

PERIODIC TABLE

S.No.	CONTENTS	Page
1.	Introduction	2
2.	Development of periodic table	2
3.	Group, period & block identification	8
4.	Periodicity	11
5.	Screening effect & Z effective	11
6.	Atomic radius	12
7.	Ionization energy	16
8.	Electron affinity	19
9.	Electronegativity	21
10.	Exercise -I (Conceptual Question)	26
11.	Exercise-II (Previous Years Questions)	34
12.	Exercise-III (Analytical Questions)	37
13.	Exercise-IV (Assertion & Reason)	40

NEET SYLLABUS

Ε

PERIODIC TABLE : Modern periodic law and long form of periodic table, periodic trends in properties of elementsatomic radii, ionic radii, ionization enthalpy, electron gain enthalpy, electronegativity, valence.

OBJECTIVES

After studying this unit, you will be able to :

- Understand the Periodic Law.
- Understand the significance of atomic number and electronic configuration as the basis for periodic classification;
- Name the elements with Z > 100 according to IUPAC nomenclature;
- Classify elements into s, p, d, f blocks and learn their main characteristics;
- *Recognise the periodic trends in physical and chemical properties of elements;*
- use scientific vocabulary appropriately to communicate ideas related to certain important properties of atoms e.g., atomic/ionic radii, ionization enthalpy, electron gain enthalpy, electronegativity, valence of elements.

The Periodic Table is arguably the most important concept in chemistry, both in principle and in practice. An awareness of the Periodic Table is essential to anyone who wishes to disentangle the world and see how it is built up from the fundamental building blocks of the chemistry, the chemical elements.

Glenn T. Seaborg

A		

Pre-Medical : Chemistry

	0 (18)	2 He Helium	10 Neon Neon	18 Ar ^{39.948} Argon	36 Kr 83.80 Krypton	54 X <i>e</i> Xenon	86 Rn ²²² ²²²	118 Uuo	Î	71 Lu 174.97 Lutetium	103 Lr ²⁶² Lawrencium	
	its	VIIA (17)	9 F 18.998 Fluorine	17 Cl 35.453 Chlorine	35 Br 79.904 Bromine	53 I 126.90 Iodine	85 At ²¹⁰ Astatine	117 Uus		70 Yb 173.07 Ytterbium	102 No ²⁵⁹ Nobelium	
	p-Block Elements	VIA (16)	8 0 0xygen	16 S 32.066 Sulphur	34 Se Selenium	52 Te 127.60 Tellurium	84 Po 210 Polonium	116 Uuh		69 Tm ^{168.93} Thulium	101 Md ²⁵⁸ Mendelevium	
	p-Bloc	VA (15)	7 N 14.007 Nitrogen	15 P 30.974 Phosphorus	33 As Arsenic	51 Sb 121.76 Antimony	83 Bi ^{208.98} Bismuth	115 Uup		68 Er Erbium	100 Fm ²⁵⁷ Fermium	
able		IVA (14)	6 C ^{12.011} Carbon		32 Ge 72.61 Germanium	50 Sn ^{118.71}	82 Pb ^{207.2} Lead	114 Uuq		67 Ho 164.93 Holmium	99 Es ²⁵² Einsteinium	ets
Long Form of the Periodic Table	Ļ	IIIA (13)	5 Boron	13 Al 26.982 Aluminium	31 Ga 62.723 Gallium	49 In 114.82 Indium	81 TI 204.38 Thallium	113 Uut		66 Dy 162.50 Dysprosium	98 Cf ²⁵¹ Californium	designations of groups of elements are given in brackets
riod			Î	IIB (12)	30 Zn 65.39 Zinc	48 Cd 112.41 Cadmium	80 Hg 200.59 Mercury	112 Uub ²⁷⁷ Ununbium	nents	65 Tb ^{158.93} Terbium	97 Bk ²⁴⁷ Berkelium	e given
le Pe				IB (11)	29 Cu 63.546 Copper	$\begin{array}{c} \textbf{47} \\ \textbf{Ag} \\ \text{107.87} \\ \text{Silver} \end{array}$	79 Au 196.97 Gold	111 Uuu ²⁷² Unununium	f-Block Elements	64 Gd 157.25 Gadolinium	96 Cm ²⁴⁷ Curium	nents ar
of th				(10)	28 Ni ^{58.693} Nickel	$\begin{array}{c} \textbf{46} \\ Pd \\ 106.42 \\ Palladium \end{array}$	78 Pt 195.08 Platinum	110 Uun ²⁶⁹ Ununniium	— f-Bi	63 Eu 151.96 Europium	95 Am ²⁴³ Americium	s of eler
orm			str	- IIIV (9)	27 CO ^{58.933} Cobalt	45 Rh 102.91 Rhodium	77 Ir 192.22 Iridium	109 Une 268 Unnilennium		62 Sm 150.36 Samarium	94 Pu 244 Plutonium	of group
g Fc			d-Block Elements	_ <u>(8</u>)	26 Fe ^{55.847} Iron	44 Ru 101.07 Ruthenium	76 Os Osmium	108 Uno 269 Unniloctium		$\mathop{Promethium}_{145}$	93 Np ²³⁷ Neptunium	lations c
			d-Bloc	VIIB (7)	$\underset{54.938}{\textbf{25}}$ Mn	43 Tc 98 Technetium	75 Re 186.21 Rhenium	107 Uns 264 Unnilseptium		60 Nd 144.24 Neodymium	92 U Uranium	
d or				VIB (6)	24 Cr 51.996 Chrominum	42 Mo 95.94 Molybdenum	74 W 183.84 Tungsten	106 Unh ²⁶⁶ Unnihexium		59 Pr 140.91 Praseodymium	91 Pa ^{231.04} Protactinium	IUPAC
Extended or	Metals	Non metals Metalloids		VB (5)	23 V 50.941 Vanadium	41 Nb 92.906 Niobium	73 Ta 180.95 Tantalum	104 105 106 Unq Unp Unh ²⁶¹ 262 266 Unniquadium Unnihexium	Ļ	58 Ce ^{140.12} Cerium	90 Th ^{232.04}	
Exte	Ŭ Ŭ	Ň N		IVB (4)	22 Ti 47.867 Titanium	40 Zr 91.224 Zirconium	72 Hf ^{178.49} Hafnium	104 Unq ²⁶¹ Unnilquadiun		ies	SS	
				(3) (3)	21 Sc 44.956 Scandium	39 Y 88.906 Yttrium	57 La [*] 138.91 Lanthanum	89 Ac ^{**} 227 Actinium		iide Ser	de Serie	
	s-Block Elements IA (1)	[] [] []	4 \mathbf{Be} $^{9.0122}$ Beryllium	$\underset{Mg}{12} Mg$	20 Ca 40.078 Calcium	38 Sr Strontium	56 Ba 137.33 Barium	88 Ra ²²⁶ ^{Radium}		*Lanthanide Series	**Actinide Series	
	IA IA IIA IIA	H H 1.0079 Hydrogen	3 Li 6.940 Lithium	11 Na ^{22.990} Sodium	19 K 39.098 Potassium	37 Rb 85.468 Rubidium	55 Cs ^{132.91} Cesium	87 Fr 223 Francium			*	
	Group	Period	2	က	4	2	9	7		9	7	

1

PERIODIC TABLE

1.0 INTRODUCTION :

The arrangement of all the known elements according to their properties in such a way that the elements with similar properties are grouped together in a tabular form is called periodic table.

DEVELOPMENT OF PERIODIC TABLE

(A) LAVOISIER CLASSIFICATION :

(i) Lavoisier classified the elements simply in metals and non metals.

Metals are the one which have the tendency of losing the electrons.

 $Na \rightarrow Na^{\scriptscriptstyle +} + e^{\scriptscriptstyle -}$ and $K \rightarrow K^{\scriptscriptstyle +} + e^{\scriptscriptstyle -}$

Non-metals are the one which have the tendency of gaining the electrons.

 $F + e^- \rightarrow F^-$ and $Cl + e^- \rightarrow Cl^-$

(ii) **Drawback or Limitation :**

- (a) As the number of elements increases, this classification became insufficient for the study of elements.
- (b) There are few elements which have the properties of both metals as well as non-metals and they are called metalloids. Lavoisier could not decide where to place the metalloids.

(B) PROUT'S HYPOTHESIS :

He simply assumed that all the elements are made up of hydrogen, so we can say that

Atomic weight of element = n × (Atomic weight of one hydrogen atom)

Atomic weight of H = 1

where n = number of hydrogen atom = 1, 2, 3,....

Drawback or Limitation :

- (i) Every element can not be formed by Hydrogen.
- (ii) Atomic weight of all elements were not found as the whole numbers.Ex. Chlorine (atomic weight 35.5) and Strontium (atomic weight 87.6)

(C) DOBEREINER TRIAD RULE [1817] :

- (i) He made groups of three elements having similar chemical properties called TRIAD.
- (ii) In Dobereiner triad, atomic weight of middle element is nearly equal to the average atomic weight of first and third element.

Where x=average atomic weight

(iii) Other examples – (K, Rb, Cs), (P, As, Sb), (S, Se, Te)

Drawback or Limitation : All the known elements could not be arranged as triads. It is not applicable for d and f-block elements.

2

(D) NEWLAND OCTAVE RULE [1865]

- (i) He arranged the elements in the increasing order of their atomic mass and observed that the properties of every 8th element was similar to the 1st element. (like in the case of musical vowels notation)
- (ii) At that time inert gases were not known.

(iii) The properties of Li are similar to 8^{th} element i.e. Na and Be are similar to Mg and so on.

Drawback or Limitation :

- (a) This rule is valid only upto Ca because after Ca due to presence of d-block element there is a difference of 18 elements instead of 8 elements.
- (b) After the discovery of Inert gas and including them in the periodic table, it has become the 8th element from Alkali metal so this law had to be dropped out.

(E) LOTHAR MEYER'S CURVE [1869] :

- (i) He plotted a curve between atomic weight and atomic volume of different elements.
- (ii) The following observation can be made from the curve
 - (a) Most electropositive elements i.e. alkali metals (Li, Na, K, Rb, Cs) occupy the peak positions on the curve.
 - (b) Less electropositive i.e. alkaline earth metal (Be, Mg, Ca, Sr, Ba) occupy the descending position on the curve.
 - (c) Metalloids (Si, Ge, As, Sb, Te, Po, At) and transition metals occupy bottom part of the curve.
 - (d) Most electronegative i.e. halogens (F, Cl, Br, I) occupy the ascending position on the curve.
 - **Note** : Elements having similar properties occupy similar position on the curve.

Conclusion : On the basis of this curve Lother Meyer proposed that the physical properties of the elements are periodic function of their atomic weight and this has become the base of Mendeleev's periodic table.

Periodic function : When the elements are arranged in the increasing order of their atomic weight, elements having similar properties gets repeated after a regular interval.

(F) MENDELEEV'S PERIODIC TABLE [1869] :

(i) **Mendeleev's periodic law :** The physical and chemical properties of elements are the periodic function of their atomic weight.

(ii) Characteristics of Mendeleev's periodic table :

- (a) It is based on atomic weight
- (b) 63 elements were known, noble gases were not discovered.
- (c) He was the first scientist to classify the elements in a systematic manner i.e. in horizontal rows and in vertical columns.
- (d) Horizontal rows are called periods and there were 7 periods in Mendeleev's Periodic table.
- (e) Vertical columns are called groups and there were 8 group in Mendeleev's Periodic table.
- (f) Each group up to VII is divided into A & B subgroups.'A' sub group element are called normal or representative elements and 'B' sub group elements are called transition elements.
- (g) The VIII group consisted of 9 elements in three rows (Transitional metals group).
- (h) The elements belonging to same group exhibit similar properties.

(iii) Merits or advantages of Mendeleev's periodic table :

- (a) **Study of elements :** First time all known elements were classified in groups according to their similar properties. So study of the properties of elements become easier .
- **(b) Prediction of new elements :** It gave encouragement to the discovery of new elements as some gaps were left in it.

Sc (Scandium) Ga (Gallium) Ge (Germanium) Tc (Technetium)

These were the elements for whom position and properties were well defined by Mendeleev even before their discoveries and he left the blank spaces for them in his table.

Ex. Blank space at atomic weight 72 in silicon group was called Eka silicon (means properties like silicon) and element discovered later was named Germanium .

Similarly other elements discovered after mendeleev's periodic table were.

Eka Aluminium – Ga	alium(Ga) Eka	Boron –	Scandium (Sc)
Eka Silicon – Ge	ermanium (Ge) Eka	Mangenese –	Technetium (Tc)

(c) Correction of doubtful atomic weights : Correction were done in atomic weight of some elements.

Atomic weight = Valency \times Equivalent weight.

Initially, it was found that equivalent weight of Be is 4.5 and it is trivalent (V = 3), so the weight of Be was 13.5 and there is no space in Mendeleev's table for this element. So, after correction, it was found that Be is actually bivalent (V = 2). So, the weight of Be became $2 \times 4.5 = 9$ and there was a space between Li and B for this element in Mendeleev's table.

Corrections were done in atomic weight of elements are – U, Be, In, Au, Pt.

- (iv) Demerits of Mendeleev's periodic table :
 - (a) **Position of hydrogen :** Hydrogen resembles both, the alkali metals (IA) and the halogens (VIIA) in properties so Mendeleev could not decide where to place it.
 - (b) **Position of isotopes :** As atomic wt. of isotopes differs, they should have placed in different position in Mendeleev's periodic table. But there were no such places for isotopes in Mendeleev's table.

- Anomalous pairs of elements : There were some pair of elements which did not follow the (c) increasing order of atomic weights.
- Ar and Co were placed before K and Ni respectively in the periodic table, but having higher Ex. atomic weights.

(Ar 39.9	К 39.1)	$\left(\right)$	Te 127.5	$\left. \begin{array}{c} I \\ 127 \end{array} \right)$
(Co 58.9	Ni 58.6	(Th 232	Pa 231

(d) Like elements were placed in different groups :

There were some elements like Platinum (Pt) and Gold (Au) which have similar properties but were placed in different groups in Mendeleev's table.

Au VIII ΙB

Pt

Unlike elements were placed in same group : (e)

Cu, Ag and Au placed in Ist group along with Na, K etc. While they differ in their properties (Only similar in having ns¹ electronic configuration)

- (f) It was not clear that 'lanthanides and Actinides' are related with IIIA group or IIIB group.
- (g) **Cause of periodicity :** Why physical & chemical properties repeated in a group.

		BEGINN	IER'S BOX-1	
1.	Mendeleev's periodic l	aw is based on -		
	(1) Atomic number	(2) Atomic weight	(3) Number of neutrons	(4) None of the above
2.	The first attempt to cla	assify elements systematica	ally was made by -	
	(1) Mendeleev	(2) Newland	(3) Lother Meyer	(4) Dobereiner
3.	Atomic weight of an el Y, as per dobereiner tr	,	element Z is 132. atomic weig	ght of their intermediate element
	(1) 88.5	(2) 93.0	(3) 171	(4) 85.5
4.	Which of the following	g is not a dobereiner triad		
	(1) Li, Na, K	(2) Mg, Ca, Sr	(3) Cl, Br, I	(4) S, Se, Te
				5

ALLEN

5.	The law of triads is appl	icable to		
	(1) C, N, O	(2) H, O, N	(3) Na, K, Rb	(4) Cl, Br, I
6.	The law of triads is not a	applicable on		
	(1) Cl, Br, I	(2) Na, K, Rb	(3) S, Se, Te	(4) Ca, Sr, Ba
7.	Which of the following s	et of elements obeys Newla	and's octave rule –	
	(1) Na, K, Rb	(2) F, Cl, Br	(3) Be, Mg, Ca	(4) B, Al, Ga
8.	For which of the pair N	lewland octave rule is not	applicable –	
	(1) Li, Na	(2) C, Si	(3) Mg, Ca	(4) Cl, Br
9.	Which of the following e	element was present in Mer	ndeleev's periodic table?	
	(1) Sc	(2) Tc	(3) Ge	(4) None of these
10.	Is Fe, Co, Ni are dober	einer triad ?		

1.1 MODERN PERIODIC TABLE (MODIFIED MENDELEEV PERIODIC TABLE) :

- (i) It was proposed by Moseley.
- (ii) Modern periodic table is based on atomic number.
- (iii) Moseley did an experiment in which he bombarded high speed electron on different metal surfaces and obtained X-rays.

He found out that $\sqrt{v} \propto Z$ where v = frequency of X-rays, Z = atomic number.

From this experiment, Moseley concluded that the physical and chemical properties of the elements are periodic function of their atomic number. It means that when the elements are arranged in the increasing order of their atomic number elements having similar properties gets repeated after a regular interval. This is also known as 'Modern Periodic Law'.

(iv) Modern periodic law : The physical & chemical properties of elements are the periodic function of their atomic number.

(v) Characteristics of modern periodic table :

- (a) 9 vertical columns called groups.
- (b) I to VIII group + 0 group of inert gases.
- (c) Inert gases were introduced in periodic table by Ramsay.
- (d) 7 horizontal rows called periods.

LONG FORM / PRESENT FORM OF MODERN PERIODIC TABLE :

(It is also called as 'Bohr, Bury, Rang & Werner Periodic Table)

- (i) It is based on the Bohr-Bury electronic configuration concept and atomic number.
- (ii) This model is proposed by Rang & Werner
- (iii) 7 periods and 18 groups
- (iv) According to I. U. P. A. C. 18 vertical columns are named as 1^{st} to 18^{th} group.

ALLEN

(v) The co-relation between the groups in long form of periodic table and in modern form of periodic table are given below –

IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIII	IB	IIB	IIIA	IVA	VA	VIA	VIIA	0
1	2	3	4	5	6	7	8910	11	12	13	14	15	16	17	18

(vi) Elements belonging to same group have same number of electrons in the outermost shell so their properties are similar.

Period	n	Period Sub shell	No. of elements	Element	Name of Period
1.	1	1s	2	$_{1}H{2}He$	Shortest
2.	2	2s, 2p	8	₃ Li – ₁₀ Ne	Short
3.	3	3s, 3p	8	₁₁ Na - ₁₈ Ar	Short
4.	4	4s, 3d, 4p	18	₁₉ K – ₃₆ Kr	Long
5.	5	5s, 4d, 5p	18	₃₇ Rb – ₅₄ Xe	Long
6.	6	6s, 4f, 5d, 6p	32	₅₅ Cs - ₈₆ Rn	Longest
7.	7	7s, 5f, 6d, 7p	32	₈₇ Fr – ₁₁₈ Uuo	Complete

Description of periods

CONCLUSION

1. Period number = outermost shell

2. Number of element in a period = Number of electrons in a period subshell

DESCRIPTION OF GROUPS :

1 st /IA/Alkali metals	2 nd /IIA/Alkaline earth metals
$H = 1s^1$	$Be = 1s^2, 2s^2$
$Li = 1s^2 , 2s^1$	$Mg = 1s^2, 2s^2 2p^6, 3s^2$
$Na = 1s^2 , 2s^2 2p^6 , 3s^1$	$Ca = 1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^2$
$K = 1s^2$, $2s^2 2p^6$, $3s^2 3p^6$, $4s^1$	General electronic configuration = ns ²
General electronic configuration = ns ¹	(n = Number of shell)
Number of valence shell $e^- = 1$	Number of valence shell $e^- = 2$
13 th /IIIA/Boron Family	14 th /IVA/Carbon Family
$B = 1s^2, 2s^2 2p^1$	$C = 1s^2, 2s^2 2p^2$
$Al = 1s^2, 2s^2 2p^6, 3s^2 3p^1$	$Si = 1s^2, 2s^2 2p^6, 3s^2 3p^2$
$Ga = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^1$	$Ge = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^2$
General electronic configuration = $ns^2 np^1$	General electronic configuration = $ns^2 np^2$
Number of valence shell e ⁻ = 3	Number of valence e ⁻ = 4
15 th /VA/Nitrogen family/Pnicogen	16 th /VIA/Oxygen family/Chalcogen
(Used in fertilizer as urea)	(Ore forming)
$N = 1s^2, 2s^2 2p^3$	$O = 1s^2, 2s^2 2p^4$
$P = 1s^2, 2s^2 2p^6, 3s^2 3p^3$	$S = 1s^2, 2s^2 2p^6, 3s^2 3p^4$
As = $1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d^{10}$, $4s^2 4p^3$	Se = $1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d^{10}$, $4s^2 4p^4$
General electronic configuration = $ns^2 np^3$	General electronic configuration = ns ² np ⁴
Number of valence shell e ⁻ = 5	Number of valence shell e⁻ = 6

ALLEN

(except He)

17 th /VIIA/Fluorine family/Halogens	18 th /Zero group/Inert gases / Noble gases
(Salt forming)	(Less reactive)
$F = 1s^2, 2s^2 2p^5$	Ne = $1s^2$, $2s^2 2p^6$
$Cl = 1s^2, 2s^2 2p^6, 3s^2 3p^5$	$Kr = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^6$
$Br = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^5$	General electronic configuration = $ns^2 np^6$ (e.
General electronic configuration = ns ² np ⁵	Number of valence shell $e^- = 8$
Number of valence shell $e^- = 7$	

(vii) NOMENCLATURE OF ELEMENTS :

IUPAC gave names to elements above atomic number 100 as follows -(a)

0	1	2	3	4	5	6	7	8	9
nil	un	bi	tri	quad	pent	hex	sept	oct	enn

(b) In all the elements suffix is – ium.

Ex.	Atomic No.	IUPAC Name	Symbol	Elemental Name	Symbol
	101	Un nil unium	Unu	Mendelevium	Md
	102	Un nil bium	Unb	Nobelium	No
	103	Un nil trium	Unt	Lawrencium	Lr
	104	Un nil quadium	Unq	Rutherfordium	Rf
	105	Un nil pentium	Unp	Dubnium	Db
	106	Un nil hexium	Unh	Seaborgium	Sg
	107	Un nil septium	Uns	Bohrium	Bh
	108	Un nil octium	Uno	Hassium	Hs
	109	Un nil ennium	Une	Meitnerium	Mt
	110	Un un nilium	Uun	Darmstadtium	Ds

(viii) Identification of group, period and block :

(A) When atomic number is given :

 $71 \geq Z \geq 58 \Longrightarrow Lanthanoids (6^{\rm th} \mbox{ Period})$ – Step I : f-block $103 \geq Z \geq 90 \Longrightarrow$ Actinoids (7th Period)

Group number = IIIB (largest group of periodic table)

Step II : Z = 104 to 118 (Period number = 7)

Group number = last two digits in atomic number of element

Example : Z = 104

Group no. = 4

Step III : Group number = 18 + given atomic number – atomic number of next noble gas If the value of this formula is negative then use 32 instead of 18 in formula.

ALLEN

(B) When electronic configuration is given

Period number (n) = number of outermost shell/Highest shell number.

Block identification :

- If np electron present then p block (ns² np¹⁻⁶)
 - **group number** = 12 + np electrons
- If np electron absent then s/f/d block If $(n-2)f^0(n-1)d^0 ns^{1-2} = s$ block

group number = ns electrons

If $(n-2)f^{1-14}(n-1)d^{0-1}ns^2 = f block$

group number = IIIB

- If any other configuration or $(n-1)d^{1-10} ns^{0-2}$ (d-block)
 - **group number** = (n-1)d electron + ns electron

Bohr's Classification

Inert gases	Normal or representative elements	Transition element	Inner transition element
outermost shell	outermost shell incomplete	n & n-1 shells	n, (n–1), (n–2)
complete		incomplete	shells incomplete
		either in atomic or	
		ionic form	
6 element	s & p block element	all d block element	f-block elements
	except inert gas	except =	28 elements
	38 element	IIB (Zn, Cd, Hg & Uub)	
		36 element	

SOME IMPORTANT POINTS :

(a) 2nd period elements (Li, Be, B) Shows diagonal relationship with 3rd period elements (Mg, Al, Si).
 Because of same ionic potential value they shows similarity in properties.

(Ionic potential (ϕ) = $\frac{\text{Charge on cation}}{\text{Radius of cation}}$)

Li Be B Na Mg Al Si

(b) 3rd period elements (Na, Mg, Al, Si, P, S, Cl) except inert gases are called **typical elements** because they represent the properties of other element of their respective group.

(c) TRANSURANIC ELEMENTS :

Elements having atomic number more than 92 are known as transuranic element. All transuranic elements are radioactive & artificial.

First man made element is Tc

First man made lanthanoid is Pm

All actinoids are radioactive but all lanthanoids are not artificial / man made (except Pm)

- (d) The group containing most electro positive elements GROUP IA.
- (e) The group containing most electro negative elements GROUP VIIA
- (f) The group containing maximum number of gaseous elements–GROUP ZERO(18th)

Pre-	Medical : Chemistry
	(g) The group in which elements have generally ZERO valency – GROUP ZERO(18 th)
	 (h) In the periodic table Number of Gaseous elements -11 (H, N, O, F, Cl + Noble gases) Number of Liquid elements -6 (Cs, Fr, Ga, Hg, Br, Uub) Number of Liquid elements at room temp2 Bromine is the only non-metal which exists in liquid form. Number of Solid elements - 95 (if discovered elements are 112) (i) 0/18 group have all the elements in gaseous form. (j) 2nd period contains maximum number of gaseous elements. They are 4 (N, O, F, Ne) (k) IIIB/3rd group is called longest group having 32 elements including 14 Lanthanides and 14 Actinides Sc Y LaLanthanides (14)
	AcActinides (14) BEGINNER'S BOX-2
1.	Which of the following is best general electronic configuration of normal element(1) $ns^{1-2} np^{0-6}$ (2) $ns^{1-2} np^{1-5}$ (3) $ns^{1-2} np^{0-5}$ (4) $ns^{1-2} np^{1-6}$
2 .	Which of the following set of atomic numbers represents representative element (1) 5, 13, 30, 53 (2) 11, 33, 58, 84 (3) 5, 17, 31, 54 (4) 9, 31, 53, 83
3.	Which of the following electronic configuration does not belongs to same block as others :- (1) [Xe] $4f^{14} 5d^{10} 6s^2$ (2) [Kr] $4d^{10} 5s^2$ (3) [Kr] $5s^2$ (4) [Ar] $3d^6 4s^2$
4.	The electronic configuration of an element is $1s^22s^22p^63s^23p^63d^{10}4s^1$. What is the atomic number of nex element of the same group which is recently discovered :- (1) 20 (2) 119 (3) 111 (4) None
5.	Which of the following electronic configurations in the outermost shell is characteristic of alkali metals (1) (n-1) $s^2p^6 ns^2p^1$ (2) (n-1) $s^2p^6d^{10} ns^1$ (3) (n-1) $s^2p^6 ns^1$ (4) $ns^2np^6 (n-1)d^{10}$
6.	Which of the following elements belong to alkali metals ?(1) $1s^2$, $2s^2 2p^2$ (2) $1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d^{10}$, $4s^2 4p^6$, $5s^1$ (3) $1s^2$, $2s^2 2p^5$ (4) None of these
7.	Elements whose atoms have three outermost shells incomplete are called – (1) s-block (2) p-block (3) d-block (4) f-block
8.	 Which of the following statement is wrong :- (1) All the actinides are synthetic (man made) elements (2) In the Lanthanides last electron enters in 4f orbitals (3) Np₉₃ onwards are transuranic elements (4) Lanthanum is d-block element
9.	 Which of the following statement is wrong :- (1) Total no. of liquid elements in the periodic tableSix (2) First metal element in the periodic table isLi (3) All type of elements are present in 6th period (4) Iodine is a gaseous element.
10.	An element which is recently discovered is placed in 7 th period and 10 th group. IUPAC name of the element with the second se

Z: WODE02/B04+B0/TARGET/CHEM/BNG/WODULE2/1-PERIODIC TABLE/01 THEORY P65

1.2 PERIODICITY

(A) In a period, the ultimate orbit remain same, but the number of e⁻ gradually increases.

In a group, the number of e^- in the ultimate orbit remains same, but the values of n increases.

(B) Causes of periodicity :

- The cause of periodicity in properties is due to the same outermost shell electronic configuration (a) coming at regular intervals.
- (b) In the periodic table, elements with similar properties occur at intervals of 2, 8, 8, 18, 18 and 32. These numbers are called as magic numbers.

SCREENING EFFECT (σ) AND EFFECTIVE NUCLEAR CHARGE (Z_{off}) :

- Valence shell e- suffer force of attraction due to nucleus and force of repulsion due to inner shell electrons.
- The decrease in force of attraction on valence e^- due to inner shell e^- is called screening effect or shielding (ii) effect.(i.e. total repulsive force is called shielding effect.)
- (iii) Due to screening effect valence shell e⁻ experiences less force of attraction exerted by nucleus.

i.e. total attraction force experieced by valence electrons represented by a number is Z_{attr}

- (iv) There is a reduction in nuclear charge due to screening effect. Reduced nuclear charge is called effective nuclear charge.
- (v) If nuclear charge = Z, effective nuclear charge = Z_{eff} , σ (Sigma)= Screening constant or shielding constant.

So, $Z_{eff} = (Z - \sigma)$

Slater's rule to know screening constant (σ)

- (a) For single electron species $\sigma = 0$
- (b) Screening effect (S.E.) for two e^{-} species 0.30
 - **Ex.** In He (1s²)

Screening effect of one 1s e⁻. where $\sigma = 0.30$

- :. Zeff = $Z \sigma = 2 0.30 = 1.7$
- (c) Screening effect of each ns and np (Outermost orbit) electrons is 0.35
- (d) Screening effect of each (n 1) penultimate orbit s, p, d electrons is 0.85
- (e) Screening effect of each (n 2) and below all the e^- present in s, p, d, f is 1.0

From top to bottom in a group Z_{eff} remain constant

Group	Element Z _{eff}	Li 1.30	Na 2.20	К 2.20	Rb 2.20	Cs 2.20	Fr 2.20
Period	Element	Be	B	C	N	O	F
	Z _{eff}	1.95	2.6	3.25	3.90	4.55	5.20

For same shell shielding effect has the order as s > p > d > f (due to penetration effect) Z_{eff} for different ions of an element

 $Z_{eff} \propto \frac{\text{positive charge}}{1 + 1 + 1}$ (i) Z_{eff} for different ions of an element negative charge (ii) Z_{eff} for isoelectronic species.

(i) Z_{eff} for different ions of an element

```
Ex. N^+ > N > N^- = Z_{eff}
```

```
(ii) Z<sub>eff</sub> of isoelectronic species
```

Ex. $H^- < Li^+ < Be^{+2} < B^{+3}$ (2e⁻ species) $N^{-3} < O^{-2} < F^{-} < Na^{+} < Mg^{+2}$ (10e⁻ species)

1.3 ATOMIC RADIUS

The average distance of valence shell e^- from nucleus is called atomic radius. It is very difficult to measure the atomic radius because –

- (i) The isolation of single atom is very difficult.
- (ii) There is no well defined boundary for the atom. (The probability of finding the e^- is 0 only at infinity). So, the more accurate definition of atomic radius is –
- Half the inter-nuclear distance(d) between two atoms in a homoatomic molecule is known as atomic radius.
- This inter-nuclear distance is also known as bond length. Inter-nuclear distance depends upon the type of bond by which two atoms combine.

Based on the chemical bonds, atomic radius is divided into four categories -

(A) Covalent radius (B) Ionic radius (C) Metallic radius (D) van der Waal's radius

(A) Covalent Radius

(SBCR - Single Bonded Covalent Radius)

- (a) Covalent bonds are formed by overlapping of atomic orbitals.
- (b) Internuclear distance is minimum in this case.
- (c) Covalent radius is the half of the internuclear distance between two singly bonded homo atoms.

Ex. If internuclear distance of $A-A(A_2)$ molecule is (d_{A-A}) and covalent radius is r_A then

$$d_{A-A} = r_A + r_A \qquad \text{or} \qquad 2r_A$$
$$r_A = \frac{d_{A-A}}{2}$$

Ex. In Cl₂ molecule, internuclear distance is $1.98A^0$ so $r_d = \frac{1.98}{2} = 0.99$ Å

(B) Ionic Radius

(i) Cationic Radius

- (a) When an neutral atom loses e^- it converts into cation (+ve charged ion)
- (b) Cationic radius is always smaller than atomic radius **because** after loosing e⁻ number of e⁻ reduces, but number of protons remains same, due to this Z_{eff} increases, hence electrons are pulled towards nucleus and atomic radius decreases, moreover after loosing all the electrons from the outer most shell, penultimate shell becomes ultimate shell which is nearer to nucleus so size decreases.

(c) Size of cation
$$\propto \frac{1}{\text{Magnitude of the charge or } Z_{eff}}$$

Ex. (i) $Fe > Fe^{+2} > Fe^{+3}$

(ii) $Pb^{+2} > Pb^{+4}$

(iii) $Mn > Mn^{+2} > Mn^{+3} > Mn^{+4} > Mn^{+5} > Mn^{+6} > Mn^{+7}$

(ii) Anionic Radius

- (a) When a neutral atom gains e^- it converts into anion [Negative charge ion]
- (b) Anionic radius is always greater than atomic radius **because** in an anion e⁻ are more than protons and inter electronic repulsion increases, which also increases screening effect. So effective nuclear charge reduces, so distance between e⁻ and nucleus increases and size of anion also increases.
 Ex. Flourine (7=9)

LX.	Γ iourne ($Z=9$)		
	F	F⁻	
Proton	9	9	
e-	9	10	
SO	$\frac{Z}{e} = \frac{9}{9} = 1$	$\frac{9}{10} = 0.9$	As Zeff of F^- is less than F so size of $F^- > F$

(c) Size of isoelectronic species :

- Those species having same number of e⁻ but different nuclear charge forms isoelectronic series.
- For isoelectronic species the atomic radius increases with decrease in effective nuclear charge

Species	К	⁺ Ca	a ⁺² §) -2	Cl-
Z	19	20	16	17	
е	18	18	18	18	
<u>Z</u>	<u>19</u>	20	<u>16</u>	17	
е	18	18	18	18	
Order of radiu	s : $(S^{-2} > C)$	$1^- > K^+ > Ca^{+2}$), (N ³⁻ > O	²⁻ > F ⁻ > Na ⁺	$M > Mg^{+2} > Al^{+3}$)

(C) Metallic/Crystal Radius

(a) Half of the inter nuclear distance between two adjacent metallic atoms in crystalline lattice structure.

10 e-

- (b) there is no overlapping of atomic orbitals, So Metallic radius > Covalent radius
- (c) Metallic radius $\propto \frac{1}{\text{Metallic bond strength}}$

18 e⁻

(D) Vander Waal's Radius

- (a) Those atoms (like noble gases) which are not bonded with each other, experiences a weak attractive force to come nearer.
- (b) Half of the distance between the nuclei of adjacently placed atoms in solid state of a noble gas is Vander Waal's radius.
- (c) Inert gas have only Vander Waal radius.
- (d) In molecules of nonmetals solid both covalent and van der Waal's radius exists.

Vander Waal's radius > Metallic radius > Covalent radius

• Factors affecting atomic size are :

 $\label{eq:Atomic radius $$x$} \begin{array}{c} \propto \frac{1}{Z_{\rm eff}} \propto \frac{negative \ charge}{positive \ charge} \end{array}$

Li>Be>B>C>N>O>F

(b) In a group

Atomic radius \propto number of shells

Li < Na < K < Rb < Cs

Periodic variation of atomic size :

- (i) Across a period : It decreases from left to right in a period as effective nuclear charge (Z_{eff})increases Ex. Li > Be > B > C > N > O > F
- (ii) In a group : It increases from top to bottom in a group as number of shell increases

Ex. Li < Na < K < Rb < Cs

Exceptions : Transition elements

Sc Ti V Cr Mn	Fe	Co	Ni	Cu Zn
$Z_{eff} > Screening effect$	$Z_{eff} \approx S$	creening	geffect	Z _{eff} < Screening effect

Order of covalent radius : $Sc > Ti > V > Cr > Mn > Fe \approx Co \approx Ni < Cu < Zn$

• Lanthanide Contraction :

(a) Outermost electronic configuration of inner transition elements is

- $(n 2) f^{1-14}, (n-1)s^2p^6d^{0-1}, ns^2 (n = 6 \text{ or } 7)$
- (b) e^{-} enters in (n 2) f orbitals
- (c) Because of complicated structure of f-orbital and due to poor shielding f electrons, the outermost shell electrons get attracted towards nucleus.
- (d) In Ist, 2^{nd} and 3^{rd} transition series, Radii– $3d < 4d \approx 5d$ (except IIIrd B)

	IIIB	IVB	
size	Sc	Ti↓	size increases
increases	Y	Zr	Almost equal due to lanthanide contraction
	La	Hf }	Aimosi equal que lo lammanide contraction

• Transition contraction :

Note : While atomic size should increase down the group.

At. size of $Ga \approx At$. size of Al, due to transition contraction. (Due to poor shielding of d electrons)

s-block size variation

		BEGINN	ER'S BOX-3	
1.	From the given set of s	pecies, point out the specie	es from each set having lea	ast atomic radius:-
	(1) O ⁻² , F ⁻ , Na ⁺ Correct answer is :-	(2) Ni, Cu, Zn	(3) Li, Be, Mg	(4) He, Li+, H-
	(1) O ⁻² , Cu, Li, H ⁻	(2) Na+, Ni, Be, Li+	(3) F [–] , Zn, Mg, He	(4) Na ⁺ , Cu, Be, He
2 .	Which has the lowest an			
	(1) LiF	(2) NaF	(3) CsI	(4) CsF
3.	Arrange the elements i	n increasing order of atom	ic radius Na, Rb, K, Mg :-	-
	(1) Na, K, Mg, Rb	(2) K, Na, Mg, Rb	(3) Mg, Na, K, Rb	(4) Rb, K, Mg, Na
4.	Which of the following	g pairs of elements have a	almost similar atomic radi	ii :-
	(1) Zr, Hf	(2) Mo, W	(3) Co, Ni	(4) All
5.	If the ionic radii of K^\oplus are :-	and F [©] are nearly the sam	e (i.e. 1.34 Å) then the at	tomic radii of K and F respectiv
	(1) 1.34 Å, 1.34 Å	(2) 0.72 Å, 1.96 Å	(3) 1.96 Å, 0.72 Å	Å (4) 1.96 Å, 1.34 Å
	100 nm. using same ap	paratus. Their teacher expla	ained that measurements w	vere correct by saying that recor
	values by three studen (1) Crystal, van der W			
	(1) Crystal, van der W	aal and Covalent radii		
	(1) Crystal, van der W(2) Covalent, crystal at	'aal and Covalent radii nd van der Waal radii		
	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionid 	'aal and Covalent radii nd van der Waal radii		
	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionit (4) None is correct. 	'aal and Covalent radii nd van der Waal radii c and covalent radii		
7.	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionit (4) None is correct. Screening effect is not 	'aal and Covalent radii nd van der Waal radii c and covalent radii : observed in :-		(4) All of these
7.	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionit (4) None is correct. 	'aal and Covalent radii nd van der Waal radii c and covalent radii	(3) H	(4) All of these
7. 8.	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at 	Yaal and Covalent radii nd van der Waal radii c and covalent radii c observed in :- (2) Li ⁺² omic and ionic radii :		
	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at (a) Ni , Cu , Zn 	Yaal and Covalent radii nd van der Waal radii c and covalent radii t observed in :- (2) Li ⁺² omic and ionic radii : (b) H ⁺ , H , H ⁻	(c) Ti, Zr, Hf	(d) Be , Li , Na
	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at (a) Ni , Cu , Zn (e) Cr , V , Ti , Sc 	Yaal and Covalent radii nd van der Waal radii c and covalent radii c observed in :- (2) Li ⁺² omic and ionic radii : (b) H ⁺ , H , H ⁻ (f) I ⁺ , I , I ⁻	(c) Ti , Zr , Hf (g) Sc , Y , La , Ac	(d) Be , Li , Na
	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at (a) Ni , Cu , Zn (e) Cr , V , Ti , Sc 	Yaal and Covalent radii nd van der Waal radii c and covalent radii t observed in :- (2) Li ⁺² omic and ionic radii : (b) H ⁺ , H , H ⁻	(c) Ti , Zr , Hf (g) Sc , Y , La , Ac	(d) Be , Li , Na
	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at (a) Ni , Cu , Zn (e) Cr , V , Ti , Sc 	Yaal and Covalent radii Ind van der Waal radii It observed in :- (2) Li^{+2} Somic and ionic radii : (b) H^+ , H , H^- (f) I^+ , I , I^- (j) B, Be, Al, Mg	(c) Ti , Zr , Hf (g) Sc , Y , La , Ac	(d) Be , Li , Na
8.	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at (a) Ni , Cu , Zn (e) Cr , V , Ti , Sc (i) Cu , Ag , Au 	Yaal and Covalent radii Ind van der Waal radii It and covalent radii It observed in :- (2) Li^{+2} Somic and ionic radii : (b) H^+ , H , H^- (f) I^+ , I , I^- (g) B, Be, Al, Mg e:-	(c) Ti , Zr , Hf (g) Sc , Y , La , Ac	(d) Be , Li , Na (h) Cl , Na , Rb
8.	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at (a) Ni , Cu , Zn (e) Cr , V , Ti , Sc (i) Cu , Ag , Au Which statement is false 	Vaal and Covalent radii ind van der Waal radii ic and covalent radii it observed in :- (2) Li^{+2} omic and ionic radii : (b) H^+ , H , H^- (f) I^+ , I , I^- (j) B , Be , Al , Mg e:- reases down the group	(c) Ti , Zr , Hf (g) Sc , Y , La , Ac (k) F , O , Cl , S	(d) Be , Li , Na (h) Cl , Na , Rb
8.	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at (a) Ni , Cu , Zn (e) Cr , V , Ti , Sc (i) Cu , Ag , Au Which statement is fals (1) Screening effect inc. 	Vaal and Covalent radii ind van der Waal radii ic and covalent radii ic observed in :- (2) Li^{+2} omic and ionic radii : (b) H ⁺ , H, H ⁻ (f) I ⁺ , I, I ⁻ (j) B, Be, Al, Mg e:- reases down the group period	(c) Ti , Zr , Hf (g) Sc , Y , La , Ac (k) F , O , Cl , S (2) Zeff increases down	(d) Be , Li , Na (h) Cl , Na , Rb
8. 9.	 (1) Crystal, van der W (2) Covalent, crystal at (3) van der Waal, ionie (4) None is correct. Screening effect is not (1) He⁺ Arrange in orders of at (a) Ni , Cu , Zn (e) Cr , V , Ti , Sc (i) Cu , Ag , Au Which statement is fals (1) Screening effect ince (3) Zeff. increases in a page 	Yaal and Covalent radii Ind van der Waal radii It observed in :- (2) Li^{+2} omic and ionic radii : (b) H^+ , H , H^- (f) I^+ , I , I^- (g) B, Be, Al, Mg e:- reases down the group period It d- electrons is :-	(c) Ti , Zr , Hf (g) Sc , Y , La , Ac (k) F , O , Cl , S (2) Zeff increases down	(d) Be , Li , Na (h) Cl , Na , Rb

1.4 IONISATION POTENTIAL OR IONISATION ENERGY OR IONISATION ENTHALPY (IP / IE)

- (i) Minimum energy required to remove most loosely bonded outer most shell e⁻ in ground state from an isolated gaseous atom is known as ionization energy.
 (Isolated → Without any bonding with other atom)
- (ii) Successive Ionization Energy
- (a) For an atom $M_{(a)}$ successive ionization energies are as follows -

- (b) Electron can not be removed from solid state of an atom, it has to be convert into gaseous form, Energy required for conversion from solid state to gaseous state is called Sublimation energy.
- (c) For any neutral atom ionization energy is always an endothermic process ($\Delta H = +ve$)
- (d) It is measured in eV/atom (electron volt/atom) or Kcal/mole or KJ/mole

FACTORS AFFECTING IONISATION ENERGY

In a period

(i) Effective nuclear charge (Z_{eff})

Ionisation Energy $\propto Z_{eff} \propto \frac{\text{positive charge}}{\text{negative charge}}$

Ion with high positive oxidation state will have high ionisation energy.

Ex. $Fe^{+3} > Fe^{+2} > Fe$

(ii) Stability of half filled and fully filled orbitals :

Half filled p^3 , d^5 , f^7 or fully filled p^6 , d^{10} , f^{14} are more stable than others so it requires more energy.

IE₁ N >

 $1s^2,\ 2s^2\,2p^3 \qquad \qquad 1s^2,\ 2s^2\,2p^4$

After loosing one e⁻, O attains electronic configuration of N, so IInd ionisation energy of O is more than N.

 $\mathbf{IE_2} \quad N < O \\ 1s^2, 2s^22p^2 \qquad 1s^2, 2s^22p^3$

(iii) Penetration power of sub shells

- (a) Order of attraction of subshells towards nucleus (Penetration power) is s > p > d > f
- (b) 's' subshell is more closer to nucleus so more energy will be required to remove e^- from s-subshell as comparison to p,d & f subshells.

Ex. Be B

 $1s^2, 2s^2$ $1s^2, 2s^2 2p^1$

 IE_1 Be > B

After loosing one e^- , B attains electronic configuration of Be, so II^{nd} ionisation energy of B is more than Be.

IE₂ Be < B

 $1s^2, 2s^1$ $1s^2, 2s^2$

In a group

Atomic size : IE $\propto \frac{1}{\text{atomic size}}$

COMPARISON OF IONISATION ENERGY

- **In a period :** Z_{eff} increases so removal of electron becomes difficult and ionisation energy increases. (i) Order of IE of 2nd period elements Li < B < Be < C < O < N < F < Ne
 - In a group : Size increase so ionisation energy decrease.

Li Na Κ Rb Cs

Size increases, Ionisation Energy decreases

Exception:

(ii)

- Ionisation Energy Ga > Al (due to Transition contraction)
- Ionisation Energy of 5d > 4d(due to lanthanide contraction) **Ex.** Hf > Zr

Application of ionisation energy :

(A) Metallic and non metallic character :

Generally for metals Ionisation Energy is low. For Non-metals Ionisation Energy is high.

Metallic character $\propto \frac{1}{IE}$

(B) Reactivity of metals :

Reactivity of metals $\propto \frac{1}{IE}$

Reactivity of metals increases down the group as ionisation energy decreases.

(C) Stability of oxidation states of an element :

(a) If the difference between two successive ionisation energy of an element $\geq 16 \text{eV}$, then its lower oxidation state is stable.

Ex.
$$Na_{(g)} \longrightarrow Na_{(g)}^{+}$$

 $Na_{(g)}^{+} \longrightarrow Na_{(g)}^{2+}$ $\Delta IE = 42.7eV$

Difference between ionisation energy > 16 eV. So Na⁺ is more stable.

(b) If the difference between two successive ionisation energy of an element ≤ 11 eV, then its higher oxidation state is stable.

Ex.
$$Mg_{(g)} \longrightarrow Mg_{(g)}^{+}$$

 $Mg_{(g)}^{+} \longrightarrow Mg_{(g)}^{2+}$ $\Delta IE = 7.4 eV$

Difference of ionisation energy < 11 eV. So Mg⁺² is more stable.

Ex.
$$Al_{(g)} \longrightarrow Al_{(g)}^{+}$$

 $Al_{(g)}^{+} \longrightarrow Al_{(g)}^{2+}$ $\Delta IE = 12.8 \text{eV}$. So Al^{+} is more stable

$$\begin{array}{c} Al^{+}_{(g)} \longrightarrow Al^{2+}_{(g)} \\ Al^{2+}_{(g)} \longrightarrow Al^{3+}_{(g)} \end{array} \end{array} \right] \Delta IE = 6.0 \ eV \cdot \text{So } Al^{+3} \text{ is more stable}$$

Overall order of stability is $Al^{+3} > Al^+ > Al^{+2}$

(D) To determine the number of valence electron of an element :

Number of valence electrons = number of lower values of IP before 1st highest jump.

		BEGINNEI	R'S BOX-4	
1.	IP_1 and IP_2 of Mg are	178 and 348 K. cal mol ⁻¹ . The	e enthalpy required for the r	reaction Mg \rightarrow Mg ²⁺ + 2e ⁻ is :
	(1) + 170 K.cal	(2) + 526 K.cal	(3) - 170 K.cal	(4) - 526 K.cal
2 .	The IP_1 , IP_2 , IP_3 , IP_4 a likely to be:-	and IP_5 of an element are 7.1,	14.3, 34.5, 46.8, 162.2 eV	V respectively. The element i
	(1) Na	(2) Si	(3) F	(4) Ca
3 .	Which of the following (1) Mg	g element has 2 nd IP < 1 st IP (2) Ne	(3) C	(4) None
4.	In which of the follo (1) $X_{(g)} \rightarrow X^{+}_{(g)} + e$ (3) $X_{(s)} \rightarrow X^{+}_{(g)} + e$	wing the energy change corr	esponds to first ionisation (2) $X_{2(g)} \rightarrow X^{+}_{(g)} + e$ (4) $X_{(aq)} \rightarrow X^{+}_{(aq)} + e$	potential only :-
5.	In the given process	which oxidation state is mor	e stable.	
		$M_{(g)} \longrightarrow M_{(g)}^+ \qquad IE_1$	= 7.9 eV	
		$M_{(g)}^+ \longrightarrow M_{(g)}^{+2} IE_2 =$	= 15.5 eV	
	(1) M ⁺	(2) M ⁺²	(3) Both	(4) None
6.	(A) $1s^2 2s^1$	guration of some neutral atom (B) 1s ² 2s ² 2p ³ ectronic configuration would y	(C) $1s^2 2s^2 2p^5$ you expect to have highest	(D) 1s² 2s² 2p ⁶ 3s¹ t :-
		(i) IE_1	(ii) IE_2	
	(1) C, A	(i) IE ₁ (2) B, A	(ii) IE ₂ (3) C, B	(4) B, D
7.		1	(3) C, B	
7.		(2) B, A	(3) C, B	
7.	The correct order of	(2) B, A	(3) C, B energy of Li, Be, Ne, C, I	
	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li	(2) B, A	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be 	
	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li	(2) B, A decreasing second ionization	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be 	
8.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti	(2) B, A decreasing second ionization ving element has highest value (2) Zr	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be of ionisation energy- 	В
8.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti	(2) B, A decreasing second ionization ring element has highest value (2) Zr rder of ionisation energy :	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be of ionisation energy- 	B (4) None of these
8.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti What is the correct or	(2) B, A decreasing second ionization ving element has highest value (2) Zr rder of ionisation energy :	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be of ionisation energy– (3) Hf 	B (4) None of these
8. 9.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti What is the correct of (1) K < Cu < Cu ⁺ < K (3) Cu ⁺ < K < Cu < K	(2) B, A decreasing second ionization ving element has highest value (2) Zr rder of ionisation energy :	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be of ionisation energy– (3) Hf (2) K < Cu⁺ < Cu < K⁺ 	B (4) None of these
8. 9.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti What is the correct or (1) K < Cu < Cu ⁺ < F	(2) B, A decreasing second ionization ving element has highest value (2) Zr rder of ionisation energy :	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be of ionisation energy– (3) Hf (2) K < Cu⁺ < Cu < K⁺ 	B (4) None of these
8. 9.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti What is the correct or (1) K < Cu < Cu ⁺ < K (3) Cu ⁺ < K < Cu < K Match the column. Column-I	(2) B, A decreasing second ionization ving element has highest value (2) Zr rder of ionisation energy :	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be of ionisation energy- (3) Hf (2) K < Cu⁺ < Cu < K⁺ (4) K⁺ < Cu⁺ < Cu < K 	B (4) None of these
8. 9.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti What is the correct or (1) K < Cu < Cu ⁺ < K (3) Cu ⁺ < K < Cu < K Match the column. Column-I	(2) B, A decreasing second ionization ving element has highest value (2) Zr rder of ionisation energy :	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be of ionisation energy– (3) Hf (2) K < Cu⁺ < Cu < K⁺ (4) K⁺ < Cu⁺ < Cu < K 	B (4) None of these
7. 8. 9.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti What is the correct on (1) K < Cu < Cu ⁺ < K (3) Cu ⁺ < K < Cu < K Match the column. Column-I Valence el	(2) B, A decreasing second ionization ving element has highest value (2) Zr rder of ionisation energy :	(3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be of ionisation energy– (3) Hf (2) K < Cu ⁺ < Cu < K ⁺ (4) K ⁺ < Cu ⁺ < Cu < K Column-II Successive ionisation	B (4) None of these ation energies , 270
8. 9.	The correct order of (1) Ne>B>Li>C>Be (3) Ne>C>B>Be>Li In which of the follow (1) Ti What is the correct on (1) K < Cu < Cu ⁺ < K (3) Cu ⁺ < K < Cu < K Match the column. Column-I Valence el (a) ns^1	(2) B, A decreasing second ionization ving element has highest value (2) Zr rder of ionisation energy :	 (3) C, B energy of Li, Be, Ne, C, I (2) Li>Ne>C>B>Be (4) Li>Ne>B>C>Be (4) Li>Ne>B>C>Be of ionisation energy- (3) Hf (2) K < Cu⁺ < Cu < K⁺ (4) K⁺ < Cu⁺ < Cu < K Column-II Successive ionisation (p) 19, 27, 36, 48 	B (4) None of these ation energies , 270 0

ALLEN

1.5 ELECTRON AFFINITY/ELECTRON GAIN ENTHALPY (EA/ ΔH_{ee})

(1) The amount of energy released when an electron is added to the valence shell of an isolated gaseous atom known as Electron affinity.

$$X_{(q)}$$
 + $e^ \longrightarrow$ $X^-_{(g)}$ + Electron Affinity

(2) Generally first electron addition of an isolated gaseous atom is an exothermic process

(except stable electronic configuration)

 $X_{(g)}$ + $e^- \longrightarrow X^-_{(g)}$ + Electron Affinity

 $\Delta H_{eg_{l}}$ (first electron gain enthalpy) = - ve

(3) Second electron addition of an isolated gaseous atom is always an endothermic process due to inter electronic repulsion.

$$X^-_{(g)}$$
 + $e^ \longrightarrow$ $X^{2-}_{(g)}$

 $\Delta H_{eg_{II}}$ (second electron gain enthalpy) = positive

Ex. $O_{(g)}$ + $e^- \longrightarrow O_{(g)}^-$; $\Delta H_{eg_1} = -141 \text{ KJ/mole}$ $O_{(g)}^-$ + $e^- \longrightarrow O_{(g)}^{-2}$; $\Delta H_{eg_{11}} = +744 \text{ KJ/mole}$

Net reaction $O_{(g)}$ + $2e^- \longrightarrow O^{-2}_{(g)}$ $\Delta H_{eg_{II}} = + 603 \text{ KJ/mole}$

(4) Formation of poly negative anion like O^{-2} , N^{-3} , C^{-4} etc. is always an endothermic process.

(5) Electron affinity of neutral atom is equal to ionisation energy of its anion.

$$X_{(g)} + e^{-} \xrightarrow{\text{Electron Affinity}}_{\text{Ionisation Potential}} X_{(g)}^{-} \quad \left(\text{EA of } X_{(g)} = \text{IE of } X_{(g)}^{-}\right)$$

(6) IE of neutral atom is equal to electron affinity of its cation

$$X_{(g)} \xrightarrow{\text{Ionisation potential}} X_{(g)}^{+} \qquad (\text{IE of } X_{(g)} = \text{EA of } X_{(g)}^{+})$$

- (7) Factors affecting electron affinity :
 - (A) **Atomic size :** Electron Affinity $\propto \frac{1}{\text{Atomic size}}$
 - (B) **Effective nuclear charge (Z_{eff})** : Electron Affinity $\propto Z_{eff} \propto \frac{\text{positive charge}}{\text{negative charge}}$

(C) **Stability of completely filled or half filled orbitals** : Electron affinity of elements having fullfilled or half filled configuration is very less or zero so for these elements electron gain enthalpy $(\Delta H_{(eg)})$ will be positive.

Ex. (i)
$$EA \Rightarrow ns^{1} > ns^{2}$$
 (ii) $EA \Rightarrow np^{2} > np^{3}$
(8) Variation of electron affinity :
(i) In 2nd period –
Li Be B C N O F Ne
Ne < Be < N < B < Li < C < O < F

ALLEN

(ii) In Group :

Electron affinity of 3^{rd} period element is greater than electron affinity of 2^{nd} period elements of the respective group.

F

 $[He] 2s^2 2p^5$ [Ne] $3s^2 3p^5$

Cl

Due to small size of fluorine, **electron density around the nucleus increases**. The incoming electron suffers more repulsion. In case of chlorine electron density decreases due to large size, decreasing order of electron affinity

 $Cl > F > Br > I \qquad S > O > P > N \qquad Si > C > P > N$

 $Note: N \And P \text{ have low electron affinity due to stable half filled configuration.}$

BEGINNER'S BOX-5

1.	The correct order of electric (1) Be $<$ B $<$ C $<$ N	•	(3) N < Be < C < B	(4) N < C < B < Be
2 .	would be equal to :-	-	aseous chlorine atom, 3.8 eV	
	(1) Electron affinity of Cl(3) Electronegativity of Cl		(2) Ionisation potential of(4) Ionisation potential of	
3 .	$O_{(g)} + 2e^- \rightarrow O^{2-}_{(g)} \Delta He$	eg = 603 KJ/mole. The p	ositive value of Δ Heg is due	e to :-
	(1) Energy is released to(3) Energy is needed to a		(2) Energy is required to (4) None of the above is	
4.	•	s for the halogens shows the (2) F < Cl < Br < I	-	(4) F < Cl > Br < I
5.	The process requiring the (1) $F \rightarrow F^-$	absorption of energy is. (2) $Cl \rightarrow Cl^{-}$	$(3) \bigcirc \rightarrow \bigcirc^{2-}$	(4) H → H ⁻
6.	Second electron affinity of (1) Always exothermic (3) Exothermic for few ele		(2) Endothermic for few el (4) Always endothermic	ements
7 .	Process, $Na^+_{(g)} \xrightarrow{I} Na^{(g)}$ (1) In (I) energy released, (I	W (-7	(2) In both (I) and (II) energ	y is absorbed
	(3) In both (I) and (II) energ	gy is released	(4) In (I) energy absorbed,	(II) energy released
8.	Which of the following co	nfiguration will have least ele	ectron affinity.	
	(1) ns ² np ⁵	(2) ns^2np^2	(3) ns^2np^3	(4) ns^2np^4
9.	Which of the following wil	l have the most negative ele	ctron gain enthalpy and whi	ch the least negative ?
	(1) F, Cl	(2) Cl, F	(3) Cl, S	(4) Cl, P
10.	Which arrangement repre atomic species ?	sents the correct order of ele	ectron gain enthalpy (with ne	egative sign) of the given
	(1) S < O < Cl < F	(2) O < S < F < Cl	(3) Cl < F < S < O	(4) F < Cl < O < S

1.6 ELECTRONEGATIVITY (EN)

- (i) The tendency of a covalently bonded atom to attract shared pair of electrons towards itself is called electronegativity.
- (ii) A polar covalent bond of A B may be broken as
 - A B $A^{\delta-}$ $B^{\delta+}$ (Electronegativity A > Electronegativity B)

depending on their tendency to attract bonded electron.

(iii) Difference between electronegativity and Electron Affinity :

Electronegativity	Electron Affinity
• Tendency of an atom in a molecule	 Energy released when an electron is added to
to attract the bonded electrons	neutral isolated gaseous atom
• It is not an energetic term	• It is an energetic term
• It regularly increases in a period	• It does not increases regularly in a period
because not depend on stable	because depend on stable
electronic configuration	electronic configuration
• It has no unit	• It is measured in eV/atom or KJ mol ⁻¹ or K cal mole ⁻¹

(iv) EN was explained by Pauling for the first time Electronegativity of some other elements are as follows –

							·
							Н 2.1
	Li 1.0	Be 1.5	B 2.0	C 2.5	N 3.0	0 3.5	F 4.0
	Na 0.9	Mg 1.2	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0
	K 0.8						Br 2.8
	Rb 0.8						I 2.5
	Cs 0.7						
	Fr 0.7						
11		I	11			• •	

In Pauling's scale, elements having almost same electronegativity are-

5

Note : Small atoms are normally having more electronegativity than larger atoms.

(v) FACTORS AFFECTING ELECTRONEGATIVITY :

(A) Atomic size

	Electronegativity	oc	1
	Licenonegativity		Atomic size
1	Ex. F > Cl > Br >	Ι	

(B) Effective nuclear charge (Z_{eff})

 $\label{eq:entropy} \hline Electronegativity \propto Z_{eff} \propto \frac{positive \ charge}{negative \ charge} \\ \hline \textbf{Ex.} \quad Mn^{+2} < Mn^{+4} < Mn^{+7} \\ O^{-2} < O^{-1} < O < O^{+1} < O^{+2} \\ Fe < Fe^{+2} < Fe^{+3} \\ \hline Z_{eff} \uparrow EN \uparrow \\ \hline \end{matrix}$

(C) % s - character

Electronegativity ∞ %s - Character

(vi) PERIODIC TABLE & ELECTRONEGATIVITY :

- (A) Electronegativity decreases down the group.
- (B) In period on moving from left to right electronegativity increases.
- (C) Electronegativity of Cs and Fr are equal, it is because from ${}_{55}$ Cs to ${}_{87}$ Fr only one shell increases but nuclear charge (No. of proton) increases by +32, so effect of nuclear charge balanced the effect of increase in number of shell.

$\label{eq:electronegativity} Electron affinity of \ F > Cl \qquad but \quad Electron affinity of \ Cl > F$

(D) In IIIA group, value of electronegativity is irregular when going down the group, because of transition contraction

Electronegativity of Ga > Electronegativity of Al

(vii) APPLICATION OF ELECTRONEGATIVITY :

(A) Metallic and non metallic nature :

Generally metals have low electronegativity and non metals have high electronegativity, so we can say metallic character increases down the group but decreases along a period.

Non Metallic Nature ∞ EN

(B) **Bond energy** : By increasing difference in electronegativity of bonded atoms, bond length decreases and hence bond energy increases

Bond energy \propto Electronegativity difference

HF > HCl > HBr > HI

(C) Schoemaker and Stevenson law

If in a diatomic molecule electronegativities of A - B have more difference. Then actual bond length will be reduced. As per schoemaker & Stevenson– The reduction in bond length depends on the difference in electronegativities of atoms by following manner -

Ex. If bond length of $F_2 = 1.44$ Å, Bond length of $H_2 = 0.74$ Å. Find out the bond length of H – F ? (EN of F is 4.0, EN of H is 2.1)

Solution.

- $\begin{array}{rcl} d_{\rm H-F} &= r_{\rm F} + r_{\rm H} 0.09 \; (X_{\rm F} X_{\rm H}) \\ \because r_{\rm F} &= 1.44 \; / \; 2 \; = \; 0.72 \; {\rm \mathring{A}}, \; r_{\rm H} \; = 0.74 / 2 \; = \; 0.37 \; {\rm \mathring{A}} \\ \therefore \; \; d_{\rm H-F} \; = \; 0.72 \; + \; 0.37 \; \; 0.09 \; (\; 4.0 \; \; 2.1) \\ &= \; 1.09 \; \; (0.09 \; \times \; 1.9) \; = \; 1.09 \; \; 0.171 \; = \; 0.919 \; {\rm \mathring{A}} \end{array}$
- $(D) \quad \textbf{Acidic \& Basic Strength}:$

(i) Nature of hydrides :

Stability of molecule \propto Bond energy

Order of stability of hydrohalides :HF > HCl > HBr > HIOrder of acidic strength :HF < HCl < HBr < HIIn VA group : $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$

Thermal stability decreases

Acidic character increases

(ii) Nature of hydroxides :

$$A - O - H - AO^{-} + H^{+} [Acidic]$$
$$A - O - H - A^{+} + OH^{-} [Basic]$$

- (a) As per Gallis,
- (i) In AOH if electronegativity of A is more than 1.7 (Non metal) then it is acidic in nature.
- (ii) If electronegativity of 'A' is less than 1.7 (metal) then AOH will be basic in nature
- (b) If $X_A X_0 \ge X_0 X_H$ ($X_A = EN \text{ of } A$) then AO bond will be more polar and will break up as $A \longrightarrow OH \longrightarrow A^+ + OH^-$ It shows basic nature
- Ex. In NaOH $X_0 X_{Na} (2.6) > X_0 X_H (1.4)$ So hydroxide is basic(c)If $X_A X_0 \le X_0 X_H$ then OH bond will be more polar and will break up as $A O H \rightarrow H^+ + AO^-$ It shows Acidic natureIn CIOHX_0 X_0 (0.5) < X_0 X_H (1.4)</th>So hydroxide is acidic

ALLEN

(iii) Nature of oxides :

- (a) Along a period acidic nature increases.
- (b) Down the group basic nature increases

Li	Be	В	С	Ν	0	F
Na	Mg	Al	Si	Р	S	Cl
←						>
Basic		Amp	hoteric		Acidic	

ie. when in periodic table the distance between the element and oxygen increases, basic character increases.

 $NO_2 > ZnO > K_2O$

acidic character decreases

Note: BeO, Al₂O₃, ZnO, SnO, PbO, SnO₂, PbO₂, Sb₂O₃ etc. are amphoteric oxides. CO, H_2O , NO, N_2O etc. are neutral oxides.

		Electronegativity
B ₂ O ₃ CO ₂	N_2O_5	

EN increase, acidic nature increase.

$HNO_3 > H_2CO_3 > H_3BO_3$	$HClO_4 > HBrO_4 > HIO_4$	$SO_3 > SeO_3 > TeO_3$
$H_3PO_4 > H_3AsO_4 > H_3SbO_4$	$N_2O_5 > P_2O_5 > As_2O_5$	$H_2SO_3 > H_2SeO_3 > H_2TeO_3$
HOF > HOCl > HOBr > HOI	$N_2O_3 > P_2O_3 > As_2O_3 > Sb_2O_3$	

Acidic nature
$$\propto$$
 oxidation state

Acidic properties increases with increasing oxidation state of an element $HClO_4 > HClO_3 > HClO_2 > HClO$ $HNO_3 > HNO_2$ $H_2SO_4 > H_2SO_3$ $N_2O_5 > N_2O_3$ $Sb_2O_5 > Sb_2O_3$ $SO_3 > SO_2$ (E) Nature of bonds : (a) According to Hanny & Smith formula % ionic character $16 (X_A - X_B) + 3.5 (X_A - X_B)^2$ = Electronegativity of A Here X_A =

- $X_{\rm B}$ Electronegativity of B If $X_A - X_B \ge 2.1$ Ionic % > 50% i.e. Ionic bond If $X_A^A - X_B^B \le 2.1$ Ionic % < 50% i.e. covalent bond (b) According to Gallis $X_A - X_B \ge 1.7$ Ionic $X_A^A - X_B^B \le 1.7$ Covalent If $X_A = X_B$; then A – B will be non polar. **Ex.** H—H, F—F
 - If $X_{\rm _A} > X_{\rm _B}$ and difference of electronegativities is small then

 $A^{\delta_{-}} \xrightarrow{} B^{\delta_{+}}$ bond will be polar covalent **Ex.** $H_{2}O$ ($H^{\delta_{+}}$ ----- $O^{\delta_{-}}$ ----- $H^{\delta_{+}}$)

If $X_A^2 >> X_B^2$ and $X_A^2 - X_B^2$ difference of electronegativities is high then $A^- - B^+$ bond will be polar or ionic

(F) Nomenclature of inorganic compounds :

Prefix —— less electronegative element

Suffix — More electronegative element

- Ex. Cl_oO (Right) OCl₂ (Wrong) In Dichloroxide the electronegativity of Cl is less than 'O' i.e. why Cl is in prefix position. OF₂ Oxygen difluoride
 - ICl Iodine chloride
- (G) Bond polarity $\propto \Delta EN$

(viii) ELECTRONEGATIVITY SCALE :

Mulliken scale : According to Mulliken electronegativity is average value of ionisation potential and electron affinity of an element,

$$X_{m} = \frac{\text{Ionisation Potential} + \text{Electron Affinity}}{2}$$

where $X_{_{D}}$ is electronegativity on the basis of Pauling scale.

• If ionisation potential and electron affinity are given in eV, then electronegativity by Mulliken on Pauling scale will be

• If ionisation potential and electron affinity are given in K.cal/mole then

 $X_{p} = \frac{\text{Ionisation Potential} + \text{Electron Affinity}}{2 \times 62.5}$

BEGINNER'S BOX-6

- 1. Which of the following is affected by stable configuration of an atom :-
 - (a) Electronegativity (b) Ionisation potential (c) Electron affinity
 - Correct answer is :-
 - (1) Only electronegativity
 - (2) Only ionisation potential
 - (3) Electron affinity and ionisation potential
 - (4) All of the above
- 2. Which of the following elements have the different value of electronegativity :-

(1) H	(2) S	(3) Te	(4) P

3. Which is the correct order of electronegativity –

(1) $Cl > S > P > Si$	(2) $Si > Al > Mg > Na$
(3) F > Cl > Br > I	(4) All

4. Electronegativity scale of pauling is based upon :-

(1) Bond length	(2) Bond energy	(3) Atomic radius	(4) Covalent radius
-----------------	-----------------	-------------------	---------------------

5. Correct order of electronegativity of N, P, C and Si is :-

(1) N < P < C < Si	(2) N > C > Si > P
(3) N = P > C = Si	(4) N > C > P > Si

ALI				Pre-Medical : Chemistry
6.	,	configuration of the mo	ost electronegative elemen	t is :-
	(1) ns ² np ³	(2) ns ² np ⁶	(3) ns ²	(4) ns^2np^5
7.	Electronegativity of t	ne following elements in	creases in the order.	
	(1) O, N, S, P	(2) P, S, N, O	(3) P, N, S, O	(4) S, P, N, O
8.	Give the correct order	of electronegativity of ce	entral atom in following cor	npounds –
	(a)CH ₃ – CH ₃ ,	(b) $CH_2 = CH_2$	(c) $CH \equiv CH$	
	The correct order is –			
	(1) a > b > c	(2) c > a > b	(3) c > b > a	(4) $b > c > a$

ANSWER KEY

BEGINNER'S BOX-1	Que.	1	2	3	4	5	6	7	8	9	10
DEGINNER 5 DOA-1	Ans.	2	1	4	2	4	2	3	4	4	No
											· · · · · ·
BEGINNER'S BOX-2	Que.	1	2	3	4	5	6	7	8	9	10
DEGINNER 5 DOA-2	Ans.	3	4	3	3	3	2	4	1	4	2
BEGINNER'S BOX-3	Que.	1	2	3	4	5	6	7	8	9	10
DEGINNER 5 DUA-5	Ans.	2	4	3	4	3	1	4		2	4
											· · · · · · ·
BEGINNER'S BOX-4	Que.	1	2	3	4	5	6	7	8	9	10
DEGINNER 5 DUA-4	Ans.	2	2	4	1	2	1	4	3	1	
BEGINNER'S BOX-5	Que.	1	2	3	4	5	6	7	8	9	10
DEGINNER 5 DUA-5	Ans.	2	4	2	1	3	4	3	3	4	2
BEGINNER'S BOX-6	Que.	1	2	3	4	5	6	7	8		
DEGINNER'S DOA-0	Ans.	3	2	4	2	4	4	2	3		
											4

ALLEN	

E	XERCISE-I (Concep	otual Questions)	Build Up Your Understanding			
DEV	/ELOPMENT OF PERIO	ODIC TABLE	10.	In a period the elements are arranged in :-		
1.	Mendeleev's periodic tab (1) Atomic number (2) Increasing order of nu (3) Electronic configurati (4) None of the above	umber of protons	11.	 (1) Decreasing order of nuclear charge (2) Decreasing order of No. of electrons (3) Increasing order of nuclear charge (4) In order of same nuclear charge Which of the following statement is wrong :- 		
2 .	Which of the following is (a) P, As, Sb (c) Fe, Co, Ni Correct answer is :- (1) a and b (2) b and c	s/are Dobereiners triad :- (b) Cu, Ag, Au (d) S, Se, Te (3) a and d (4) All		 (1) 2nd period contain 8 elements (2) 3rd period contains 18 elements (3) 1st period contains two non metals (4) In p-block, metal, nonmetal and metalloids are present 		
3 .	Which of the following Newland's octave rule :- (1) Be, Mg, Ca (3) F, Cl, Br	sets of elements follows (2) Na, K, Rb (4) B, Al, Ga	12.	Which of the following element was absent in the Mendeleev's periodic table :- (1) Tc (2) Si (3) B (4) F		
4 .	Which are correct match (a) Eka silicon – Be (b) Eka aluminium – Ga (c) Eka mangenese – Tc (d) Eka scandium – B (1) b, c (2) a, b, d	1 :- (3) a, d (4) All	13. 14.	IUPAC name of the element placed just after actinide series :-(1) Unniltrium(2) Unnilpentium(3) Unnilquadium(4) UnunbiumWhich statement is wrong for the long form of periodic table :-		
5.		d Sb is 120. What will be as per Dobereiners triad (2) 75.5 (4) Unpredictable		 (1) Number of periods are 7 and groups 18 (2) No. of valence shell electrons in a period are same (3) IIIrd B group contains 32 elements (4) Lanthanides and actinides are placed in same group 		
6 .	The places that were le were, for:- (1) Aluminium & Silicon (2) Galium and germiniu (3) Arsenic and antimom	m	15.	The elements which are cited as an example to proove the validity of mendeleev's periodic law are(1) H, He(2) Ga, Sc(3) Co, Ni(4) Zr, Hf		
7.	 (4) Molybdenum and tun Which is not anomalou Medeleev's periodic table (1) Ar and K (3) Te and I 	s pair of elements in the	16 .	 Which pair of successive elements follows increasing order of atomic weight in mendeleev's periodic table (1) Argon and potassium (2) Lithium and Beryilium (3) Cobalt and nickel 		
8 .	The law of triads is appli (1) Os, Ir, Pt (3) Fe, Co, Ni	icable to :- (2) Ca, Sr, Ba (4) Ru, Rh, Pt	17.	 (4) Tellurium and iodine Which of the following statement is false :- (1) Elements of ns²np⁶ electronic configuration lies 		
9.	Elements which occupie meyer curve, on the pea (1) Alkali metals (2) Highly electro positiv (3) Elements having large (4) All	e elements		 in 1st to 6th period (2) Typical elements lies in 3rd period (3) The seventh period will accommodate thirty two elements (4) Boron and silicon are diagonally related 		
26		•				

Z.\NODE02\B04HB0\TARGET\CHEM\ENG\WODULE-2\1-FERIODIC TABLE\02-EXERCISE-P65

ALI	len			Pre-Medical	: Chemistry
18.	Among the Lanthanid synthetic method is :-	es the one obtained by	28 .	The electronic configuration of d-ble exhibited by :-	ock elements i
DEE	(1) Lu (2) Pm	(3) Pr (4) Ce		(1) $ns^{1-2}(n-1)d^{1-10}$ (2) ns^2 (n (3) $(n-1)d^{10}s^2$ (4) $ns^{2}np$,
PER	RIOD, GROUP AND BL	UCK	29.	The electronic configuration of the	e element wit
19 .	Which of the following s same period :- (1) Zn, Cd, Hg (3) K, Ca, Ag	et of elements belongs to (2) Fr, Ra, U (4) None		atomic number 109 if discovered w (1) $(n-1)d^7ns^2$ (2) $(n-1)d^2ns^2$ (3) nd^7ns^2 (4) $(n-1)d^2ns^2$	vill be:- d ⁹ ns ²
20 .		c number Z = 115 will be	30.	The element having electronic con 5d ⁰ 6s ² belongs to :-	figuration 4f
	(1) 7 th period, IA group	(2) 8 th period, IVA group (4) 6 th period, VB group		(1) d–block, 12 th group (2) f–block, III B group (3) f–block, 14 th group	
21 .	-	c no. 112 have been nat will be the electronic	0.1	(4) s-block, 2^{nd} group	<i>.</i>
	108 :- (1) [Rn]5f ¹⁴ 6d ⁶ 7s ²	ent possessing atomic no. (2) $6f^{14}$ $7d^8$ $7s^2$ (4) [Xe] $4f^{14}$ $5d^8$ $6s^2$	31.	Element with the electronic configuration below, belong to which group in the $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^64d^{10}$ (1) 3^{rd} (2) 5^{th}	e periodic table
22 .		modern periodic table, are in the order :- (2) 6s, 6p, 4f, 5d	32 .	(3) 15^{th} (4) 17^{th} $4d^{3}5s^{2}$ configuration belongs to wh (1) IIA (2) IIB (3) V B	ich group :- (4) III B
	(3) 4f, 5d, 6s, 6p	(4) None	33 .	Which of the following electronic	configuratio
23 .	electrons in 3d orbital (in configuration) are :-	ts no. of elements having their complete electronic		belongs to iner to belowing electronic (1) ns ² (n - 1)d ¹⁰ (2) ns ² (n (3) ns ² np ⁶ (4) None	– 1)s²p ⁶
24.	(1) 80 (2) 100 The IUPAC name of the	(3) 40 (4) 60 e element which is placed	34.	From atomic number 58 to 71, elem	
	after Db_{105} is the period	c table, will be :-		in ;- (1) Eth namiad and III A success	
	(1) Un nil pentium (3) Un nil hexium	(2) Un un nilium (4) Un nil quadium		 (1) 5th period and III A group (2) 6th period and III B group 	
	(3) On hil nexium	(4) On hii quadium		(3) separate period and group	
25 .	The element with the $ns^2(n-1)s^2p^6d^0(n-2)s^2p^6d^1$	electronic configuration		(4) 7^{th} period and IV B group	
	(1) s - block	(2) p - block	35 .	True statement is :-	
	(3) d - block	(4) f - block		(1) All the transuranic elements ar	re synthetic el
26.		number Z=118 will be :-		ements (2) Elements of third group are ca ements	alled bridge el
	(2) Transition metal			(3) Element of $1s^2$ configuration is	s placed in IIA
	(3) Alkali metal			group (4) Electronic configuration of eleme	ents of a grou
	(4) Alkaline earth metal			is same	
27 .	-	valence shell electronic	36.	Elements having ns ² np ⁶ valence s	shell electroni
	configuration 4s ² 4p ² we (1) Group II A and perio			configuration lies in :- (1) $ 0 $ and 1^{st} 7^{th} maying	
	(2) Group II B and perio			(1) '0' gp. and $1^{st}-7^{th}$ period (2) 18^{th} gp. and $2^{nd}-6^{th}$ period	
	(3) Group IV A and perio			(3) 18^{th} gp and 1^{st} – 6^{th} period	
	(4) Group IV A and perio	d 3		(4) All are correct	
		•			27
		-		-	

ALLEN

	/	1					
37.	Which of the following match is correct :- (1) Last natural element – Uub	Zeff, SCREENING CONSTANT & ATOMIC RADIUS					
	(2) General electronic configuration of IA group $-ns^2$ (3) Inert gas elements lies in $2^{nd} - 6^{th}$ period						
	(4) Typical elements – 3 rd period elements		(1) Z - σ (2) Z + σ (3) Z σ^{-1} (4) Z σ				
38.	The electronic configuration of elements X and Z are $1s^2 2s^2 2p^6 3s^2 3p^5$ and $1s^2 2s^2 2p^5$ respec- tively. What is the position of element X with re- spect to position of Z in the periodic table - (1) Just below Z (2) Just above Z (3) Left to the Z (4) right to the Z	47.	According to Slater rule, Effective nuclear charge in group generally :- (1) Increases down the group (2) Decreases down the group (3) Remains constant (4) First increases then decreases				
39.	Which of the following sequence contains atomic number of only representative elements(1) 55, 12, 18, 53(2) 13, 33, 54, 83(3) 3, 33, 53, 87(4) 22, 33, 55, 66	48.	In sodium atom the screening is due to :- (1) $3s^2$, $3p^6$ (2) $2s^1$ (3) $1s^2$, $2s^2$, $2p^6$ (4) $1s^2$, $2s^2$				
40.	Uranium (At No 92) is the last natural element in the periodic table. The last element of the periodic table which is recently discovered is Uub. What will be the total number of transuranic elements in the periodic table :- (1) 21 (2) 20 (3) 11 (4) 12	49.	If the difference in atomic size of : Na - Li = x; $Rb - K = y$; $Fr - Cs = zThen correct order will be:-(1) x = y = z (2) x > y > z(3) x < y < z (4) x < y << z$				
41.	Which two elements are in same period as well as same group of modern periodic table :-	50 .	The correct order of size would be:- (1) Ni $<$ Pd \simeq Pt (2) Pd $<$ Pt $<$ Ni (3) Pt $>$ Ni $>$ Pd (4) Pd $>$ Pt $>$ Ni				
	(1) $Z = 23$, $Z = 31$ (2) $Z = 65$, $Z = 66$	51 .	Which of the following order of radii is correct				
	(3) $Z = 52$, $Z = 87$ (4) $Z = 58$, $Z = 46$		(1) $Li < Be < Mg$ (2) $H^+ < Li^+ < H^-$				
42.	Which of the following statement is not correct for given electronic configuration $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^64d^{10}4f^{14}$,	52.	(3) $O < F < Ne$ (4) $Na^+ > F^- > O^{-2}$ K ⁺ , Ar, Ca ²⁺ and S ²⁻ contains -				
	 5s²5p⁶ 5d¹⁰,6s² (1) It belongs to IIB group and 6th period (2) It is liquid at room temperature (3) It is a transition element (4) It is not used in high temperature thermometer 		 (1) Same electronic configuration and atomic volume (2) Different electronic configuration but same IP. (3) Same electronic configuration but different atomic volume (4) None 				
43.	General electronic configuration of outermost and penultimate shell is $(n - 1) s^2 (n - 1)p^6$ $(n - 1) d^x ns^2$. If $n = 4$ and $x = 5$, then number of protons in the nucleus will be :- (1) > 25 (2) < 24 (3) 25 (4) 30	53.	Which of the following is not isoelectronic series :- (1) Cl^- , P^{3-} , Ar (2) N^{3-} , Ne , Mg^{+2} (3) B^{+3} , He , Li^+ (4) N^{3-} , S^{2-} , Cl^-				
44.	$(1) > 25$ $(2) < 24$ (3) 25 (4) 30 An ion M ⁺³ has electronic configuration [Ar] $3d^{10} 4s^2$ element M belongs to :- (1) s-block (2) p-block (3) d-block (4) f-block	54 . 55 .	Which group of atoms have nearly same atomic radius:- (1) Na, K, Rb, Cs (2) Li, Be, B, C (3) Fe, Co, Ni (4) F, Cl, Br, I Atomic radii of Elucrine and Nean in Angetrom				
45.	What is the atomic number of element having maximum no. of unpaired e ⁻ in 4p subshell :- (1) 33 (2) 17 (3) 53 (4)15	55.	Atomic radii of Fluorine and Neon in Angstrom units are given by :-(1) 0.72, 1.60(2) 1.60, 1.60(3) 0.72, 0.72(4) None of these				

electron is caused by- (1) Electrons of K and L shell (2) Electrons of K and L shell (3) Two electrons of 1 st and one of 2 rd shell (4) None (4) None (5) Correct order of ionic radii is (1) $Ti^4 - Mn^{7+}$ (2) $3^3C\Gamma - 3^3C\Gamma^-$ (3) $K^* > C\Gamma^-$ (4) $P^{5_1} > P^{5_1}$ (3) $L^2 = L^2 > $	ALI	LEN			Pre-	Medical : Chemistry
 (a) 1s² 2s² 2p² 3s² 3p² (b) 1s² 2s² 2p⁶ 3s² 3p² (c) 1s² 2s² 2s² 3s² 3p² (d) 1s² 2s² 2s² 3s² 4s² 4s² 4s² (e) 1s² 1s² 1s² 2s² 4s² 4s² 4s² 4s² (f) 1s² 1s² 2s² 2s² 3s² 4s² 4s² 4s² 4s² (f) 1s² 2s² 2s² 3s² 4s² 4s² 4s² 4s² (f) 1s² 2s² 2s² 1s² 2s² 1s² 2s² 1s² 1s² 2s² 1s² 1	56 .	(1) $1s^2 2s^2 2p^6 3s^2$		65 .		
is not correct :- (1) $\Gamma_{1} > 1 > 1$ (2) $M_{2}^{r/2} > N_{3}^{r} > F$ (3) $P^{5} < P^{-3}$ (4) $Ll > Be > B$ 58. In the lithium atom screening effect of valence shell electrons is caused by: (1) Electrons of K and L shell (2) Electrons of 1 st and one of 2 rd shell (4) None 59. Correct order of ionic radii is (1) $\Pi^{+r} < M^{7+}$ (2) $3^{2}C\Gamma < 3^{2}C\Gamma$ (3) $K^{*} > C\Gamma$ (4) $P^{3+} > P^{5+}$ 50. The radius of potassium atom is 0.203 nm. The radius of the potassium ion in nanometer will be :- (1) 0.133 (2) 0.231 (3) 0.234 (4) 0.251 51. S^{-2} is not isoelectronic with :- (1) Ar (2) $C\Gamma$ (1) Ar (2) $C\Gamma$ (3) HS^{-} (4) Π^{+3} 52. The best reason to account for the general tendency of atomic diameters to decrease as the atomic numbers increase within a period of the periodic table is the fact that (1) Outre electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (2) Protons are more than electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom 54. Maximum size of first member of a period is due to (1) Maximum sizer of shells (2) Maximum sizer of shells (2) Maximum sizer of shells (3) Minimum Zetri (4) All 55. Maximum size of first member of a period is due to (1) Maximum sizer of shells (2) Maximum sizer of shells (3) Minimum Zetri (4) All 55. Maximum size of first member of a period is due to (1) Maximum size of first member of a period is due to (1) Maximum sizer of shells (2) Maximum size of first member of a period is due to (3) Minimum Zetri (4) All 56. Maximum size of first member of a period is due to (4) All 57. Maximum number of shells (2) Maximum size of first member of a period is due to (3) Minimum Zetri (4) All 57. Maximum number of shells (3) Minimum Zetri (4) All 58. Maximum number of shells (3) Minimum Zetri (4) All 		(3) 1s ² 2s ² 2p ⁶ 3s ² 3p (4) 1s ² 2s ² 2p ⁶ 3s ² 3p	3	66 .	is smaller than that of t	first species :- (2) Na ⁺ , F ⁻
 68. Which of the following orders of atomic radii ar correct :- (a) Li < Be < Na (b) Ni < Cu < Zn (c) Ti > V > Cr (d) Ti > Zr = Hf Correct answer is :- (a) Li < Be < Na (b) Ni < Cu < Zn (c) Ti > V > Cr (d) Ti > Zr = Hf Correct answer is :- (a) Li < Be < Na (b) Ni < Cu < Zn (c) Ti > V > Cr (d) Ti > Zr = Hf Correct answer is :- (a) Li < Be < Na (b) Ni < Cu < Zn (c) Ti > V > Cr (d) Ti > Zr = Hf Correct answer is :- (a) Li < Be < Na (b) Ni < Cu < Zn (c) Ti > V > Cr (d) Ti > Zr = Hf Correct answer is :- (a) Li < Be < Na (b) Ni < Cu < Zn (c) Ti > V > Cr (d) Ti > Zr = Hf Correct answer is :- (a) Li < 2a, b (a) b, c (4) b, d 69. Which electronic configuration of an atom is smallest in size :- (i) 32² (2) 32²3p³ 60. The radius of potassium atom is 0.203 nm. The radius of the potassium ion in nanometer will be :- (i) Dr = S² > Cr > N³ (2) 0.234 (4) 0.251 51. S⁻² is not isoelectronic with :- (1) Ar (2) Cl⁻ (3) HS⁻ (4) Ti³ 52. The best reason to account for the general tendency of atomic diameters to decrease as the atomic numbers increase within a period of the perioditable is the fact that (1) Outer electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (2) Maximum screening effect (3) Minimum sze of first member of a period is due to (1) Maximum number of shells (2) Maximum sze of first member of a period is due to (1) Maximum number of shells (2) Maximum szer (4) All (3) Minimum Zer (4) All 	57.	is not correct :- (1) $I^- > I > I^+$	(2) Mg ⁺² > Na ⁺ > F ⁻	67.	Spot the incorrect orde	r of atomic radii :-
 b) In the final matum atom screening effect of valence stear electron is caused by- (1) Electrons of K and L shell (2) Electrons of K shell (3) Two electrons of 1st and one of 2nd shell (4) None c) Correct order of ionic radii is (1) Ti⁴⁺ < Mn⁷⁺ (2) ³⁷Cl⁻ < ³⁵Cl⁻ (3) K⁺ > Cl⁻ (4) P³⁺ > P⁵⁺ c) The radius of potassium atom is 0.203 nm. The radius of the potassium ion in nanometer will be :- (1) 0.133 (2) 0.231 (2) 0.231 (2) 0.231 (2) 0.234 (2) 0.234 (2) 0.251 (3) R⁻ > Cl⁻ > N⁻³ (2) N² > S² > Cl⁻ > N⁻³ (3) 0.234 (4) 0.251 (3) HS⁻ (4) Ti⁺³ f) Fs⁻ (4) Ti⁺³ f) S⁻ is not isoelectronic with :- (1) Ar (2) Cl⁻ (3) HS⁻ (4) Ti⁺³ f) Fs⁻ (4) Ti⁺³ f) The best reason to account for the general tendency of atomic diameters to decrease as the atomic numbers increase within a period of the periodic table is the fact that (1) Outer electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (2) Protons are more than electrons (3) Effective nuclear charge exerts a greater attractive force on the electrons (3) Effective nuclear charge exerts a greater attractive force on the electrons (3) Se², f, Br, G⁰, F (2) Fix, Sr, O³, F, C³ (4) The increasing nuclear charge exerts a greater attractive force on the electrons (3) Se², f, Br, G⁰, F, C³ (4) Radius is larger than neutral atom f) Maximum size of first member of a period is due to (1) Maximum size of first member of a period is due to (1) Maximum screafing effect (2) Rin Jf⁴, 6d¹, 72² (3) [Ar] 3d¹⁰, 43² (4) All 		(3) $P^{+5} < P^{+3}$	(4) Li > Be > B	69		
 59. Correct order of ionic radii is (1) Ti⁴⁺ < Mn⁷⁺ (2) ³⁷CT < ³⁵CT (3) K* > CT (4) P³⁺ > P³⁺ 50. The radius of potassium atom is 0.203 nm. The radius of the potassium ion in nanometer will be :- (1) 0.133 (2) 0.231 (3) 0.234 (4) 0.251 51. S⁻² is not isoelectronic with :- (1) Ar (2) Cl⁻ (3) HS⁻ (4) Ti⁺³ 52. The best reason to account for the general tendency of atomic diameters to decrease as the atomic numbers increase within a period of the periodic table is the fact that (1) Outer electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom 54. Maximum size of first member of a period is due to (1) Maximum number of shells (4) All (59. Maximum Zerri (4) All 	58.	electron is caused by- (1) Electrons of K and (2) Electrons of K she (3) Two electrons of 1	L shell I		correct :- (a) Li < Be < Na (c) Ti > V > Cr Correct answer is :- (1) All (2) a, b	(b) Ni < Cu < Zn (d) Ti > Zr \simeq Hf (3) b, c (4) b, d
(1) $Ti^{4+} < Mn^{7+}$ (2) $3^{3}C\Gamma < {}^{35}C\Gamma$ (3) $K^{+} > C^{-}$ (4) $P^{3+} > P^{5+}$ 50. The radius of potassium ion in nanometer will be :- (1) 0.133 (2) 0.231 (3) 3^{3-1} (4) $3s^{2} 3p_{1}^{2} 3p_{1}^{2} 3p_{1}^{2}$ (3) 0.234 (4) 0.251 (1) $Br > S^{-2} > C\Gamma > N^{-3}$ (2) $N^{3} > S^{-2} > C\Gamma > N^{-3}$ (3) 0.234 (4) 0.251 (2) $N^{3} > S^{-2} > C\Gamma > S^{-2} > N^{-3}$ (3) $R^{-3} > C\Gamma > S^{-2} > N^{-3}$ (4) $N^{3} > C\Gamma > S^{-2} > N^{-3}$ (5) S^{-2} is not isoelectronic with :- (1) Ar (2) $C\Gamma$ (3) HS^{-} (4) Ti^{+3} (52. The best reason to account for the general tendency of atomic diameters to decrease as the atomic numbers increase within a period of the periodic table is the fact that (1) Outer electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom 54. Maximum size of first member of a period is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (4) All	59 .	Correct order of ionic	radii is	69 .		guration of an atom i
 (b) If P G (b) P F (c) P P (c) P (c		(1) $Ti^{4+} < Mn^{7+}$	(2) ${}^{37}\text{Cl}^- < {}^{35}\text{Cl}^-$			(2) $3s^23p^3$
 and task of the potassium ion in anometer will be :- (1) 0.133 (2) 0.231 (3) 0.234 (4) 0.251 (1) Ar (2) Cl (1) Ar (2) Cl (3) HS⁻ (4) Ti⁺³ (2) N³ > S² > Cl > Br (3) Br > Cl > S² > N³ (4) N³ > Cl > S² > Br (3) Br > Cl > S² > Br (3) Br > Cl > S² > Br (4) N³ > Cl > S² > Br (1) Mrith of the following statement is wrong (1) According to Slater, Z_{eff} in group remain constant (2) In a period atomic radius of inert gas element i maximum (1) Outer electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom (1) Maximum number of shells (2) Maximum size of first member of a period is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (1) Net of the state of the seriod is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (1) Net of the state of the seriod is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (1) Net of the state of the seriod is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (1) Net of the state of the seriod is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (1) Net of the state of the seriod is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (1) Net of the state of the seriod is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (1) Net of the state of the seriod is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (4) Na All (5) Name of the seried o		(3) K ⁺ > Cl ⁻	(4) $P^{3+} > P^{5+}$		(3) 3s ¹	(4) $3s^2 3p_x^2 3p_y^2 3p_z^1$
 (1) Ar (2) Cl⁻ (3) HS⁻ (4) Ti⁺³ 52. The best reason to account for the general tendency of atomic diameters to decrease as the atomic numbers increase within a period of the periodic table is the fact that (1) Outer electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom 54. Maximum size of first member of a period is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All (4) Na 71. Which of the following statement is wrong (1) According to Slater, Z_{eff} in group remain constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element i maximum 72. The covalent and vander Waal's radii of hydroge respectively are :- (1) 0.37 Å, 0.8 Å (2) 0.37 Å, 0.8 Å (3) Screening effect (3) Screening effect (3) Screening effect (4) Radius is larger than neutral atom 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se², T, Br', C², F (2) I, Se⁻², O², Br', F, O² (4) I, Se⁻², Br', O², F⁻ 	60.	radius of the potassium (1) 0.133 (3) 0.234	n ion in nanometer will be :- (2) 0.231 (4) 0.251	70.	(1) $Br^- > S^{-2} > Cl^- > N$ (2) $N^{3-} > S^{-2} > Cl^- > B$ (3) $Br^- > Cl^- > S^{-2} > N$	√-3 8r- √-3
 (1) Ar (2) Cl (3) HS⁻ (4) Ti⁺³ (4) Ti⁺³ (1) According to Slater, Z_{eff} in group remain constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic readius of inert gas element is maximum (2) In a period atomic radius of inert gas element is maximum (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (3) In an anion :- (1) Number of proton decreases (2) Protons are more than electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom 14. Maximum size of first member of a period is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All 	51 .			71.	Which of the following st	atement is wrong
 of atomic diameters to decrease as the atomic numbers increase within a period of the periodic table is the fact that (1) Outer electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons 53. In an anion :- (1) Number of proton decreases (2) Protons are more than electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom 54. Maximum size of first member of a period is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All 				/1.	(1) According to Slate constant(2) In a period atomic size	r, Z _{eff} in group remains e decreases
 (1) Outer electrons repel inner electrons (2) Closer packing among the nuclear particles is achieved (3) The number of neutrons increases (4) The increasing nuclear charge exerts a greater attractive force on the electrons (3) In an anion :- (1) Number of proton decreases (2) Protons are more than electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom (4) Radius is larger than neutral atom (54. Maximum number of shells (2) Maximum number of shells (2) Maximum Zeff (4) All (1) Outer electrons reperiment and value of hydroge respectively are :- (1) 0.37 Å, 0.38 Å (2) 0.37 Å, 0.37 Å (3) 0.8 Å, 0.37 Å (3) 0.8 Å, 0.37 Å (4) 0.8 Å, 0.37 Å (3) 0.8 Å, 0.37 Å (4) 0.8 Å, 0.37 Å (5) Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se², 1, Br, O², F (2) T, Se², O², Br, F² (3) Se², 1, Br, F, O² (4) F, Se², Br, O², F² (4) All	5 2 .	of atomic diameters	to decrease as the atomic		(4) In a period atomic rac	
 53. In an anion :- (1) Number of proton decreases (2) Protons are more than electrons (3) Effective nuclear charge is more (4) Radius is larger than neutral atom 54. Maximum size of first member of a period is due to (1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se⁻², Γ, Br⁻, O⁻², F⁻ (2) Γ, Se⁻², O⁻², Br⁻, C⁻² (4) Γ, Se⁻², Br⁻, O⁻², F⁻ 74. Element having maximum number of low shieldin electrons :- (1) [Xe] 4f¹⁴, 5d¹⁰, 6s², 6p² (2) [Rn] 5f¹⁴, 6d¹, 7s² (3) [Ar] 3d¹⁰, 4s² (4) [Ne] 3s², 3p¹ 		 (1) Outer electrons rep (2) Closer packing am achieved (3) The number of neu (4) The increasing nucleon 	ong the nuclear particles is atrons increases lear charge exerts a greater	72.	respectively are :- (1) 0.37 Å, 0.8 Å (2) 0.37 Å, 0.37 Å (3) 0.8 Å, 0.8 Å	r Waal's radii of hydroger
(1) Maximum number of shells (2) Maximum screening effect (3) Minimum Zeff (4) All electrons :- (1) [Xe] $4f^{14}$, $5d^{10}$, $6s^2$, $6p^2$ (2) [Rn] $5f^{14}$, $6d^1$, $7s^2$ (3) [Ar] $3d^{10}$, $4s^2$ (4) [Ne] $3s^2$, $3p^1$	53.	In an anion :- (1) Number of proton decreases (2) Protons are more than electrons (3) Effective nuclear charge is more			decreasing order of ionic radius :- (1) Se ⁻² , Γ , Br ⁻ , O ⁻² , F ⁻ (2) Γ , Se ⁻² , O ⁻² , Br ⁻ , F ⁻ (3) Se ⁻² , Γ , Br ⁻ , F ⁻ , O ⁻²	
	54.	Maximum size of first r (1) Maximum number (2) Maximum screenin (3) Minimum Zeff	nember of a period is due to of shells	74.	electrons :- (1) [Xe] $4f^{14}$, $5d^{10}$, $6s^2$, 6 (2) [Rn] $5f^{14}$, $6d^1$, $7s^2$ (3) [Ar] $3d^{10}$, $4s^2$	
						29

- **75.** Incorrect order of ionic radius is :-(1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^+ > Sn^{+2} > Sb^{+3}$ (4) $K^+ > Sc^{+3} > V^{+5} > Mn^{+7}$
- **76.** According to Slater's rule, order of effective nuclear charge for last electron in case of Li, Na and K :-
 - (1) Li > Na > K (2) K > Na > Li(3) Na > Li > K (4) Li < Na = K
- **77.** Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present in them are shielded by inner electrons
 - (1) 4d < 4f < 4p
 - (2) 4f < 4d < 4p
 - (3) 4p < 4d < 4f
 - (4) 4d < 4p < 4f

IONISATION POTENTIAL

- **79**. The ionisation potential of isotopes of an element will be :-
 - (1) Same
 - (2) Different
 - (3) Depends on atomic masses
 - (4) Depends on number of neutrons
- **80**. The second ionisation potentials in electron volts of oxygen and fluorine atoms are respectively given by :-
 - (1) 35.1, 38.3
 - (2) 38.3, 38.3
 - (3) 38.3, 35.1
 - (4) 35.1, 35.1
- 81. A sudden large jump between the values of 2nd and 3rd IP of an element would be associated with the electronic configuration :
 (1) 1s², 2s² 2p⁶, 3s¹
 (2) 1s², 2s² 2p⁶, 3s² 3p⁵
 (3) 1s², 2s² 2p⁶, 3s² 3p²
 - (3) $1s^2$, $2s^2 2p^6$, $3s^2$ (4) $1s^2$, $2s^2 2p^6 3s^2$
- 82. Compared to the first ionisation potential, the value of second ionisation potential of an element is :(1) Negligible (2) Smaller
 (3) Greater (4) Double

83. In which of the following pairs, the ionisation energy of the first species is less than that of the second :-(2) S, P (1) O⁻, O²⁻ (3) N. P (4) Be+, Be The correct order of stability of Al^+ , Al^{+2} , Al^{+3} is :-84. (1) $Al^{+3} > Al^{+2} > Al^{+1}$ (2) $Al^{+2} > Al^{+3} > Al^{+3}$ (3) $Al^{+2} < Al^{+} > Al^{+3}$ (4) $Al^{+3} > Al^{+} > Al^{+2}$ 85. Least ionisation potential will be of :-(1) Be³⁺ (2) H (3) Li +2 (4) He⁺ **86**. Ionisation energy increases in the order :-(1) Be, B, C, N (2) B, Be, C, N (3) C, N, Be, B (4) N, C, Be, B **87**. Mg forms Mg(II) because of :-(1) The oxidation state of Mg is + 2(2) Difference between $I.P_1$ and $I.P_2$ is greater than 16.0 eV (3) There is only one electron in the outermost energy level of Mg (4) Difference between $I.P_1$ and $I.P_2$ is less than 11 eV **88**. Minimum first ionisation energy is shown by which electronic configuration:-(1) $1s^2 2s^2 2p^5$ (2) $1s^2 2s^2 2p^6 3s^2 3p^2$ (3) 1s² 2s² 2p⁶ 3s¹ (4) $1s^2 2s^2 2p^6$ **89**. With reference to ionisation potential which one of the following set is correct :-(1) Li > K > B(2) B > Li > K(4) Cs < Li < K(3) $C_{s} > L_{i} > K$ **90**. Successive ionisation energies of an element 'X' are given below (in K. Cal) IP_1 IP_{2} IP, IP_3 595 165 195 556 Electronic configuration of the element 'X' is:-(1) $1s^2$, $2s^22p^6$, $3s^23p^2$ (2) $1s^2 \cdot 2s^1$ (3) $1s^2$, $2s^22p^2$ (4) $1s^2$, $2s^22p^6$, $3s^2$ **91**. Second IP of which of the element is maximum-(1) Lithium (2) Oxygen (3) Nitrogen (4) Fluorine **92**. The energy needed to remove one electron from unipositive ion is abbreviated as :-(1) 1st I.P. (2) 3rd I.P. (3) 2nd I.P. (4) 1st E.A. **93**. Among the following elements (Whose electronic configuration is given below) the one having the highest ionisation energy is (1) [Ne] $3s^2 3p^3$ (2) [Ne] $3s^2 3p^4$ (4) [Ar] 3d¹⁰4s²4p² (3) [Ne] $3s^23p^5$

Z.\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-2\1-PERIODIC TABLE\02-EXERCISE.P65

ALLEN

94. The correct order of decreasing first ionisation energy is :-

 $\begin{array}{ll} (1) \ Si > Al > Mg > Na \\ (3) \ Al > Si > Mg > Na \\ (4) \ Mg > Li > Al > Si \\ \end{array}$

- 96. The element having highest I.P. is the from the two series C, N, O and Si, P, S :- (1) P (2) N (3) S (4) O
- 97. Lowest IP will be shown by the element having the configuration :-(1) [He] $2s^2$ (2) $1s^2$ (3) [He] $2s^2 2p^2$ (4) [He] $2s^2 2p^5$
- **98.** The strongest reducing agent among the following is:-

(1) Na (2) Mg (3) Al (4) K

- 99. Which ionisation potential (IP) in the following equations involves the greatest amount of energy:(1) K⁺ → K⁺² + e⁻
 (2) Li⁺ → Li⁺² + e⁻
 - (3) Fe \rightarrow Fe⁺ + e⁻ (4) Ca⁺ \rightarrow Ca⁺² + e⁻
- **100**. Values of first four ionisation potential of an elements are 68, 370, 400, 485. It belongs to which of the following electronic configuration:-(1) $1s^2 2s^1$ (2) $1s^2 2s^2 2p^1$ (3) $1s^2 2s^2 2p^6 3s^1$ (4) (1) and (3) both
- 102. Which of the following electronic configuration belongs to least and most metallic character respectively:(a) 1s² 2s¹
 (b) 5s² 5p⁵
 (c) 3s² 3p⁶ 4s¹
 (d) 1s² 2s² 2p⁵

(c) $3s^2 3p^4$	⁵ 4s ¹	(d) 1s ² 2s ²	2p ³
(1) a, b	(2) d, c	(3) b, a	(4) c, d

- 104. The correct values of ionisation energies (in kJ mol⁻¹) of Be, Ne, He and N respectively are
 (1) 786, 1012, 999, 1256
 (2) 1012, 786, 999, 1256
 - (3) 786, 1012, 1256, 999
 - (4) 786, 999, 1012, 1256

105. Following graph shows variation of I.P. with atomic number in second period (Li – Ne). Value of I.P. of Na (11) will be :-

- (1) Above Ne
- (2) Below Ne but above O
- (3) Below Li
- (4) Between N and O
- 106. Which one of the following has highest ionisation potential :- (1) Li⁺ (2) Mg⁺ (3) He (4) Ne
- 107. In which of the following pairs, the ionisation energy of the first species is less than that of the second
 (1) N, P
 (2) Be⁺, Be
 (3) N, N⁻
 (4) Ne, Ne⁺

108. Consider the following ionisation reactions

A(g) $\longrightarrow A^+(g) + e^-$ IE in (KJ/mol) is A_1 $A^+(g) \longrightarrow A^{+2}(g) + e^-$ IE in (KJ/mol) is A_2 $A^{+2}(g) \longrightarrow A^{+3}(g) + e^-$ IE in (KJ/mol) is A_3 then correct order of IE is :-(1) $A_1 > A_2 > A_3$ (2) $A_1 = A_2 = A_3$ (3) $A_1 < A_2 < A_3$ (4) $A_3 = A_2 < A_1$

109. $IE_1 IE_2$ and IE_3 of an element are 10 eV, 15 eV, 45 eV respectively, the most stable oxidation state of the element will be :-(1) + 1 (2) + 2 (3) + 3 (4) + 4

110. Select the correct order of I.E. :-(1) $Cl^- > Cl > Cl^+$ (2) $Cl^+ > Cl > Cl^-$ (3) $Cl > Cl^+ > Cl^-$ (4) $Cl^- > Cl^+ > Cl$

ELECTRON AFFINITY

- **111.** In the process $Cl_{(g)} + e^- \xrightarrow{\Delta H} Cl^-(g)$, ΔH is (1) Positive (2) Negative (3) Zero (4) None
- **112**. Process in which maximum energy is released: (1) $O \rightarrow O^{-2}$ (2) $Mg^+ \rightarrow Mg^{+2}$ (3) $Cl \rightarrow Cl^-$ (4) $F \rightarrow F^-$

113. Which of the following is energy releasing process (1) $X^- \rightarrow X(g) + e^-$

- $(2) O^{-}(g) + e^{-} \rightarrow O^{2-}$
- (3) O (g) \rightarrow O⁺ (g) + e⁻ (4) O (g) + e⁻ \rightarrow O⁻(g)

1101	vieulcui. Chemisii y			
114.	In which of the following ated:-	process ene	rgy is liber-	ELE
		(2) HCl \rightarrow l	$H^+ + Cl^-$	123.
	(3) Cl + e \rightarrow Cl ⁻	(4) O ⁻ + e -	→ 0 ⁻²	
115.	Element of which atom electron affinity:- (1) 35 (2) 17	ic number h (3) 9	nas highest (4) 53	124.
116.	 (1) OS (2) Tr The electron affinity (1) Of carbon is greater th (2) Of fluorine is less than (3) Of fluorine is less than (4) Of sulphur is less than 	ian oxygen iodine chlorine		125.
117.	Which of the following eler bivalent anion. (1) Fluorine (3) Chlorine	nent will form (2) Oxygen (4) Nitrogen		126.
118.	Energy absorbed in secon atom is called. (1) 1 st IP (3) 1 st EA	d electron ad (2) 2 nd EA (4) 2 nd IP	dition in an	
119.	The amount of energy relation X^{-} is minimum			127.
	+ $e^- \rightarrow X^{(g)}$ is minimum tively for :- (a) F (b) Cl Correct answer is :- (1) c & a (3) a & b	(c) N (2) d & b (4) c & b	(d) B	128. 129.
120 .	Which of the following ele expected to have highest (1) $2s^2 2p^0$ (3) $2s^2 2p^3$	t electron aff	-	
121.	Consider the following co (i) $O(g) + e^{-} \longrightarrow O^{-}(g)$ (ii) $F(g) + e^{-} \longrightarrow F^{-}(g)$ (iii) $Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$ (iv) $Na(g) \longrightarrow Na^{+}(g)$; incorrect statement is :- (1) ΔH_1 and ΔH_2 is less (2) ΔH_2 is more negative (3) ΔH_2 , ΔH_3 are negative	p) ; ΔH_1 ; ΔH_2 g) ; ΔH_3 ΔH_4 negative that e than ΔH_1	Ũ	130. 131.
	(4) ΔH_1 , ΔH_2 and ΔH_3 is positive	are negative	while ΔH_4	132 .
	In which of the following required :- (1) $F_{(g)}^{-} \longrightarrow F_{(g)} + e^{-}$ (2) $P_{(g)}^{-} \longrightarrow P_{(g)} + e^{-}$ (3) $S_{(g)}^{-} \longrightarrow S_{(g)} + e^{-}$ (4) $Cl_{(g)}^{-} \longrightarrow Cl_{(g)} + e^{-}$	process, lea	st energy is	
32		•		

ALLEN

ELEC	CTRONEGATIVITY							
123.	The correct set of electronegativity is :- (1) Li, H, Na (3) H, Li, Na	decreasing (2) Na, H, Li (4) Li, Na, H						
124.	Polarity of a bond can (1) Electron affinity (3) Electronegativity	(2) Ionisatior	n potential					
125 .	Electronegativity values for elements are useful in predicting :- (1) Bond energy of a molecule (2) Polarity of a bond (3) Nature of an oxide (4) All							
126 .	Mulliken scale of electron of :- (1) E. A. and EN of pa (2) E. A. and atomic siz (3) E.A. and I.P. (4) E.A. and bond energy	uling ze	he concept					
127.	The pair with min electronegativity is :- (1) F, Cl (2) C,H		rence in (4) Na, Cs					
128 .	Least electronegative electron		(4) Cs					
129 .	In which of the followin electronegativity of first of second element :- (1) Zr, Hf (2) K, Rb (3) Cl, S (4) None of the above							
130 .	The nomenclature of ICl (1) Size of I < Size of (2) Atomic number of I (3) E.N. of I < E.N. of (4) E. A. of I < E. A. of	Cl > Atomic nur Cl						
131 .	Among the following lead are respectively :- (a) $C - I$ (b) $N - O$ (1) d and c (2) a and d	(c) C – F	(d) P – F					
132.	If the ionisation potential EA and electronegativity following relation is corr (1) $2X - EA - IP = 0$ (2) $2EA - X - IP = 0$ (3) $2IP - X - EA = 0$ (4) All of the above	y is X then wh						

133. The properties which are not common to both groups 1 and 17 elements in the periodic table	1
are :- (1) Electropositive character increases down the groups	1

- (2) Reactivity decreases from top to bottom in these groups
- (3) Atomic radii increases as the atomic number increases
- (4) Electronegativity decreases on moving down the group
- **134.** Electronegativity of an element can be measured using :-
 - (1) Pauling's scale (2) Mulliken's scale (3) Both (4) None
- **135.** As we proceed across the period in periodic table, we find there is a decrease in :-
 - (1) Ionisation energy (2) Electron affinity
 - (3) Electronegativity (4) Atomic radii

- **136.** Which compound strongly absorb CO_2 ? (1) BeO (2) K₂O (3) H₃PO₄ (4) $P_4 O_6$
- **137.** The electronegativities of the following elements: H, O, F, S and Cl increase in the order :-(1) H < O < F < S < Cl(2) Cl < H < O < F < S(3) H < S < O < Cl < F(4) H < S < Cl < O < F
- **138.** Which of the following is different from other three oxides :-

(1) MgO	(2) SnO
(3) PbO	(4) ZnO

E	KERC	ISE-											ANS	WER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	3	1	1	2	2	4	2	4	3	2	1	3	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	2	2	3	1	1	1	3	4	1	3	1	1	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	3	3	2	1	2	4	1	3	2	2	3	3	2	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	3	3	2	1	2	3	4	3	1	1	2	2	4	1
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	4	4	3	3	3	1	3	4	1	3	1	4	2	1
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	4	3	4	1	3	4	3	2	4	2	2	4	3	2	4
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	1	3	3	2	3	2	1	4	2	3	1	2	1	3	3
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	1	4	3	2	2	2	3	4	3	2	3	2	2	4	2
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
Ans.	3	2	3	3	4	3	3	4	1	3	2	1	2	3	4
Que.	136	137	138												
Ans.	2	4	1												
															33

E	EXERCISE-II (Previous Year Questions)		AIPMT/NEET & A	IIMS (2006-2018)
1.	AIPMT 2006Which of the following is the most basic oxide? (1) SeO2 (2) Al2O3 (3) Sb2O3 (4) Bi2O3	8.	of increasing electron g sign for the elements	represents the correct orde gain enthalpy with negative O, S, F and Cl ? (2) Cl < F < O < S
_	AIPMT 2007			(4) $F < S < O < Cl$
2.	Identify the correct order of the size of the following		AIIMS 2	
	(1) $Ca^{2+} < K^+ < Ar < Cl^- < S^{2-}$	9.	Which is correct order	1
	(2) Ar < Ca ²⁺ < K ⁺ < Cl ⁻ <s<sup>2-</s<sup>		(1) Na > Al (3) Ga > Ca	(2) Mg > Al (4) Mg > Be
	(3) $Ca^{2+} < Ar < K^+ < Cl^- < S^{2-}$	_		
	(4) $Ca^{2+} < K^+ < Ar < S^{2-} < Cl^-$	10	AIPMT Mai	
	AIPMT 2008	10.		ctron gain enthalpy of Na
3.	The correct order of decreasing second ionisation		if IE_1 of $Na = 5.1 \text{ eV}$ (1) +0.2 eV	
	enthalpy of Ti(22), V(23), Cr(24) and Mn(25) is :		(1) +0.2 eV (3) -10.2 eV	
	(1) $Mn > Cr > Ti > V$		AIPMT Pre	
	(2) $Ti > V > Cr > Mn$	11.		tement in the following:
	(3) $Cr > Mn > V > Ti$		(1) Atomic radius of the	e elements increases as or
	(4) V > Mn > Cr > Ti		moves down the firs	t group of the periodic tab
	AIPMT 2009			elements decreases as on
4.	Which of the following oxides is not expected to react with sodium hydroxide ?		periodic table	ight in the 2 nd period of th
	(1) BeO (2) B_2O_3		-	onic species, smaller th
	(3) CaO (4) SiO ₂		radius	ne cation, smaller is the ion
5.	Amongst the elements with following electronic configurations, which one of them may have the highest ionization energy?		(4) Amongst isoelectr	onic species, greater th he anion, larger is the ion
	(1) $[Ne]3s^23p^1$ (2) $[Ne]3s^23p^3$		AIIMS 2	2013
	(3) $[Ne]3s^23p^2$ (4) $[Ar]3d^{10}4s^24p^3$	12.	The 1^{st} Ionisation enth	alpy of Na, Mg and Si ar
	AIPMT 2010			respectively then what w
5.	Among the elements Ca, Mg, P and Cl, the order			on enthalpy of Al i
	of increasing atomic radii is :-		kJmol ⁻¹ :-	
	(1) $Cl < P < Mg < Ca$		(1) > 766 kJmol ⁻¹	
	(2) $P < Cl < Ca < Mg$		(2) > 496 and < 737	kJmol ⁻¹
	(3) $Ca < Mg < P < Cl$	1	(3) > 737 and < 766	kJmol ⁻¹
	(4) Mg $<$ Ca $<$ Cl $<$ P		(4) > 496 kJmol ⁻¹	
7.	The correct order of the decreasing ionic radii among the following isoelectronic species is :-	13.	AIPMT : Which of the followin correctly represented ?	ng orders of ionic radii
	(1) K+ > Ca ²⁺ > Cl ⁻ > S ²⁻		(1) $H^- > H^+ > H$	
	(2) $Ca^{2+} > K^+ > S^{2-} > Cl^-$		(2) Na ⁺ < F^- < O^{2-}	
	(3) $Cl^- > S^{2-} > Ca^{2+} > K^+$			
	(4) $S^{2-} > Cl^- > K^+ > Ca^{2+}$	1	(4) $Al^{3+} > Mg^{2+} > N^{3-}$	-
	among the following isoelectronic species is :- (1) $K+ > Ca^{2+} > Cl^- > S^{2-}$ (2) $Ca^{2+} > K^+ > S^{2-} > Cl^-$ (3) $Cl^- > S^{2-} > Ca^{2+} > K^+$	13.	correctly represented $\stackrel{<}{_\sim}$ (1) H ⁻ > H ⁺ > H	

Z:\NODE02\B04I-B0\TARGET\CHEM\BNG\WODULE-2\1+FERODIC TABLE\02-EXERCISE.P65

ALLEN

ALI	.EX	
14.	Be^{2+} is isoelectronic with which of the following	
	ions?	22.
	(1) H+ (2) Li+	
	(3) Na ⁺ (4) Mg ²⁺	
15.	Acidity of diprotic acids in aqueous solutions	
	increases in the order :-	
	$(1) H_2 S < H_2 S e < H_2 T e$	
	$(2) H_2 Se < H_2 S < H_2 Te$	
	$(3) H_2 Te < H_2 S < H_2 Se$	
	$(4) H_2 Se < H_2 Te < H_2 S$	
16.	Reason of lanthanoid contraction is :-	
	(1) Negligible screening effect of 'f' orbitals	
	(2) Increasing nuclear charge	
	(3) Decreasing nuclear charge	
_	(4) Decreasing screening effect	
17	AIIMS 2014	23
17.	Correct order of atomic radius is :-	
	(1) $V > T_i$ (2) $C_i > S$	
	$(3) Rb > Cs \qquad (4) Ne > Be$	
18.	5	I —
	(1) $H_2S > H_2Se$ (2) $HI > HBr$	04
_	(3) HBr > HCl (4) $H_2Te > H_2S$	24.
19.	AIPMT 2015 The species Ar, K^+ and Ca^{2+} contain the same	
19.	number of electrons. In which order do their radii	25.
	increase ?	
	(1) $Ca^{2+} < Ar < K^+$ (2) $Ca^{2+} < K^+ < Ar$	
	(3) $K^+ < Ar < Ca^{2+}$ (4) $Ar < K^+ < Ca^{2+}$	L
20.	The number of d-electrons in Fe^{2+} (Z = 26) is not	26
	equal to the number of electrons in which one of	20.
	the following? (1) p-electrons in Cl (Z = 17)	
	(2) d-electrons in Fe (Z = 26)	
	(3) p-electrons in Ne (Z = 10)	
	(4) s-electrons in Mg (Z = 12)	
21.	Because of lanthanoid contraction, which of the	
	following pairs of elements have nearly same atomic	_
	radii ? (Numbers in the brackets are atomic	
	numbers). (1) Zr (40) and Nb (41)	27
	(1) Zr (40) and H6 (41) (2) Zr (40) and Hf (72)	
	(3) Zr (40) and Ta (73)	
	(4) Ti (22) and Zr (40)	
		1

	Re-AIPMT 2015
2.	The formation of the oxide ion, O^{2-} (g), from
	oxygen atom requires first an exothermic and then
	an endothermic step as shown below :
	$O(g) + e^- \rightarrow O^{(g)}$; $\Delta_f H^{\ominus} = -141 \text{ kJ mol}^{-1}$
	$O^{-}(g) + e^{-} \rightarrow O^{2-}_{(g)}$; $\Delta_{f}H^{\ominus} = +780 \text{ kJ mol}^{-1}$
	Thus process of formation of O^{2-} in gas phase is unfavourable even thought O^{2-} is isoelectronic with neon. It is due to the fact that,
	(1) Oxygen is more electronegative
	(2) Addition of electron in oxygen results in larger
	size of the ion
	(3) Electron repulsion outweighs the stability gained
	by achieving noble gas configuration
	(4) O^- ion has comparatively smaller size than
	oxygen atom
3.	Which is the correct order of increasing energy of
	the listed orbitals in the atom of titanium ?
	(At. no. Z = 22)
	(1) 3s 3p 3d 4s (2) 3s 3p 4s 3d
	(3) 3s 4s 3p 3d (4) 4s 3s 3p 3d
	AIIMS 2015
4 .	Smallest ionic radius is :-
	(1) La^{3+} (2) U^{3+}
	(3) Yb^{3+} (4) Cf^{3+}
5.	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding
5.	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding bonded electron in aluminate ion
5.	(3) Yb3+(4) Cf3+Electronic configuration of Al+3 with excludingbonded electron in aluminate ion(1) [Ne](2) [Ar]
5.	 (3) Yb³⁺ (4) Cf³⁺ Electronic configuration of Al⁺³ with excluding bonded electron in aluminate ion (1) [Ne] (2) [Ar] (3) [Ne]3s² (4) [Ar]4s²
	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excludingbonded electron in aluminate ion(1) $[Ne]$ (2) $[Ar]$ (3) $[Ne]3s^2$ (4) $[Ar]4s^2$ NEET-I 20 I6
	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding bonded electron in aluminate ion(1) $[Ne]$ (2) $[Ar]$ (3) $[Ne]3s^2$ (4) $[Ar]4s^2$ NEET-I 2016In which of the followirg options the order of
	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding bonded electron in aluminate ion(1) $[Ne]$ (2) $[Ar]$ (3) $[Ne]3s^2$ (4) $[Ar]4s^2$ NEET-I 2016In which of the following options the order of arrangement does not agree with the variation of
	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding bonded electron in aluminate ion(1) $[Ne]$ (2) $[Ar]$ (3) $[Ne]3s^2$ (4) $[Ar]4s^2$ NEET-I 2016In which of the following options the order of arrangement does not agree with the variation of property indicated against it ?
	$\begin{array}{cccc} (3) \ Yb^{3+} & (4) \ Cf^{3+} \\ \\ Electronic \ configuration \ of \ Al^{+3} \ with \ excluding \\ bonded \ electron \ in \ aluminate \ ion \\ (1) \ [Ne] & (2) \ [Ar] \\ (3) \ [Ne]3s^2 & (4) \ [Ar]4s^2 \\ \hline \hline \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline $
	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding bonded electron in aluminate ion(1) $[Ne]$ (2) $[Ar]$ (3) $[Ne]3s^2$ (4) $[Ar]4s^2$ NEET-I 2016In which of the following options the order of arrangement does not agree with the variation of property indicated against it ?(1) $Al^{3+} < Mg^{2+} < Na^+ < F^-$ (increasing ionic size)(2) $B < C < N < O$ (increasing first ionisation enthalpy)
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	(3) Yb ³⁺ (4) Cf ³⁺ Electronic configuration of Al ⁺³ with excluding bonded electron in aluminate ion (1) [Ne] (2) [Ar] (3) [Ne]3s ² (4) [Ar]4s ² NEET-I 2016 In which of the following options the order of arrangement does not agree with the variation of property indicated against it ? (1) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻ (increasing ionic size) (2) B < C < N < O (increasing first ionisation enthalpy) (3) I < Br < Cl < F (increasing electron gain enthalpy)
	(3) Yb ³⁺ (4) Cf ³⁺ Electronic configuration of Al ⁺³ with excluding bonded electron in aluminate ion (1) [Ne] (2) [Ar] (3) [Ne]3s ² (4) [Ar]4s ² NEET-I 2016 In which of the following options the order of arrangement does not agree with the variation of property indicated against it ? (1) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻ (increasing ionic size) (2) B < C < N < O (increasing first ionisation enthalpy) (3) I < Br < Cl < F (increasing electron gain enthalpy) (4) Li < Na < K < Rb (increasing metallic radius)
6.	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding bonded electron in aluminate ion (1) [Ne] (2) [Ar] (3) [Ne]3s ² (4) [Ar]4s ² NEET-I 2016 In which of the following options the order of arrangement does not agree with the variation of property indicated against it ? (1) $Al^{3+} < Mg^{2+} < Na^{+} < F^{-}$ (increasing ionic size) (2) $B < C < N < O$ (increasing first ionisation enthalpy) (3) $I < Br < Cl < F$ (increasing electron gain enthalpy) (4) Li < Na < K < Rb (increasing metallic radius)
6.	(3) Yb ³⁺ (4) Cf ³⁺ Electronic configuration of Al ⁺³ with excluding bonded electron in aluminate ion (1) [Ne] (2) [Ar] (3) [Ne]3s ² (4) [Ar]4s ² NEET-I 2016 In which of the following options the order of arrangement does not agree with the variation of property indicated against it ? (1) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻ (increasing ionic size) (2) B < C < N < O (increasing first ionisation enthalpy) (3) I < Br < Cl < F (increasing electron gain enthalpy) (4) Li < Na < K < Rb (increasing metallic radius) AIIMS 2016 The biggest gap in electronegativity is :-
6.	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding bonded electron in aluminate ion (1) $[Ne]$ (2) $[Ar]$ (3) $[Ne]3s^2$ (4) $[Ar]4s^2$ NEET-I 2016 In which of the following options the order of arrangement does not agree with the variation of property indicated against it ? (1) $Al^{3+} < Mg^{2+} < Na^{+} < F^{-}$ (increasing ionic size) (2) $B < C < N < O$ (increasing first ionisation enthalpy) (3) $I < Br < CI < F$ (increasing electron gain enthalpy) (4) Li < Na < K < Rb (increasing metallic radius) AIIMS 2016 The biggest gap in electronegativity is :- (1) $B \rightarrow A\ell$
6.	(3) Yb ³⁺ (4) Cf ³⁺ Electronic configuration of Al ⁺³ with excluding bonded electron in aluminate ion (1) [Ne] (2) [Ar] (3) [Ne]3s ² (4) [Ar]4s ² NEET-I 2016 In which of the following options the order of arrangement does not agree with the variation of property indicated against it ? (1) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻ (increasing ionic size) (2) B < C < N < O (increasing first ionisation enthalpy) (3) I < Br < Cl < F (increasing electron gain enthalpy) (4) Li < Na < K < Rb (increasing metallic radius) AIIMS 2016 The biggest gap in electronegativity is :- (1) B \rightarrow A ℓ (2) A $\ell \rightarrow$ Ga
5. 6. 7.	(3) Yb^{3+} (4) Cf^{3+} Electronic configuration of Al^{+3} with excluding bonded electron in aluminate ion (1) $[Ne]$ (2) $[Ar]$ (3) $[Ne]3s^2$ (4) $[Ar]4s^2$ NEET-I 2016 In which of the following options the order of arrangement does not agree with the variation of property indicated against it ? (1) $Al^{3+} < Mg^{2+} < Na^{+} < F^{-}$ (increasing ionic size) (2) $B < C < N < O$ (increasing first ionisation enthalpy) (3) $I < Br < CI < F$ (increasing electron gain enthalpy) (4) Li < Na < K < Rb (increasing metallic radius) AIIMS 2016 The biggest gap in electronegativity is :- (1) $B \rightarrow A\ell$

35

NEET(UG) 2017

- The element Z = 114 has been discovered recently. **28**. It will belong to which of the following family/group and electronic configuration ? (1) Carbon family, [Rn] $5f^{14} 6d^{10} 7s^2 7p^2$

 - (2) Oxygen family, [Rn] $5f^{14} 6d^{10} 7s^2 7p^4$
 - (3) Nitrogen family, [Rn] 5f¹⁴ 6d¹⁰ 7s² 7p⁶
 - (4) Halogen family, [Rn] $5f^{14}$ $6d^{10}$ $7s^2$ $7p^5$

AIIMS 2017

- 29. If the I.P. of Na, Mg & Si are 496, 737 & 786 kJ/mole respectively then I.P. of Al is (1) 760 kJ/mole (2) 756 kJ/mole (3) 577 kJ/mole (4) 986 kJ/mole
- 30. Which of the following not reacts with NaOH (2) Bi_2O_3
 - (1) As_2O_3 (4) SeO₂
 - $(3) Sb_{2}O_{3}$

NEET(UG) 2018

- 31. Which of the following oxides is most acidic in nature?
 - (1) MgO (2) BeO (3) BaO (4) CaO
- 32. The correct order of atomic radii in group 13 elements is
 - (1) B < Al < In < Ga < Tl
 - (2) B < Al < Ga < In < Tl
 - (3) B < Ga < Al < Tl < In
 - (4) B < Ga < Al < In < Tl

AIIMS 2018

33. In which of the following elements d-orbitals do not have any electrons in their outer electronic configuration :-

(1) Am (3) Th (4) Lu (2) Lr

E	EXERCISE-II												ANS	WER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	1	3	3	2	1	4	3	2	2	3	2	2	2	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	4	1	2	1	2	3	2	3	1	2,3	1	1	3	2
Que.	31	32	33												
Ans.	2	4	1												

LEN					_	Pre-Medical : Chemistry				
XE	RCISE-III	(Analytica	I Questions)		Check Your Understanding				
Wh	ich of the foll	owing is corre	ect match :-		7.	Which of the following statements is wrong :- (1) van der Waal's radius of iodine is more than				
	Atomic number	Group number	Period number			(1) value of values induces of routine is more that its covalent radius(2) All isoelectronic ions belong to same period of				
(A)	46	10	6			the periodic table				
(B)	58	3	6			(3) IE_1 of N is higher than that of O while IE_2 or O is higher than that of N				
(C)	56	2	6			(4) The electron affinity of N is less than that of				
	42 Only B, C, E Only B, C		5 Dnly A, B, C Dnly A, C, D		8.	The inter nuclear distance in H_2 and Cl_2 molecule are 74 and 198 Å. respectively. The bond leng of HCl may be (EN of H = 2.1 Cl = 3.0)				
_	ıghter eleme	nt will be in -			9.	 (1) 136 Å (2) 272 Å (3) 135.919 Å (4) 271.919 Å These are 3 elements A, B and C. Their atom 				
ator Ag (1) 3		f elements plac (2)	the same group and above and b 29, 79 29, 65			number are Z_1 , Z_2 , Z_3 respectively. If $Z_3 - Z_1 =$ and $\frac{Z_1 + Z_3}{2} = Z_2$ and the electronic configuration of element C is [Ar] $3d^24s^2$ then correct order of				
(n–2 figu (1) I		of - (2) A	guration – e of n = 7 the Actinides None	con-	10.	atomic radius is :- (1) $A^{+2} < B^{+3} < C^{+4}$ (2) $A^{+2} = B^{+3} = C^{+4}$ (3) $A^{+2} > B^{+3} > C^{+4}$ (4) $B^{+3} < A^{+2} = C^{+4}$ M(g) $\rightarrow M^{+}$ (g) $+ e^{-}, \Delta H = 100 \text{ eV}$ M(g) $\rightarrow M^{2+}$ (g) $+ 2e^{-}, \Delta H = 250 \text{ eV}$				
_	39 A D				11.	Which is incorrect statements :- (1) I_1 of M(g) is 100 eV (2) I_2 of M(g) is 150 e (3) I_2 of M(g) is 250 eV (4) none				
inco (1) (2)	orrect statem A is an alka Atomic num III B group	ent is :- line earth me ber of B is 10	3 which belon	gs to		Successive ionisation energies of an element A 100 eV, 150 eV, 181 eV, 2000 eV, 2200 correct statement regarding A is :- (1) Element 'A' may be metal (2) Formula of oxide of A may be A ₂ O ₃ (3) Oxide of element A may be amphoteric (4) All are correct				
	of D are 72	ber, group no. IVB and 6 th uranic elemen		mber	12.	$K \xrightarrow{a} K^{+} \xrightarrow{b} K^{+2},$ $Ca \xrightarrow{c} Ca^{+} \xrightarrow{d} Ca^{+2}$				
tabl	e then how shell :-	many of the	resent in peri em contain e ⁻ 58 (4) 55	in f		If a,b,c,d are ionisation energies, the which of the following order is not correct – (1) $c > a$ (2) $b > a$ (3) $d > c$ (4) $b < d$				
						37				

13. Which of the following diagrams is correctly related to electron affinity of halogens :-

- Elements of which group form anions most readily:-
 - (1) Oxygen family (2) Nitrogen group
 - (3) Halogens (4) Alkali metals
- **15.** Which is the weakest base among NaOH, $Ca(OH)_2$, KOH and $Zn(OH)_2$:-(1) NaOH (2) KOH (3) $Ca(OH)_2$ (4) $Zn(OH)_2$
- 16. If Electron affinity of an element M is x kJ/mol than ionisation potential of this element :(1) More than x (2) less than x
 - (3) equal to x (4) more than 2x
- 17. Identify the incorrect are :-(1) Shielding constant (σ) : Li < Na < K < Rb (2) Z_{eff} : Li > Na > K > Rb (3) Ionic radius : O²⁻ > F⁻ > Na⁺ > Mg²⁺ (4) Atomic size : Li < Na < K < Rb
- **18.** If electronegativity values of element X and Y are 3.8 and 1.8 respectively, then percentage of ionic character in compound XY is :
 - (1) 50
 (2) 46

 (3) 64
 (4) 36
- 19. Arrange Cl, F, F⁻, Cl⁻ in increasing order of ionisation potential ?
 (1) F⁻ < Cl⁻ < Cl < F
 (2) Cl⁻ < F⁻ < Cl⁻ < F
 (3) Cl⁻ < F⁻ < F < Cl
 - (4) $F^- < Cl^- < F < Cl$
- 20. The order of ionisation potential between He⁺ ion and H-atom (both species are in gaseous state) is:(1) I.P. (He⁺) = I.P. (H)
 (2) I.P. (He⁺) < I.P. (H)
 (3) I.P. (He⁺) > I.P. (H)
 - (4) Cannot be compared

- Electronic configuration are :-21. A - $1s^2 2s^2 2p^1$ $B - 1s^2 2s^2 2p^6 3s^1 3p^2$ $C - 1s^2 2s^1 2p^1$ $D - 1s^2 2s^2 2p^5 3s^1$ then which among these will belong to the same group in the periodic table? (2) A, B, C (1) A & B (3) A, B, D (4) A, B, C, D 22. The $IE_1 \& IE_2$ of three elements A, B & C are given as (IE in KJ/mol). А В С 400 550 1150 IE₁ IE₂ 2650 1070 2090 Identify the element which represent a non-metal:-(2) B (1) A (3) Both A & B (4) C The maximum 2^{nd} I. E. is of :-23. (1) Mn (2) Sc (3) Cr (4) Ti 24. In which of the following arrangements the order is NOT according to the property indicated against it? (1) $Al^{3+} < Mg^{2+} < Na^+ < F^-$ - increasing ionic size (2) B < C < N < O - increasing first ionization energy (3) I < Br < F < Cl - increasing electron gain ethalpy (with negative sign) (4) Li < Na < K < Rb - increasing metallic radius 25. Which one of the following orders represents the correct sequence of the increasing basic nature of the given oxides ?
 - (1) $Na_2O < K_2O < MgO < Al_2O_3$ (2) $K_2O < Na_2O < Al_2O_3 < MgO$ (3) $Al_2O_3 < MgO < Na_2O < K_2O$ (4) $MgO < K_2O < Al_2O_3 < Na_2O$
- **26.** The outer electron configuration of Gd (Atomic No. : 64) is :-(1) $4f^4 5d^4 6s^2$ (2) $4f^7 5d^1 6s^2$ (3) $4f^3 5d^5 6s^2$ (4) $4f^8 5d^0 6s^2$

27. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is :- (1) I > Br > Cl > F
(2) F > Cl > Br > I
(3) Cl > F > Br > I
(4) Br > Cl > I > F

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-2\1-PERIODIC TABLE\02-EXERCISE.P65

Ε

38

ALL	.EN										Р	re-Me	edical	: Che	mistry
28.	The first value o (1) - 2. (3) - 10	f elect 55 eV	ron gain 1	n entha (2)		Na+ wi eV		34.	repre entha specie (1) F ·	esents t Ilpy (wit es :- < Cl < 9	he cor h nega O < S	rect or tive sign (2	der of n) of th 2) S < (electro e given D < Cl ·	
29.	For ele followir (1) Br > (3) Br >	ng is co ∙ F	-	(2	ogens) F > C) F > I		of the	35.	Fours eleme numb	ents ar vers. Wł	ive men e liste nich on	nbers of d belov e of the	w with em is ex	t row tr their pected	c O ansition atomic to have
30.	The pai (1) Al(C (2) Be(C (3) B(O (4) Be(C	0H) ₃ , I DH) ₂ , 1 H) ₃ , B	LiOH Mg(OH Se(OH) ₂)2	oxide is	3		36.	 the highest third ionization enthalpy :- (1) Vanadium (Z = 23) (2) Manganese (Z = 25) (3) Chromium (Z = 24) (4) Iron (Z = 26) Which of the following statement is correctly for the following high I.P. have high E 						EA also
31.	Electron of an at (1) Elec (2) Elec (3) Gair (4) Loos	trons g trons g trons g of ele	which get repe get attra ectron	: elled	sureme	nt of ca	apacity	37.	(2) 2nd I.P. of noble gas is less than 1^{st} I.P (3) I.P. of Be is more than 'B' (4) 2^{nd} I.P. of 'N' is more than 2^{nd} I.P. of 'C The incorrect statement is :- (1) 2^{nd} I.P. = Se > As (2) 1^{st} I.P. = C ⁺² > N ⁺² (3) 3^{rd} I.P. = F > O						
32.	The io isoelect (1) an ir from	ronic. ncrease	Their i	onic ra O ²⁻ to I	dii shov	N		38. 39.	Which (1) N (3) O	n of the < 0 < < S <	followi S F < C	ing E.A (2 I (4	. order 2) Cl > 4) B <	is not c O > N C < Si	
	(2) a de	crease n Na+ gnifica	to Al ³⁺ nt incre	D ²⁻ to F ease fro	om O ^{2–}	to Al ³	+		is cor (1) At (2) Io: (3) El	< B					
33.	Ionic ra (1) Dire nucl (2) Inver (3) Inve nucl (4) Direc	:- oportio arge oportio roportio arge	nal to s nal to el onal to	quare o ffective s square	f effect nuclear of effec	ive charge tive	40.	 (4) Electronegativity - Li < Be < B 0. The incorrect statement among the follow (1) Helium has the highest first I.P. in the table (2) The process O⁻(g) + e⁻ → O²⁻(g) is ended (3) The electron affinities of S and P are letthat O and N respectively (4) In any period, the first ionisation potenoble gas is the highest 							
	XERC	ISE-	111										ANS	WER	KEY
Que	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	. 1	3	2	2	2	4	2	3	3	3	4	4	3	3	4

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	3	2	2	2	4	2	3	3	3	4	4	3	3	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	2	1	3	1	4	3	2	3	2	3	2	4	4
Que.	31	32	33	34	35	36	37	38	39	40					
Ans.	2	4	2	3	2	3	4	2	4	3					

40

		, inclinent y			1	
E	XERCISE-	IV (Asse	rtion & Re	eason)		Target AIIMS
			Directio	ns for Asse	rtion	a & Reason questions
	these Q	uestions y	ou are requ	ired to choos	se any	ed as Assertion and Reason. While answering y one of the following four responses.
(A)						a correct explanation of the Assertion.
(B)	If both Asse	ertion & Re	eason are Tr	ue but Reason	n is not	ot a correct explanation of the Assertion.
(C)	If Assertior	n is True bu	t the Reasor	n is False.		
(D)	If both Asse	ertion & Re	eason are fal	se.	1	
1.	Assertion of Argon are Reason : 2 Ar ⁺ (3s ² 3p ⁵). (1) A	e 56.8 eV a Zeff of Ar	nd 36.8 eV	respectively.	9.	Assertion : Atomic radius increases, descendirdown the group.Reason : On going down the group EN increase(1) A(2) B(3) C(4) D
2.	Assertion than chlorine Reason : Ic than chlorine (1) A	e. onisation po	2	U	10.	 Assertion : Atomic radius of inert gases at largest in the period Reason : Effective nuclear charge of inert gase are minimum (1) A (2) B (3) C (4) D
3.	Assertion Reason : F (1) A			tive element (4) D	11.	Assertion : Second IP of oxygen is greater that that of fluorine Reason : Oxygen aquires stable half fille electronic configuration after loosing one electronic
4.	Assertion that of Alum Reason : group (1) A	inium	-		12.	 (1) A (2) B (3) C (4) D Assertion : Electronegativity of nitrogen greater than carbon. Reason : Nitrogen has stable half fille
5.	Assertion minimum. Reason : Ef in a period i (1) A	fective nucle	ear charge of		13.	electronic configuration. (1) A (2) B (3) C (4) D Assertion : Atomic size of Boron is larger that Beryllium
6.	Assertion : atom. Reason : their parent (1) A	Z _{eff} of anio	-		14.	 Reason : Number of shell in Boron is greated than Beryllium (1) A (2) B (3) C (4) D Assertion : Alkali metals have least 1st I.P. in the respective period
7.	Assertion : not affects el Reason : El shared electr	Stable elec lectronegati N is the tend	tronic config vity. ency of an at	uration does om to attract	15.	Reason : Alkali metals have only one electroin the valence shell.(1) A(2) B(3) C(4) D Assertion : Atomic size of Na is larger than Mathematical s
8.	Assertion element. Reason : electrons. (1) A				16.	Reason :No. of shell in Mg is more than N(1) A(2) B(3) C(4) D Assertion : Na ⁺ and Cl ⁻ have similar ionic radiu Reason : Z_{eff} in Na ⁺ and Cl ⁻ are same.(1) A(2) B(3) C(4) D

.EN

ALI	.em						Pro	e-Medical	: Chemistry
	than He. Reason : (1) A	Zeff of Li ⁺ (2) B	n potential of is greater th (3) C Ca ⁺² is large	(4) D	22 .	is lower t	han oxygen. : Across th ecreases.		gy of nitrogen [AIIMS-2005] ective nuclear (4) D
10.			-	Ca ⁺² is more (4) D	23.		2	less acidic t electronegativ (3) C	2
19.	in the peri	od. Alkali meta		s is maximum mallest atomic (4) D	24. 25.	similar. Reason (1) A Assertic	: Cs and Fr (2) B	belong to sa (3) C	d Fr are almost ame group. (4) D ement whereas
20. 21	Reason : (1) A	Zeff. in a (2) B	period decre (3) C	(4) D			² , 4p ⁰ , 4d ⁰ .	ell configura (3) C	ation of Zn is (4) D
21.	of B.		-	eater than that nergy than 2s. (4) D					

EX	(ERC	ISE-I	V				ANSWER KEY							KEY	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	4	2	3	1	3	1	4	3	3	1	2	4	2	3
Que.	16	17	18	19	20	21	22	23	24	25					
Ans.	4	1	4	3	3	3	4	4	2	2					
,,					•					-					41

			RCISE.P65
			ABLE\02-EXE
			G/MODULE-2
			DAI-BOVTARGE
			NNODE02\B6
42			Ē