n ac supply of 125 <i>volt</i> and 50 <i>F</i>	<i>Iz.</i> A pure resistor under the same
	conditions takes a current o	f 12.5 <i>amp</i> . If the two are connected	to an ac supply of $100\sqrt{2}$ volt	and 40 <i>hertz</i> , then the current in a
	series combination of the ab	pove resistor and inductor is		
	(a) 1 <i>amp</i>	(b) 12.5 <i>amp</i>	(c) 20 <i>amp</i>	(d) 25 <i>amp</i>
131.	An iron choke and an electri	ic bulb are connected in series with a	ac mains. On introducing a soft i	ron bar in the coil, the intensity of
	light bulb will			
	(a) Decrease	(b) Increase	(c) Fluctuate	(d) Remain unchanged
				Parallel ac circuit

- **132.** A *LC* circuit is in the state of resonance. If $C = 0.1 \mu F$ and L = 0.25 *henry*. Neglecting ohmic resistance of circuit what is the frequency of oscillations [BHU 2003]
 - (a) 1007 *Hz* (b) 100 *Hz* (c) 109 *Hz* (d) 500 *Hz*

133. An inductor of 10 *mH* and a capacitor of 16 μ *F* are connected in the circuit as shown in the fig. The frequency of the power supply is equal to the resonant frequency of the circuit. Which ammeter will read zero ampere

- (a) A₁
- (b) A_2
- (C) A₃
- (d) None of these
- 134. For the circuit shown in the fig. the current through the inductor is 0.9 A while the current through the condenser is 0.4 A
 - (a) The current drawn from the generator is i = 1.3A
 - (b) $\omega = \frac{1}{1.5 LC}$
 - (c) i = 0.5A
 - (d) i = 0.6A
- 135. What will be the impedance of the circuit shown below
 - (a) 5Ω

- (b) 10 Ω
- (c) 25 Ω
- (d) 75 Ω
- **136.** In the circuit shown in the fig. if both the lamps L_1 and L_2 are identical
 - (a) Their brightness will be the same
 - (b) L_2 will be brighter than L_1
 - (c) As frequency of supply voltage is increased, brightness of L_1 will increase and that of L_2 will decrease
 - (d) Only L_2 will glow because the capacitor has infinite resistance
- 137. In a parallel *L*-*C*-*R* circuit shown in the fig, at resonance
 - (a) The source current is maximum
 - (b) The impedance of the circuit is minimum and is equal to R
 - (c) The resonance frequency will be the same as for a series resonance circuit with the same values of *L*, *C* and *R*
 - (d) The voltage across *L* and *C* are in phase
- **138.** A resistor R, an inductor L, a capacitor C and ammeter A_1 , A_2 , A_3 and A_4 are connected to an oscillator as shown in diagram. When the frequency of the oscillator is increased, then at resonant frequency, the reading of ammeter A_4 is equal to
 - (a) That of ammeter A_3
 - (b) That of ammeter A_2
 - (c) That of ammeter A_1
 - (d) All the three ammeters A_1, A_2 and A_3
- **139.** The i v curve for anti-resonant circuit is

(d) None of these

In the non-resonant circuit, what will be the nature of the circuit for frequencies higher than the resonant frequency 140. [RPET 1996]

- (a) Resistive (b) Capacitive
- In the adjoining figure the impedance of the circuit will be 141.
 - (a) 120 *ohm*
 - (b) 50 ohm
 - (c) 60 ohm
 - (d) 90 ohm
- Current through *R* at resonance 142.
 - (a) Infinite
 - (b) Zero
 - $\frac{V}{R}$ (C)
 - (d) Can't be calculated

- (c) Inductive
 - 90 V ~ $X_L = 30 \Omega$ $X_C = 20\Omega$

	Assignment (Basic & Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	b	b	b	d	d	d	с	a	a	с	b	b	d	b	b	a	d	с	с
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	d	a	с	a	с	b	с	a	b	с	d	с	b	a	d	b	с	a	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	b	a	с	a	b	b	с	d	b	b	d	b	b	d	d	d	a	с	с
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	b	b	a	d	b	d	с	b,d	a	d	a	a	a	a	d	a	b,d	с	d
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	b	d	a	с	a	d	d	a	b	с	d	a	с	с	b	с	с	a	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
с	с	b	с	с	с	a	b	b	a	b	b	a	d	с	b	a	b	b	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
с	b	a	d	a	a	d	a	b	a	a	a	с	с	с	b,c	с	a	b	b
141	142																		

141 142 c b