SALT ANALYSIS

1. In the scheme given below, X and Y, respectively, are [JEE (Advanced) 2023] Metal halide $\xrightarrow{\text{aq. NaOH}}$ White precipitate (P) + Filtrate (Q) aq.H,SO, → X (a coloured species in solution) $MnO(OH)_2$, \rightarrow Y (gives blue-coloration with KI-starch paper) (A) CrO_4^{2-} and Br_2 (B) MnO_4^{2-} and Cl_2 (C) MnO_4^- and Cl_2 (D) MnSO₄ and HOCl 2. A mixture of two salts is used to prepare a solution **S**, which gives the following results: White S White DiluteHCl(aq.)
Room temperature precipitate(s) precipitate(s) ← DiluteNaOH(aq.)
Room temperature (aq.solutionof thesalts) only only The correct option(s) for the salt mixture is(are) [JEE (Advanced) 2021] (A) $Pb(NO_3)_2$ and $Zn(NO_3)_2$ (B) $Pb(NO_3)_2$ and $Bi(NO_3)_3$ (C) AgNO₃ and Bi(NO₃)₃ (D) $Pb(NO_3)_2$ and $Hg(NO_3)_2$ Paragraph for Q. No. 3 and 4 The reaction of $K_3[Fe(CN)_6]$ with freshly prepared $FeSO_4$ solution produces a dark blue precipitate called Tumbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the $FeSO_4$ solution in complete absence of air produces a white precipitate X, which turns blue in air. Mixing the FeSO₄ solution with NaNO₃, followed by a slow addition of concentrated H_2SO_4 through the side of the test tube produces a brown ring. [JEE (Advanced) 2021] 3. Precipitate X is (A) $Fe_4[Fe(CN)_6]_3$ (B) $Fe[Fe(CN)_6]$ (C) K_2 Fe[Fe(CN)₆] (D) $KFe[Fe(CN)_6]$ Among the following, the brown ring is due to the formation of 4. (A) $[Fe(NO)_2(SO_4)_2]^{2-}$ (B) $[Fe(NO)_2(H_2O)_4]^{3+}$ (C) $[Fe(NO)_4(SO_4)_2]$ (D) $[Fe(NO)(H_2O)_5]^{2+}$ A colorless aqueous solution contains nitrates of two metals, X and Y. When it was added to an aqueous 5. solution of NaCl, a white precipitate was formed. This precipitate was found to be partly soluble in hot water to give a residue P and a solution Q. The residue P was soluble in aq. NH_3 and also in excess sodium thiosulfate. The hot solution Q gave a yellow precipitate with KI. The metals X and Y,

respectively, are

(A) Ag and Pb

(B) Ag and Cd

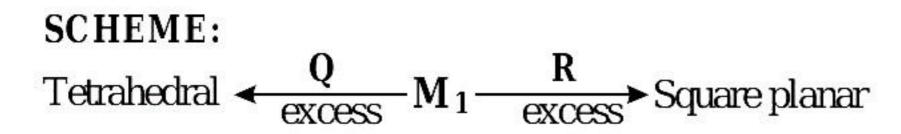
(C) Cd and Pb

[JEE(Advanced) 2020]

(D) Cd and Zn

	(A) SnCl ₂ .2H ₂ O is a reducing agent.					
	(B) SnO_2 reacts with KOH to form $K_2[Sn(OH)_6]$.					
	(C) A solution of $PbCl_2$ in HCl contains Pb^{2+} and Cl^- ions.					
	(D) The reaction of Pb_3O_4 with hot dilute nitric acid to give PbO_2 is a redox reaction.					
7.	The green colour produced in the borax bead test of a chromium(III) salt is due to –					
					[JEE(Advan	ced) 2019]
	(A) $Cr(BO_2)_3$ (B)	CrB	(C) Cr ₂ (B ₄ O ₇	$)_3$ (I	O) Cr ₂ O ₃	
8.	The correct option(s) to distin	guish nitrate salts	s of Mn ²⁺ and Cu ²	⁺ taken separa	tely is (are):-	
					[JEE(Advan	ced) 2018]
	(A) Mn ²⁺ shows the characteristic green colour in the flame test					
	(B) Only Cu^{2+} shows the formation of precipitate by passing $\mathrm{H}_2\mathrm{S}$ in acidic medium					
	(C) Only Mn^{2+} shows the formation of precipitate by passing $\mathrm{H}_2\mathrm{S}$ in faintly basic medium					
	(D) Cu ²⁺ /Cu has higher reduction potential than Mn ²⁺ /Mn (measured under similar conditions)					
9.	The reagent(s) that can selectively precipiate S^{2-} from a mixture of S^{2-} and SO_4^{2-} in aqueous soltuion					
	is(are):				[JEE(Advan	iced) 2016]
	(A) CuCl ₂		(B) BaCl ₂			
	(C) Pb(OOCCH ₃) ₂		(D) Na ₂ [Fe(CN) ₅ NO]		
10.	In the following reaction sequ	ience in aqueous s	coluiton, the specie	sX,Y andZ	respectively, are) –
					[JEE(Advan	ced) 2016]
	$S_2O_3^{2-}$	Ag ⁺ X — A clear solution	Y With ting With ting White precipitate	me Z black precipitate		
	(A) $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$,	Ag ₂ S	(B) [Ag(S ₂ O ₃) ₃] ⁵⁻ , Ag ₂ SO ₃	3, Ag ₂ S	
	(C) [Ag(SO ₃) ₂] ³⁻ , Ag ₂ S ₂ O ₃ , A	y g	(D) [Ag(SO ₃)	₃] ³⁻ , Ag ₂ SO ₄ ,	Ag	
11.	The pair(s) of ions where BOTH the ions are precipitated upon passing H ₂ S gas in presence of dilute H					
	is(are)				[JEE(Advan	ced) 2015]
	(A) Ba^{2+} , Zn^{2+}		(B) Bi^{3+} , Fe^{3+}			
	(C) Cu ²⁺ , Pb ²⁺		(D) Hg ²⁺ , Bi ³	+		
12.	. Among PbS, CuS, HgS, MnS, Ag ₂ S, NiS, CoS, Bi ₂ S ₃ , and SnS ₂ the total number of BLACK of					
	sulphides is				[JEE(Advan	ced) 2014]

[JEE(Advanced) 2020]


Choose the correct statement(s) among the following.

6.

Paragraph for Q. 13 and Q. 14

An aqueous solution of metal ion M_1 reacts separately with reagents Q and R in excess to give tetrahedral and square planar complexes, respectively. An aqueous solution of another metal ion M_2 always forms tetrahedral complexes with these reagents. Aqueous solution of M_2 on reaction with reagent S gives white precipitate which dissolves in excess of S. The reactions are summarized in the sheme given below.

[JEE(Advanced) 2014]

$$\begin{array}{c} \text{Tetrahedral} & \stackrel{Q}{\longleftarrow} M_2 \xrightarrow{R} \text{Tetrahedral} \\ & & \\ S \text{, stoichiometric amount} \\ & & \\ \text{White precipitate} \xrightarrow{S} \text{precipitate dissolves} \\ \end{array}$$

- 13. M_1 , Q and R, respectively are
 - (A) Zn²⁺, KCN and HCl

(B) Ni²⁺, HCl and KCN

(C) Cd²⁺, KCN and HCl

(D) Co²⁺, HCl and KCN

- 14. Reagent S is
 - (A) $K_4[Fe(CN)_6]$
- (B) Na_2HPO_4
- (C) K_2CrO_4
- (D) KOH

SOLUTIONS

1. Ans. (C)

Sol.
$$MnCl_2 + NaOH \rightarrow Mn(OH)_2 \downarrow + NaCl$$

(P) (Q)
(white ppt.) (Filterate)

$$\frac{\text{Mn(OH)}_2 - \frac{\text{PbO}_2 + \text{H}^+(\text{H}_2\text{SO}_4)}{\text{heat}} \rightarrow \frac{\text{MnO}_4^- + \text{Pb}^{2+}}{\text{Purple}}$$

CI
$$\stackrel{\text{MnO}(OH)_2/\text{conc. H}_2SO_4/D}{\downarrow}$$
 Cl₂ \downarrow 2I \downarrow Starch + l₂) + 2CI blue coloration

2. Ans. (A, B)

Sol.
$$Pb(NO_3)_2 \xrightarrow{\text{dil.HCl}} PbCl_2 \downarrow$$
White PPt.

$$\operatorname{Bi}(\operatorname{NO}_3)_3 \xrightarrow{\operatorname{dil.HCl}} \operatorname{BiCl}_3$$

Water Soluble

$$Hg(NO_3)_2 \xrightarrow{\text{dil.HCl}} HgCl_2$$

Water Soluble

$$AgNO_3 \xrightarrow{dil.HCl} AgCl \downarrow$$
White PPt.

$$\operatorname{Zn}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{dil}.\operatorname{HCl}} \operatorname{ZnCl}_2$$
WaterSoluble

$$Pb(NO_3)_2 \xrightarrow{NaOH(dil.)} Pb(OH)_2 \downarrow$$
White PPt.

$$\operatorname{Zn}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{NaOH}(\operatorname{dil}.)} \operatorname{Zn}(\operatorname{OH})_2 \downarrow$$
White PPt.

$$\text{Bi}(NO_3)_3 \xrightarrow{\text{NaOH(dil.)}} \text{Bi}(OH)_3 \downarrow$$
White PPt.

$$AgNO_{3} \xrightarrow{NaOH(dil.)} Ag_{2}O$$
Brown PPt.

$$\operatorname{Hg}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{NaOH}(\operatorname{dil}.)} \operatorname{HgO} \downarrow_{\operatorname{YellowPPt.}}$$

3. Ans. (C)

Sol.
$$K_4[Fe(CN)_6] \xrightarrow{FeSO_4} K_2Fe[Fe(CN)_6]$$

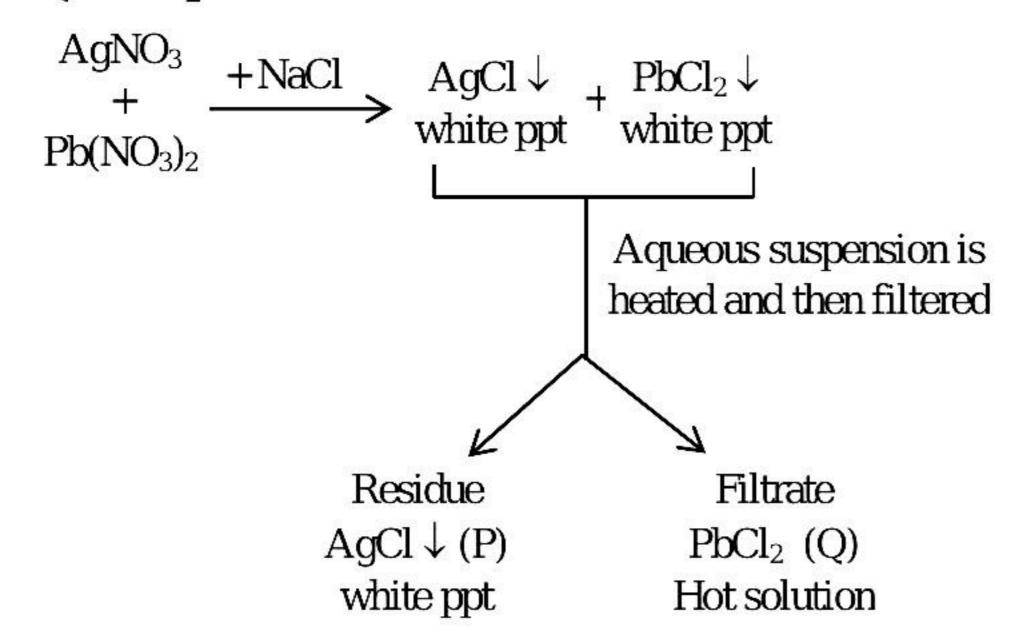
White precipitate

$$air$$

$$Fe_4[Fe(CN)_6]_3$$
(Prussian Blue)

4. Ans. (D)

Sol. FeSO₄
$$\xrightarrow{\text{NaNO}_3}$$
 $\text{Slow addition of conc. H}_2\text{SO}_4$ $\text{Sol. Fe}(H_2\text{O})_5 \text{NO} \text{SO}_4$ (Brown Ring Complex)


5. Ans. (A)

Sol. X : Ag

P: AgCl

Y : Pb

 $Q: PbCl_2$

AgCl $+2NH_3$ solution $\rightarrow [Ag(NH_3)_2]Cl$

 $AgCl + 2Na_2S_2O_3$ solution $\rightarrow Na_3 [Ag(S_2O_3)_2] + NaCl$

$$PbCl_2 + 2KI \rightarrow PbI_2 \downarrow + 2KCl$$

Hot solution (yellow ppt)

(Q)

6. Ans. (A, B)

Sol. (A) $SnCl_2.2H_2O$ is a reducing agent since Sn^{2+} tends to convert into Sn^{4+} .

(B)
$$SnO_2 + 2KOH_{(aq.)} + 2H_2O \longrightarrow K_2[Sn(OH)_6]$$

(Amphoteric) (Base)

(C) First group cations (Pb²⁺) form insoluble chloride with HCl that is PbCl₂ however it is slightly soluble in water and therefore lead +2 ion is never completely precipitated on adding hydrochloric acid in test sample of Pb²⁺, rest of the Pb²⁺ ions are quantitatively precipitated with H₂S in acidic medium.

So that we can say that filtrate of first group contain solution of PbCl₂ in HCl which contains Pb²⁺ and Cl⁻ However in the presence of conc. HCl or excess HCl it can produce $H_2[PbCl_4]$

So, we can conclude A, B or A, B, C should be answers.

(D)
$$Pb_3O_4 + 4HNO_3 \longrightarrow PbO_2(\downarrow) + 2Pb(NO_3)_2 + 2H_2O$$

(mixture of oxides)

It is not a redox reaction.

7. Ans. (A)

Sol. Chromium (III) salt
$$\stackrel{\triangle}{\longrightarrow}$$
 Cr₂O₃

Borax
$$\stackrel{\Delta}{\longrightarrow}$$
 B₂O₃ + NaBO₂

$$2Cr_2O_3 + 6B_2O_3 \longrightarrow 4Cr(BO_2)_3$$

8. Ans. (B, D)

- **Sol.** (A) Cu⁺² and Mn⁺² both gives green colour in flame test and cannot distinguished.
 - (B) Cu⁺² belongs to group-II of cationic radical will gives ppt. of CuS in acidic medium.
 - (C) Cu⁺² and Mn⁺² both form ppt. in basic medium.

(D)
$$Cu^{+2}/Cu = +0.34 \text{ V (SRP)}$$

$$Mn^{+2}/Mn = -1.18 \text{ V (SRP)}$$

9. Ans. (A or A, C)

Sol. (A)
$$CuCl_2 + S^{2-} \longrightarrow CuS^{\downarrow} + 2Cl^{-}$$

$$CuCl_2 + SO_4^{2-} \longrightarrow No ppt.$$

$$(Sol^n)$$
 (Sol^n)

(B)
$$BaCl_2 + S^{2-} \longrightarrow BaS + 2Cl^{-}$$

$$BaCl_2 + SO_4^{2-} \longrightarrow BaSO_4 \downarrow + 2Cl^{-}$$

(C)
$$Pb(OOCCH_3)_2 + S^{2-} \longrightarrow PbS^{\downarrow} + 2CH_3COO^{-}$$

$$Pb(OOCCH_3)_2 + SO_4^{2-} \longrightarrow PbSO_4^{\downarrow} + 2CH_3COO^{-}$$

$$(Soln) (Soln) (White ppt.) (Soln)$$

(D)
$$Na_2[Fe(CN)_5NO] + S^{2-} \longrightarrow Na_4[Fe(CN)_5NOS]$$

$$Na_2[Fe(CN)_5NO] + SO_4^{2-} \longrightarrow No ppt.$$

$$(Sol^n)$$
 (Sol^n)

Note: PbSO₄ Ksp = 2.5×10^{-8} Which are not given in question

PbS Ksp =
$$3 \times 10^{-28}$$

As in question selective precipitation is asked PbS will be precipitate much easier than PbSO $_4$ though both are insoluble. Hence answer should be (C) also along with (A)

10. Ans. (A)

Sol.
$$S_2O_3^{2-} \xrightarrow{Ag^+} [Ag(S_2O_3)_2]^{3-} \xrightarrow{Ag^+} Ag_2S_2O_3 \downarrow$$

(X)

clear solution

(Y)

with time

 Ag_2S_4

(Z)

black precipitate

So, X, Y and Z are $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$ and Ag_2S respectively.

 $(large K_{sp} of ZnS)]$

11. Ans. (C, D)

Sol. (A) Ba⁺² $\xrightarrow{H^+/H_2S}$ No ppt [because BaS is soluble in water] $Zn^{+2} \xrightarrow{H^+/H_2S}$ No ppt [because Zn^{+2} form ZnS in ammonical solution (IV group)

(B) $Bi^{3+} \xrightarrow{H^+/H_2S} Bi_2S_3 \downarrow [Bi^{3+} is II group cation]$ Brown/black ppt

 $Fe^{+3} \xrightarrow{H^+/H_2S} Fe^{+2} + S$ [because in acidic solution Fe^{+3} show redox reaction with H_2S]

(C) $Cu^{+2} \xrightarrow{H^+/H_2S} CuS^{\downarrow}$ [Cu⁺² is II group cation] black ppt

 $Pb^{2+} \xrightarrow{H^+/H_2S} PbS^{\downarrow}$ [Pb^{2+} is also II group cation] black ppt

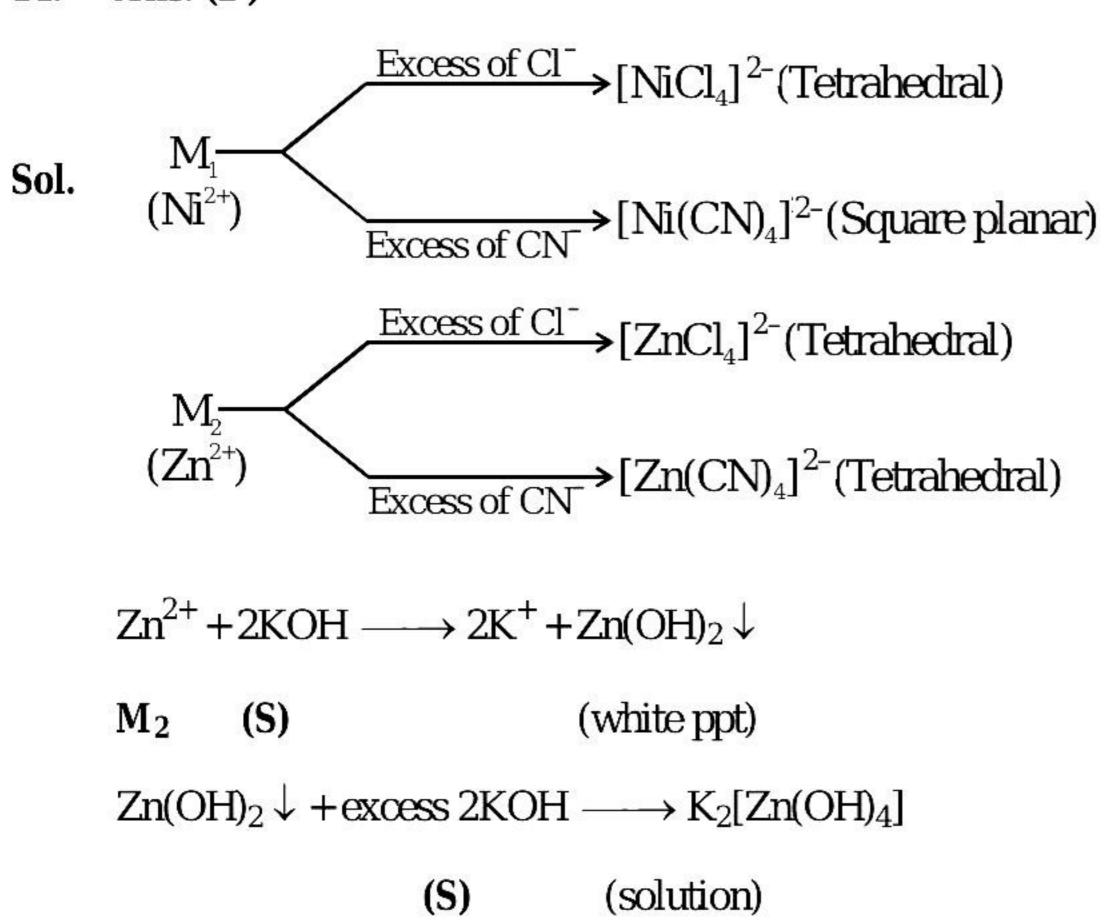
(D) $Hg^{2+} \xrightarrow{H^+/H_2S} HgS^{\downarrow}$ [Hg^{2+} is II group cation] black ppt

 $Bi^{3+} \xrightarrow{H^+/H_2S} Bi_2S_3 \downarrow [Bi^{3+}II group cation]$

black/brown ppt

12. Ans. (6) / (7)

Sol. PbS, CuS, HgS, Ag₂S, NiS, CoS are black


MnS - dirty pink/Buff

SnS₂ - yellow

Bi₂S₃ - brown / black (brownish black)

13. Ans. (B)

14. Ans. (D)

