Chapter 1 Similarity

Practice set 1.1

1. Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.

Solution:

Let base of the first triangle is b_1 and height is h_1 . Let base of second triangle is b_2 and height is h₂. Ratio of areas of two triangles is equal to the ratio of the products of their bases and corresponding heights. Here $b_1 = 9 h_1 = 5 b_2 = 10 h_1 = 6$ Then ratio of their areas = $b_1 \times h_1/b_2 \times h_2$

$$= 9 \times 5/10 \times 6$$
$$= 3/4$$

Hence, the ratio of the areas of these triangles is 3:4

2. In figure 1.13 BC \perp AB, AD \perp AB, BC = 4, AD = 8, then find A(\triangle ABC) /A(\triangle ADB).

Solution:

Here $\triangle ABC$ and $\triangle ADB$ have the same base AB.

Areas of triangles with equal bases are proportional to their corresponding heights.

Since bases are equal, areas are proportional to heights.

Given BC = 4 and AD = 8

So, $A(\Delta ABC) / A(\Delta ADB) = BC / AD$ = 4/8= 1/2

Hence, ratio of areas of $\triangle ABC$ and $\triangle ADB$ is 1:2.

3. In adjoining, figure 1.14 seg PS \perp seg RQ, seg QT \perp seg PR. If RQ = 6, PS = 6 and PR = 12, then find QT.

Solution:

Given PS \perp RQ and QT \perp PR. RQ = 6 PS = 6 PR = 12 Area of \triangle PQR with base PR and height QT = (1/2)×PR×QT Area of \triangle PQR with base QR and height PS = (1/2)×QR×PS A(\triangle PQR)/A(\triangle PQR) = (1/2)×PR×QT/(1/2)×QR×PS 1 = PR×QT/QR×PS 1 = 12×QT/6×6 6×6 = QT×12 QT = 36/12 QT = 3

Hence, measure of side QT is 3 units.

4. In adjoining figure, AP \perp BC, AD || BC, then find A(\triangle ABC):A(\triangle BCD).

Fig. 1.15

Given, AP \perp BC, and AD || BC. \triangle ABC and \triangle BCD has same base BC. Areas of triangles with equal bases are proportional to their corresponding heights. Since AP is the perpendicular distance between parallel lines AD and BC, height of \triangle ABC and height of \triangle BCD are same.

 $\therefore A(\Delta ABC) / A(\Delta BCD) = AP/AP = 1$ Hence, A(ΔABC): A(ΔBCD) = 1:1

5. In adjoining figure PQ \perp BC, AD \perp BC then find following ratios.

(i) $A(\Delta PQB) / A(\Delta PBC)$ (ii) $A(\Delta PBC) / A(\Delta ABC)$ (iii) $A(\Delta ABC) / A(\Delta ADC)$ (i) $A(\Delta ABC) / A(\Delta ADC)$

Solution:

(i) ΔPQB and ΔPBC have same height PQ.

Ratio of areas of triangles with equal heights are proportional to their corresponding bases. $\therefore A(\Delta PQB)/A(\Delta PBC) = BQ/BC$

(ii) $\triangle PBC$ and $\triangle ABC$ have same base BC.

Ratio of areas of triangles with equal bases are proportional to their corresponding heights. $\therefore A(\Delta PBC) / A(\Delta ABC) = PQ/AD$

(iii) Δ ABC) and Δ ADC have equal heights AD.

Ratio of areas of triangles with equal heights are proportional to their corresponding bases. $\therefore A(\Delta ABC) / A(\Delta ADC) = BC/DC$

- (iv) Ratio of areas of two triangles is equal to the ratio of the products of their bases and corresponding heights.
- $\therefore A(\Delta ADC) / A(\Delta PQC) = DC \times AD / QC \times PQ$

1. Given below are some triangles and lengths of line segments. Identify in which figures, ray PM is the bisector of $\angle QPR$.

Solution:

(i) In ΔPQR $QM/RM = 35/15 = 7/3 \dots$ (i) $PQ/PR = 7/3 \dots$ (ii) From (i) and (ii) QM/RM = PQ/PR \therefore By Converse of angle bisector theorem, Ray PM is the bisector of $\angle QPR$.

(ii) In $\triangle PQR$ PR/PQ = 7/10.....(i) RM/QM = 6/8.....(ii) From (i) and (ii) PR/PQ \neq RM/QM \therefore Ray PM is not the bisector of $\angle QPR$

(iii) In $\triangle PQR PR/PQ = 10/9....(i)$ RM/QM = 4/3.6 = 40/36 = 10/9(ii) From (i) and (ii) PR/PQ = RM/QM \therefore By Converse of angle bisector theorem, Ray PM is the bisector of $\angle QPR$.

2. In \triangle PQR, PM = 15, PQ = 25 PR = 20, NR = 8. State whether line NM is parallel to side RQ. Give reason.

Given PM = 15, PQ = 25, PR = 20, NR = 8 PQ = PM+MQ 25 = 15+MQ MQ = 25-15 MQ = 10 PR = PN+NR 20 = PN+8 PN = 20-8 PN = 12 PM/MQ = 15/10 = 3/2 PN/NR = 12/8 = 3/2In ΔPQR , PM/MQ = PN/NR. By Converse of basic proportionality theorem, line NM II side RQ.

3. In \triangle MNP, NQ is a bisector of \angle N. If MN = 5, PN = 7 MQ = 2.5 then find QP.

Solution:

Given MN = 5, PN = 7, MQ = 2.5 Since NQ is a bisector of \angle N, PN/MN = QP/MQ [Angle bisector theorem] 7/5 = QP/2.5QP = $7 \times 2.5/5$ QP = 3.5Hence, measure of QP is 3.5 units. 4. Measures of some angles in the figure are given. Prove that AP/PB = AQ/QC

Solution:

 $\angle ABC = 60^{\circ}$ [Given] $\angle APQ = 60^{\circ}$ [Given] Since the corresponding angles are equal, line PQ || BC.

In $\triangle ABC$, PQ || BC.

: By basic proportionality theorem, AP/PB = AQ/QC Hence proved.

5. In trapezium ABCD, side AB ||side PQ ||side DC, AP = 15, PD = 12, QC = 14, find BQ.

Solution:

Given AB || PQ || DC. AP = 15 PD = 12 QC = 14 AP/PD = BQ/QC [Property of three parallel lines and their transversals] 15/12 = BQ / 14BQ = $15 \times 14/12$ BQ = 17.5 units. Hence, measure of BQ is 17.5 units. 6. Find QP using given information in the figure.

Solution:

From figure MN = 25, NP = 40, MQ = 14 Given, NQ bisects \angle MNP.

:. MN/NP = MQ/QP [Angle bisector theorem] 25/40 = 14/QP $QP = 40 \times 14/25$ QP = 22.5Hence, measure of QP is 22.5 units.

7. In figure 1.41, if AB || CD || FE then find x and AE.

Solution:

From figure BD = 8, DF = 4, AC = 12 and CE = xGiven $AB \parallel CD \parallel FE$

 \therefore BD/DF = AC/CE [Property of three parallel lines and their transversals]

8/4 = 12/x $x = 12 \times 4/8$ x = 6 $\therefore CE = 6$ AE = AC + CE $\therefore AE = 12 + 6$ $\therefore AE = 18$ Hence, measure of x is 6 units and AE is 18 units.

8. In D LMN, ray MT bisects \angle LMN. If LM = 6, MN = 10, TN = 8, then find LT.

Solution:

Given, ray MT bisects ∠LMN.

LM = 6 MN = 10 TN = 8 Since ray MT bisects \angle LMN , LM/MN = LT/TN [Angle bisector theorem] 6/10 = LT/8 LT = 6×8/10 LT = 4.8 Hence, measure of LT is 4.8 units.

9. In △ABC, seg BD bisects ∠ABC. If AB = x, BC = x+5, AD = x-2, DC = x+2, then find the value of x.

Solution:

Given, BD bisects $\angle ABC$. Also AB = x, BC = x+5 AD = x-2, DC = x+2Since BD bisects $\angle ABC$, AB/BC = AD/DC [Angle bisector theorem] x/(x+5) = (x-2)/(x+2)Cross-multiplying, we get x(x+2) = (x+5)(x-2) $x^{2}+2x = x^{2}+5x-2x-10$ $x^{2}+2x = x^{2}+3x-10$ x = 10∴ The value of x is 10.

10. In the figure 1.44, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ \parallel seg DE, seg QR \parallel seg EF. Fill in the blanks to prove that, seg PR \parallel seg DF.

Solution:

In Δ XDE, PQ || DE..... Given

- \therefore XP/PD = XQ/QE.....(I) (Basic proportionality theorem)
- In Δ XEF, QR || EF..... Given
- \therefore XR/RF = XQ/QE......(II) (Basic proportionality theorem)
- \therefore XP/PD = XR/RF from (I) and (II)
- : seg PR || seg DE (Converse of basic proportionality theorem)

11*. In \triangle ABC, ray BD bisects \angle ABC and ray CE bisects \angle ACB. If seg AB \cong seg AC then prove that ED || BC.

Given, In $\triangle ABC$ ray BD bisects $\angle ABC$. $\therefore AB/BC = AD/CD$ (i) [Angle bisector theorem] Since ray CE bisects $\angle ACB$ AC/BC = AE/BE(ii) [Angle bisector theorem] Given seg AB = seg AC. Substitute AB in (ii) AB/BC = AE/BE(iii) From (i) AD/CD = AE/BE [in (i) AB/BC = AD/CD] $\therefore ED \parallel BC$ [converse of basic proportionality theorem] Hence proved. Practice set 1.3

1. In figure 1.55, ∠ABC = 75°, ∠EDC = 75° state which two triangles are similar and by which test? Also, write the similarity of these two triangles by a proper one to one correspondence.

Solution:

Given $\angle ABC = 75^\circ$, $\angle EDC = 75^\circ$ Consider $\triangle ABC$ and $\triangle EDC$ $\angle ABC = \angle EDC$ [Given $\angle ABC = 75^\circ$, $\angle EDC = 75^\circ$] $\angle ACB = \angle DCE$ [Common angle] $\therefore \triangle ABC \sim \triangle EDC$ [AA test of similarity] One to one correspondence is $ABC \leftrightarrow EDC$

2. Are the triangles in figure 1.56 similar? If yes, by which test?

Solution:

Consider $\triangle PQR$ and $\triangle LMN$, PQ/LM = 6/3 = 2/1(i) QR/MN = 8/4 = 2/1(ii) PR/LN = 10/5 = 2/1(iii) PQ/LM = QR/MN = PR/LN $\triangle PQR \sim \Delta LMN$ [SSS test of similarity] 3. As shown in figure 1.57, two poles of height 8 m and 4 m are perpendicular to the ground. If the length of shadow of smaller pole due to sunlight is 6 m then how long will be the shadow of the bigger pole at the same time?

Solution:

Here PR and AC represents the smaller and bigger poles, and QR and BC represents their shadows respectively.

Given PR = 4m, QR = 6m, AC = 8m, BC = x

 $\Delta PRQ \sim \Delta ACB$ [: Vertical poles and their shadows form similar figures]

:. PR/AC = QR/BC [Corresponding sides of similar triangles]

4/8 = 6/x

 $x = 6 \times 8/4$

Hence, the length of shadow of the bigger pole is 12 m.

4. In \triangle ABC, AP \perp BC, BQ \perp AC B- P-C, A-Q - C then prove that, \triangle CPA ~ \triangle CQB. If AP = 7, BQ = 8, BC = 12 then find AC.

Solution:

Consider $\triangle CPA$ and $\triangle CQB$,

 \angle CPA $\cong \angle$ CQB [From figure, angle is equal to 90°]

 \angle PCA $\cong \angle$ QCB [Common angle]

 $\therefore \Delta CPA \sim \Delta CQB$, [AA test of similarity]

Hence proved.

AC/BC = AP/BQ [corresponding sides of similar triangles] Given AP = 7, BQ = 8, BC = 12 AC/12 = 7/8 AC = $12 \times 7/8$ AC = 10.5Hence, measure of AC is 10.5 units.

5. Given: In trapezium PQRS, side PQ || side SR, AR = 5AP, AS = 5AQ then prove that, SR = 5PQ

Solution:

Given side PQ || side SR. Also AR = 5AP, AS = 5AQSQ is the transversal of parallel sides PQ and SR. [Alternate interior angles] $\angle QSR = \angle PQS$ $\angle ASR = \angle AQP....(i)$ [Alternate interior angles] Consider $\triangle ASR$ and $\triangle AQP$ From (i) $\angle ASR = \angle AQP$ [vertical opposite angles] $\angle SAR = \angle QAP$ Δ ASR ~ Δ AOP [AA test of similarity] [Corresponding sides of similar triangles] AS/AQ = SR/PQAS = 5AQ[Given] AS/AQ = 5/1SR/PQ = 5/1 \therefore SR = 5PQ Hence proved.

Practice set 1.4

1. The ratio of corresponding sides of similar triangles is **3**:**5**; then find the ratio of their areas

Solution:

When two triangles are similar, the ratio of areas of those triangles is equal to the ratio of the squares of their corresponding sides.

Given, the ratio of corresponding sides of the triangle is 3:5.

Ratio of their areas = $3^2/5^2$ [Theorem of areas of similar triangles] = 9/25

Hence ratio of their areas = 9:25

2. If $\triangle ABC \sim \triangle PQR$ and AB: PQ = 2:3, then fill in the blanks. A($\triangle ABC$)/ A($\triangle PQR$) = AB²/___ = 2²/3² = ___/___

Solution:

 $A(\Delta ABC)/A(\Delta PQR) = AB^2/PQ^2$ = 2²/3² = 4/9 [Theorem of areas of similar triangles]

3. If \triangle ABC ~ \triangle PQR, A(\triangle ABC) = 80, A(\triangle PQR) = 125, then fill in the blanks. A(\triangle ABC) /A(\triangle ...) = 80/125 \therefore AB/PQ = ___/___

Solution:

Given A(\triangle ABC) = 80, A(\triangle PQR) = 125 (\triangle ABC) / A(\triangle PQR) = 80/125 = 16/25 (\triangle ABC) / A(\triangle PQR) = AB²/PQ² [Theorem of areas of similar triangles] AB²/PQ² = 16/25 Taking square root on both sides AB/PQ = 4/5 Hence AB/PQ = 4/5

4. \triangle LMN ~ \triangle PQR, 9 ×A(\triangle PQR) = 16 ×A(\triangle LMN). If QR = 20 then find MN.

Solution:

Given $9 \times A(\Delta PQR) = 16 \times A(\Delta LMN)$ $\therefore A(\Delta PQR) / A(\Delta LMN) = 16/9....(i)$ $\Delta LMN \sim \Delta PQR$ $\therefore A(\Delta PQR) / A(\Delta LMN) = QR^{2/}MN^{2}....(ii)$ From (i) and (ii) $QR^{2}/MN^2 = 16/9$ Given QR = 20 $\therefore 20^2/MN^2 = 16/9$ Taking square root on both sides 20/MN = 4/3 $MN = 20 \times 3/4$ MN = 15Hence, the measure of MN is 15 units.

Problem Set 1

1. Select the appropriate alternative.

(1) In \triangle ABC and \triangle PQR, in a one to one correspondence AB/QR = BC/ PR = CA/ PQ then

(A) \triangle PQR ~ \triangle ABC (B) \triangle PQR ~ \triangle CAB

- (C) \triangle CBA ~ \triangle PQR
- **(D)** \triangle **BCA** ~ \triangle **PQR**

Solution:

Given AB/QR = BC/ PR = CA/ PQ By SSS test of similarity, Δ PQR ~ Δ CAB. Correct option is (B).

(2) If in $\triangle DEF$ and $\triangle PQR$, $\angle D \cong \angle Q$, $\angle R \cong \angle E$ then which of the following statements is false?

(A) EF/PR = DF/ PQ
(B) DE/ PQ = EF/ RP
(C) DE/ QR = DF /PQ
(D) EF/ RP = DE/ QR

Fig. 1.68

Given $\angle D \cong \angle Q$, $\angle R \cong \angle E$

 $\Delta DEF \sim \Delta QRP....$ [AA test of similarity] DE/QR = EF/RP = DF/QP[Corresponding sides of similar triangles] $DE/PQ \neq EF/RP$ Hence, option (B) is false.

In \triangle ABC and \triangle DEF \angle B = \angle E, \angle F = \angle C and AB = 3DE then which of the (3) statements regarding the two triangles is true?

(A)The triangles are not congruent and not similar

(B) The triangles are similar but not congruent.

(C)The triangles are congruent and similar.

(D) None of the statements above is true.

Fig. 1.69

Solution:

Given $\angle B = \angle E$ $\angle F = \angle C$ [AA test of similarity] $\therefore \Delta ABC \sim \Delta DEF$ Hence, option B is the true statement.

 \triangle ABC and \triangle DEF are equilateral triangles, A (\triangle ABC):A(\triangle DEF)=1:2 If AB = 4 (4) then what is length of DE? (A) $2\sqrt{2}$ **(B)** 4 (C) 8 D (**D**) 4√2

Fig. 1.70

Given A ($\triangle ABC$):A($\triangle DEF$) = 1:2 $\triangle ABC$ and $\triangle DEF$ are equilateral triangles. $\angle A = \angle D$ [Angle equals 60°] $\angle B = \angle E$ [Angle equals 60°] $\triangle ABC \sim \triangle DEF$ [AA test of similarity] A ($\triangle ABC$):A($\triangle DEF$) = AB²/DE² [Theorem of areas of similar triangles] $1/2 = 4^2/DE^2$ Taking square root on both sides $1/\sqrt{2} = 4/DE$ $\therefore DE = 4\sqrt{2}$ Hence, option (D) is the correct answer.

(5) In figure 1.71, seg XY || seg BC, then which of the following statements is true?
(A) AB / AC = AX / AY
(B) AX / XB = AY / AC
(C) AX / YC = AY / XB
(D) AB / YC = AC / XB

Fig. 1.71

Solution:

Given seg XY || seg BC AX/BX = AY/YC [Basic proportionality theorem] (BX/AX) + 1 = (YC/AY) + 1 (BX+AX)/AX = (YC+AY)/AY AB/AX = AC/AY AB/AC = AX/AYHence, correct option is (A).

2. In △ ABC, B - D - C and BD = 7, BC = 20 then find following ratios.
(1) A(△ ABD) /A(△ ADC)
(2) A(△ ABD) /A(△ ABC)
(3) A(△ ADC) /A(△ ABC)

Given $BD = 7$, $BC = 20$ Construction: Draw a perpendicular from A to BC mee BC = BD+DC 20 = 7+DC DC = 13	eting at E.
(1)A(\triangle ABD) /A(\triangle ADC) = BD/DC A(\triangle ABD) /A(\triangle ADC) = 7/13	[Triangles having same height]
(2) $A(\Delta ABD) / A(\Delta ABC) = BD/BC$ $A(\Delta ABD) / A(\Delta ABC) = 7/20$	[Triangles having same height]
(3) $A(\Delta ADC) / A(\Delta ABC) = DC/BC$ $A(\Delta ADC) / A(\Delta ABC) = 13/20$	[Triangles having same height]

3. Ratio of areas of two triangles with equal heights is 2:3. If the base of the smaller triangle is 6cm then what is the corresponding base of the bigger triangle?

Solution:

Given ratio of two triangles with equal height is 2:3 Let b_1 be base of smaller triangle and b_2 be base of bigger triangle. $b_1 = 6$ cm Let a1 and a_2 be areas of the triangles. Since triangles have equal height, $a_1/a_2 = b_1/b_2$ $2/3 = 6/b_2$ $b_2 = 3 \times 6/2$ $b_2 = 9$ Hence, base of bigger triangle is 9 cm.

4. In figure 1.73, $\angle ABC = \angle DCB = 90^{\circ} AB = 6$, DC = 8 then $A(\triangle ABC) / A(\triangle DCB) = ?$

Solution:

Given $\angle ABC = \angle DCB = 90^{\circ} AB = 6$, DC = 8BC is the common base of $\triangle ABC$ and $\triangle DCB$ $\therefore A(\triangle ABC) / A(\triangle DCB) = AB/DC$ = 6/8= 3/4

5. In figure 1.74, PM = 10 cm A(\triangle PQS) = 100 sq.cm A(\triangle QRS) = 110 sq.cm then find NR.

Fig. 1.74

Given PM = 10 cm $A(\Delta PQS) = 100$ sq.cm $A(\Delta QRS) = 110$ sq.cm ΔPQS and ΔQRS have common base QS $A(\Delta PQS)/A(\Delta QRS) = PM/NR$ 100/110=10/NRNR = $110\times10/100$ NR = 11 Hence, NR = 11 cm.

6. \triangle MNT ~ \triangle QRS. Length of altitude drawn from point T is 5 and length of altitude drawn from point S is 9. Find the ratio A(\triangle MNT)/A(\triangle QRS).

Given Δ MNT ~ Δ QRS

 $\angle TMN \cong \angle SQR \quad [corresponding angles of similar triangles]$ Construction:Draw altitude from T to MN meeting at L.Draw altitude from S to QR meeting at P. $<math display="block">\angle TLM = \angle SPQ = 90^{\circ}$ $In \Delta MLT and \Delta QPS$ $<math display="block">\angle TMN \cong \angle SQR$ $<math display="block">\angle TLM \cong \angle SPQ$ [AA test of similarity] MT/QS = TL/SP MT/QS = 5/9

MT/QS = 5/9 $\Delta MNT \sim \Delta QRS \qquad [Given]$ $A(\Delta MNT) / A(\Delta QRS) = MT^2/QS^2 \qquad [Theorem of areas of similar triangles]$ $A(\Delta MNT) / A(\Delta QRS) = 5^2/9^2$ $A(\Delta MNT) / A(\Delta QRS) = 25/81$ Hence A(\Delta MNT): A(\Delta QRS) = 25:81

7. In figure 1.75, A - D - C and B - E - C seg $DE \parallel$ side AB If AD = 5, DC = 3, BC = 6.4 then find BE.

Solution:

Given DE || AB. \therefore AD/DC = BE/EC [Basic proportionality theorem] AD = 5, DC = 3, BC = 6.4 [Given] BE = x, EC = 6.4-x [Given] \therefore 5/3 = x/(6.4-x) Cross-multiplying we get $5\times(6.4-x) = 3\times x$ 32-5x = 3x 32 = 8x x = 32/8 = 4Hence, BE = 4 units.