RACE # 30		ATC	(CHEMISTRY							
SCH	HRODINGER W	AVE EQUATION									
1.	The radial prob node then orbit	The radial probability distribution curve of an orbital of H has '4' local maxima. If orbit node then orbital will be :									
	(A) 7f	(B) 8f	(C) 7d	(D) 8d							
2.	Which orbital is represented by the complete wave function, ψ_{420} ?										
	(A) 4s	(B) 4p	(c) 4d	(D) 4f							
3.	The orbitals amongest the following having three nodal sufaces:										
	(A) 1s	(B) 2s	(C) 3s	(D) 4s							
4.	The number of radial nodes of 3s and 2p orbitals are respectively:										
	(A) 2, 0	(B) 0,2	(C) 1, 2	(D) 2 , 1							
5.	For an electron, with $n = 3$ has only one radial node. The orbital angular momentum of the electron Will be:										
	(A) 0	(B) $\sqrt{6}\frac{h}{2\pi}$	(C) $\sqrt{2} \frac{h}{2\pi}$	(D) $3\left(\frac{h}{2\pi}\right)$							
6.	How many angular nodes does a d-orbital possess?										
	(A) 1	(B) 2	(C) 3	(D) 4							
7.	How many radi	al nodes does a 3d-orbit	tal possess?								

- (A) 0 (B) 1 (C) 2 (D) 3
- 8. The radial part of schrodinger wave equation for hydrogen atom is

$$\Psi(\mathbf{r}) = \frac{1}{16\sqrt{4} a_0^{3/2}} (\sigma - 1) (\sigma^2 - 8\sigma + 12) e^{-\sigma/2}$$

Where $a_0 = \text{constant} \& \sigma = 2r/na_0$; n = principle quantum numberSelect the correct statements :

(A) Distance of nearest radial node from the nucleus is $2a_0$.

- (B) Distance of farthest radial node from the nucleus is $12a_0$.
- (C) Number of maxima in the curve $4\pi r^2 \psi^2(r)$ vs r are 4.
- (D) $\psi(r)$ is for 4p orbital.
- 9. Observe the following plots carefully :

Identify the correct option (s) -

- (A) Ψ_2 may represent a 2p-orbital
- (B) Ψ_1^2 should represent 2s-orbital
- (C) Variation of probability with r in each direction is same for orbital-I
- (D) Variation of probability with r in each direction is same for orbital-II

10. The schrodinger wave equation for hydrogen atom is

$$\psi(\mathbf{r}) = \frac{1}{16\sqrt{4}} \left(\frac{Z}{a_0}\right)^{3/2} \left\{ \left[(\sigma - 1)(\sigma^2 - 8\sigma + 12) \right] e^{-\sigma/2} \right\} \text{ where } a_0 \& Z \text{ are constant, } \sigma = \frac{2Zr}{a_0} \text{ then select correct statement.}$$

- (A) Minimum distance of radial node from nucleus is $\frac{a_0}{Z}$
- (B) Maximum distance of radial node from nucleus is $\frac{a_0}{7}$
- (C) $\psi(r)$ is for 4s-orbital
- (D) $\psi(r)$ is for 5p-orbital
- 11. Which of the following is the nodal plane of d_{xy} orbital ?

Paragraph for Question 12 to 14

For an orbital of H-like species radial function is :

$$R(r) = \frac{1}{9\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} (4 - \sigma) \sigma e^{-\sigma/2}$$

where $\sigma = \frac{2Zr}{na_0}$; $a_0 = 0.5$ Å, Z = atomic number of species, r = radial distance from nucleus.

- 12. Which of the following statements about the orbital whose radial function is given above is CORRECT?(A) This is an s-orbital

 - (B) This cannot be p-orbital
 - (C) Principal quantum number (n) of this orbital is 4
 - (D) This orbital has one radial node.
- 13. At what distance from the nucleus will this orbital have a radial node in Be^{+3} ion ?

(A) 0.5 Å (B) 2 Å (C) 1 Å (D) 0.75 Å

- 14. Choose the correct statement among the following
 - (A) Radial distribution function ($\Psi^2.4\pi r^2 dr$) give probability at a particular distance along one chosen direction
 - (B) $\Psi^2(r)$ give probability density at a particular distance over a spherical surface
 - (C) For 's' orbitals $\Psi(\mathbf{r}, \theta, \phi)$ is dependent on θ and ϕ
 - (D) '2p' orbital with quantum numbers. n = 2, $\ell = 1$, m = 0, also shows angular dependence

Answers

RACE # 30

1.	(A) 2.	(C)	3.	(D)	4.	(A)	5.	(C)	6.	(B)	7.	(A)	8	3.	(ABC)
9.	(ABC)		10.	(C)	11.	(C)	12.	(D)	13.	(D)	14.	(D)			