SALT ANALYSIS 1. In the scheme given below, X and Y, respectively, are [JEE (Advanced) 2023] Metal halide $\xrightarrow{\text{aq. NaOH}}$ White precipitate (P) + Filtrate (Q) aq.H,SO, → X (a coloured species in solution) $MnO(OH)_2$, \rightarrow Y (gives blue-coloration with KI-starch paper) (A) CrO_4^{2-} and Br_2 (B) MnO_4^{2-} and Cl_2 (C) MnO_4^- and Cl_2 (D) MnSO₄ and HOCl 2. A mixture of two salts is used to prepare a solution **S**, which gives the following results: White S White DiluteHCl(aq.) Room temperature precipitate(s) precipitate(s) ← DiluteNaOH(aq.) Room temperature (aq.solutionof thesalts) only only The correct option(s) for the salt mixture is(are) [JEE (Advanced) 2021] (A) $Pb(NO_3)_2$ and $Zn(NO_3)_2$ (B) $Pb(NO_3)_2$ and $Bi(NO_3)_3$ (C) AgNO₃ and Bi(NO₃)₃ (D) $Pb(NO_3)_2$ and $Hg(NO_3)_2$ Paragraph for Q. No. 3 and 4 The reaction of $K_3[Fe(CN)_6]$ with freshly prepared $FeSO_4$ solution produces a dark blue precipitate called Tumbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the $FeSO_4$ solution in complete absence of air produces a white precipitate X, which turns blue in air. Mixing the FeSO₄ solution with NaNO₃, followed by a slow addition of concentrated H_2SO_4 through the side of the test tube produces a brown ring. [JEE (Advanced) 2021] 3. Precipitate X is (A) $Fe_4[Fe(CN)_6]_3$ (B) $Fe[Fe(CN)_6]$ (C) K_2 Fe[Fe(CN)₆] (D) $KFe[Fe(CN)_6]$ Among the following, the brown ring is due to the formation of 4. (A) $[Fe(NO)_2(SO_4)_2]^{2-}$ (B) $[Fe(NO)_2(H_2O)_4]^{3+}$ (C) $[Fe(NO)_4(SO_4)_2]$ (D) $[Fe(NO)(H_2O)_5]^{2+}$ A colorless aqueous solution contains nitrates of two metals, X and Y. When it was added to an aqueous 5. solution of NaCl, a white precipitate was formed. This precipitate was found to be partly soluble in hot water to give a residue P and a solution Q. The residue P was soluble in aq. NH_3 and also in excess sodium thiosulfate. The hot solution Q gave a yellow precipitate with KI. The metals X and Y, respectively, are (A) Ag and Pb (B) Ag and Cd (C) Cd and Pb [JEE(Advanced) 2020] (D) Cd and Zn | | (A) SnCl ₂ .2H ₂ O is a reducing agent. | | | | | | |-----|--|--------------------------------------|--|--|-----------------------------------|----------------| | | (B) SnO_2 reacts with KOH to form $K_2[Sn(OH)_6]$. | | | | | | | | (C) A solution of $PbCl_2$ in HCl contains Pb^{2+} and Cl^- ions. | | | | | | | | (D) The reaction of Pb_3O_4 with hot dilute nitric acid to give PbO_2 is a redox reaction. | | | | | | | 7. | The green colour produced in the borax bead test of a chromium(III) salt is due to – | | | | | | | | | | | | [JEE(Advan | ced) 2019] | | | (A) $Cr(BO_2)_3$ (B) | CrB | (C) Cr ₂ (B ₄ O ₇ | $)_3$ (I | O) Cr ₂ O ₃ | | | 8. | The correct option(s) to distin | guish nitrate salts | s of Mn ²⁺ and Cu ² | ⁺ taken separa | tely is (are):- | | | | | | | | [JEE(Advan | ced) 2018] | | | (A) Mn ²⁺ shows the characteristic green colour in the flame test | | | | | | | | (B) Only Cu^{2+} shows the formation of precipitate by passing $\mathrm{H}_2\mathrm{S}$ in acidic medium | | | | | | | | (C) Only Mn^{2+} shows the formation of precipitate by passing $\mathrm{H}_2\mathrm{S}$ in faintly basic medium | | | | | | | | (D) Cu ²⁺ /Cu has higher reduction potential than Mn ²⁺ /Mn (measured under similar conditions) | | | | | | | 9. | The reagent(s) that can selectively precipiate S^{2-} from a mixture of S^{2-} and SO_4^{2-} in aqueous soltuion | | | | | | | | is(are): | | | | [JEE(Advan | iced) 2016] | | | (A) CuCl ₂ | | (B) BaCl ₂ | | | | | | (C) Pb(OOCCH ₃) ₂ | | (D) Na ₂ [Fe(| CN) ₅ NO] | | | | 10. | In the following reaction sequ | ience in aqueous s | coluiton, the specie | sX,Y andZ | respectively, are |) – | | | | | | | [JEE(Advan | ced) 2016] | | | $S_2O_3^{2-}$ | Ag ⁺ X — A clear solution | Y With ting With ting White precipitate | me
Z
black
precipitate | | | | | (A) $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$, | Ag ₂ S | (B) [Ag(S ₂ O ₃ |) ₃] ⁵⁻ , Ag ₂ SO ₃ | 3, Ag ₂ S | | | | (C) [Ag(SO ₃) ₂] ³⁻ , Ag ₂ S ₂ O ₃ , A | y g | (D) [Ag(SO ₃) | ₃] ³⁻ , Ag ₂ SO ₄ , | Ag | | | 11. | The pair(s) of ions where BOTH the ions are precipitated upon passing H ₂ S gas in presence of dilute H | | | | | | | | is(are) | | | | [JEE(Advan | ced) 2015] | | | (A) Ba^{2+} , Zn^{2+} | | (B) Bi^{3+} , Fe^{3+} | | | | | | (C) Cu ²⁺ , Pb ²⁺ | | (D) Hg ²⁺ , Bi ³ | + | | | | 12. | . Among PbS, CuS, HgS, MnS, Ag ₂ S, NiS, CoS, Bi ₂ S ₃ , and SnS ₂ the total number of BLACK of | | | | | | | | sulphides is | | | | [JEE(Advan | ced) 2014] | | | | | | | | | [JEE(Advanced) 2020] Choose the correct statement(s) among the following. 6. ### Paragraph for Q. 13 and Q. 14 An aqueous solution of metal ion M_1 reacts separately with reagents Q and R in excess to give tetrahedral and square planar complexes, respectively. An aqueous solution of another metal ion M_2 always forms tetrahedral complexes with these reagents. Aqueous solution of M_2 on reaction with reagent S gives white precipitate which dissolves in excess of S. The reactions are summarized in the sheme given below. [JEE(Advanced) 2014] $$\begin{array}{c} \text{Tetrahedral} & \stackrel{Q}{\longleftarrow} M_2 \xrightarrow{R} \text{Tetrahedral} \\ & & \\ S \text{, stoichiometric amount} \\ & & \\ \text{White precipitate} \xrightarrow{S} \text{precipitate dissolves} \\ \end{array}$$ - 13. M_1 , Q and R, respectively are - (A) Zn²⁺, KCN and HCl (B) Ni²⁺, HCl and KCN (C) Cd²⁺, KCN and HCl (D) Co²⁺, HCl and KCN - 14. Reagent S is - (A) $K_4[Fe(CN)_6]$ - (B) Na_2HPO_4 - (C) K_2CrO_4 - (D) KOH ## **SOLUTIONS** 1. Ans. (C) Sol. $$MnCl_2 + NaOH \rightarrow Mn(OH)_2 \downarrow + NaCl$$ (P) (Q) (white ppt.) (Filterate) $$\frac{\text{Mn(OH)}_2 - \frac{\text{PbO}_2 + \text{H}^+(\text{H}_2\text{SO}_4)}{\text{heat}} \rightarrow \frac{\text{MnO}_4^- + \text{Pb}^{2+}}{\text{Purple}}$$ CI $$\stackrel{\text{MnO}(OH)_2/\text{conc. H}_2SO_4/D}{\downarrow}$$ Cl₂ \downarrow 2I \downarrow Starch + l₂) + 2CI blue coloration 2. Ans. (A, B) Sol. $$Pb(NO_3)_2 \xrightarrow{\text{dil.HCl}} PbCl_2 \downarrow$$ White PPt. $$\operatorname{Bi}(\operatorname{NO}_3)_3 \xrightarrow{\operatorname{dil.HCl}} \operatorname{BiCl}_3$$ Water Soluble $$Hg(NO_3)_2 \xrightarrow{\text{dil.HCl}} HgCl_2$$ Water Soluble $$AgNO_3 \xrightarrow{dil.HCl} AgCl \downarrow$$ White PPt. $$\operatorname{Zn}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{dil}.\operatorname{HCl}} \operatorname{ZnCl}_2$$ WaterSoluble $$Pb(NO_3)_2 \xrightarrow{NaOH(dil.)} Pb(OH)_2 \downarrow$$ White PPt. $$\operatorname{Zn}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{NaOH}(\operatorname{dil}.)} \operatorname{Zn}(\operatorname{OH})_2 \downarrow$$ White PPt. $$\text{Bi}(NO_3)_3 \xrightarrow{\text{NaOH(dil.)}} \text{Bi}(OH)_3 \downarrow$$ White PPt. $$AgNO_{3} \xrightarrow{NaOH(dil.)} Ag_{2}O$$ Brown PPt. $$\operatorname{Hg}(\operatorname{NO}_3)_2 \xrightarrow{\operatorname{NaOH}(\operatorname{dil}.)} \operatorname{HgO} \downarrow_{\operatorname{YellowPPt.}}$$ 3. Ans. (C) **Sol.** $$K_4[Fe(CN)_6] \xrightarrow{FeSO_4} K_2Fe[Fe(CN)_6]$$ White precipitate $$air$$ $$Fe_4[Fe(CN)_6]_3$$ (Prussian Blue) 4. Ans. (D) Sol. FeSO₄ $$\xrightarrow{\text{NaNO}_3}$$ $\text{Slow addition of conc. H}_2\text{SO}_4$ $\text{Sol. Fe}(H_2\text{O})_5 \text{NO} \text{SO}_4$ (Brown Ring Complex) 5. Ans. (A) Sol. X : Ag P: AgCl Y : Pb $Q: PbCl_2$ AgCl $+2NH_3$ solution $\rightarrow [Ag(NH_3)_2]Cl$ $AgCl + 2Na_2S_2O_3$ solution $\rightarrow Na_3 [Ag(S_2O_3)_2] + NaCl$ $$PbCl_2 + 2KI \rightarrow PbI_2 \downarrow + 2KCl$$ Hot solution (yellow ppt) (Q) 6. Ans. (A, B) **Sol.** (A) $SnCl_2.2H_2O$ is a reducing agent since Sn^{2+} tends to convert into Sn^{4+} . (B) $$SnO_2 + 2KOH_{(aq.)} + 2H_2O \longrightarrow K_2[Sn(OH)_6]$$ (Amphoteric) (Base) (C) First group cations (Pb²⁺) form insoluble chloride with HCl that is PbCl₂ however it is slightly soluble in water and therefore lead +2 ion is never completely precipitated on adding hydrochloric acid in test sample of Pb²⁺, rest of the Pb²⁺ ions are quantitatively precipitated with H₂S in acidic medium. So that we can say that filtrate of first group contain solution of PbCl₂ in HCl which contains Pb²⁺ and Cl⁻ However in the presence of conc. HCl or excess HCl it can produce $H_2[PbCl_4]$ So, we can conclude A, B or A, B, C should be answers. (D) $$Pb_3O_4 + 4HNO_3 \longrightarrow PbO_2(\downarrow) + 2Pb(NO_3)_2 + 2H_2O$$ (mixture of oxides) It is not a redox reaction. ### 7. Ans. (A) **Sol.** Chromium (III) salt $$\stackrel{\triangle}{\longrightarrow}$$ Cr₂O₃ Borax $$\stackrel{\Delta}{\longrightarrow}$$ B₂O₃ + NaBO₂ $$2Cr_2O_3 + 6B_2O_3 \longrightarrow 4Cr(BO_2)_3$$ ### 8. Ans. (B, D) - **Sol.** (A) Cu⁺² and Mn⁺² both gives green colour in flame test and cannot distinguished. - (B) Cu⁺² belongs to group-II of cationic radical will gives ppt. of CuS in acidic medium. - (C) Cu⁺² and Mn⁺² both form ppt. in basic medium. (D) $$Cu^{+2}/Cu = +0.34 \text{ V (SRP)}$$ $$Mn^{+2}/Mn = -1.18 \text{ V (SRP)}$$ ### 9. Ans. (A or A, C) Sol. (A) $$CuCl_2 + S^{2-} \longrightarrow CuS^{\downarrow} + 2Cl^{-}$$ $$CuCl_2 + SO_4^{2-} \longrightarrow No ppt.$$ $$(Sol^n)$$ (Sol^n) (B) $$BaCl_2 + S^{2-} \longrightarrow BaS + 2Cl^{-}$$ $$BaCl_2 + SO_4^{2-} \longrightarrow BaSO_4 \downarrow + 2Cl^{-}$$ (C) $$Pb(OOCCH_3)_2 + S^{2-} \longrightarrow PbS^{\downarrow} + 2CH_3COO^{-}$$ $$Pb(OOCCH_3)_2 + SO_4^{2-} \longrightarrow PbSO_4^{\downarrow} + 2CH_3COO^{-}$$ $$(Soln) (Soln) (White ppt.) (Soln)$$ (D) $$Na_2[Fe(CN)_5NO] + S^{2-} \longrightarrow Na_4[Fe(CN)_5NOS]$$ $$Na_2[Fe(CN)_5NO] + SO_4^{2-} \longrightarrow No ppt.$$ $$(Sol^n)$$ (Sol^n) Note: PbSO₄ Ksp = 2.5×10^{-8} Which are not given in question PbS Ksp = $$3 \times 10^{-28}$$ As in question selective precipitation is asked PbS will be precipitate much easier than PbSO $_4$ though both are insoluble. Hence answer should be (C) also along with (A) 10. Ans. (A) Sol. $$S_2O_3^{2-} \xrightarrow{Ag^+} [Ag(S_2O_3)_2]^{3-} \xrightarrow{Ag^+} Ag_2S_2O_3 \downarrow$$ (X) clear solution (Y) with time Ag_2S_4 (Z) black precipitate So, X, Y and Z are $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$ and Ag_2S respectively. $(large K_{sp} of ZnS)]$ 11. Ans. (C, D) Sol. (A) Ba⁺² $\xrightarrow{H^+/H_2S}$ No ppt [because BaS is soluble in water] $Zn^{+2} \xrightarrow{H^+/H_2S}$ No ppt [because Zn^{+2} form ZnS in ammonical solution (IV group) (B) $Bi^{3+} \xrightarrow{H^+/H_2S} Bi_2S_3 \downarrow [Bi^{3+} is II group cation]$ Brown/black ppt $Fe^{+3} \xrightarrow{H^+/H_2S} Fe^{+2} + S$ [because in acidic solution Fe^{+3} show redox reaction with H_2S] (C) $Cu^{+2} \xrightarrow{H^+/H_2S} CuS^{\downarrow}$ [Cu⁺² is II group cation] black ppt $Pb^{2+} \xrightarrow{H^+/H_2S} PbS^{\downarrow}$ [Pb^{2+} is also II group cation] black ppt (D) $Hg^{2+} \xrightarrow{H^+/H_2S} HgS^{\downarrow}$ [Hg^{2+} is II group cation] black ppt $Bi^{3+} \xrightarrow{H^+/H_2S} Bi_2S_3 \downarrow [Bi^{3+}II group cation]$ black/brown ppt 12. Ans. (6) / (7) **Sol.** PbS, CuS, HgS, Ag₂S, NiS, CoS are black MnS - dirty pink/Buff SnS₂ - yellow Bi₂S₃ - brown / black (brownish black) 13. Ans. (B) # 14. Ans. (D)