ATOMIC STRUCTURE

INTRODUCTION

- 1. Rutherford's α -particle scattering experiment proved that atom has :-
 - (1) Electrons
- (2) Neutrons
- (3) Nucleus (4) Orbitals
- 2. Find out the atoms which are isoneutronic :-

 - (1) ${}_{6}^{14}C$, ${}_{7}^{15}N$, ${}_{9}^{17}F$ (2) ${}_{6}^{12}C$, ${}_{7}^{14}N$, ${}_{9}^{19}F$
 - (3) ${}_{6}^{14}C$, ${}_{7}^{14}N$, ${}_{9}^{17}F$ (4) ${}_{6}^{14}C$, ${}_{7}^{14}N$, ${}_{9}^{19}F$
- 3. Species which are isoelectronic to one another are
 - (a) CN-
- (b) OH-
- (c) CH₃⁺
- (d) N_2

(e) CO

Correct answer is :-

- (1) a, b, c (2) a, c, d (3) a, d, e (4) b, c, d
- Which of the following pairs is correctly 4. matched:
 - (1) Isotopes ${}^{40}_{20}$ Ca, ${}^{40}_{10}$ K
 - (2) Isotones ${}_{14}^{30}$ Si, ${}_{15}^{31}$ P, ${}_{16}^{32}$ S
 - (3) Isobars ¹⁶₈O, ¹⁷₈O, ¹⁸₈O
 - (4) Isoelectronic N^{-3} , O^{-2} , Cr^{+3}
- **5**. The atom A, B, C have the configuration

 $A \rightarrow [Z(90) + n(146)], B \rightarrow [Z(92) + n(146)],$

- $C \rightarrow [Z(90) + n(148)]$ So that :-
- (a) A and C Isotones
- (b) A and C Isotopes
- (c) A and B Isobars
- (d) B and C Isobars
- (e) B and C Isotopes

The wrong statements are:-

- (1) a, b only
- (2) c, d, e only
- (3) a, c, d only
- (4) a, c, e only
- 6. The relative abundance of two rubidium isotopes of atomic weights 85 and 87 are 75% and 25% respectively. The average atomic weight of rubidium is:-
 - (1)75.5
- (2)85.5
- (3)86.5
- (4)87.5
- **7**. Atomic weight of Ne is 20.2. Ne is mixture of ²⁰Ne and ²²Ne, relative abundance of heavier isotope is :-
 - (1) 90
- (2) 20
- (3) 40
- (4) 10

- 8. The value of planck's constant is 6.63×10^{-1} 34 Js. The velocity of light is 3.0×10^8 m s⁻¹. Which value is closest to the wavelength in metres of a quantum of light with frequency of $8 \times 10^{15} \, \text{s}^{-1}$?
 - $(1) \ 3 \times 10^{-7}$
- (2) 2×10^{-25}
- $(3) 5 \times 10^{-18}$
- $(4) \ 3.75 \times 10^{-8}$
- If change in energy (ΔE) = $3 \times 10^{-8} J$, $h = 6.64 \times 10^{-34} \text{ J-s}$ and $c = 3 \times 10^8 \text{ m/s}$, then wavelength of the light is :-
 - (1) $6.64 \times 10^3 \text{ Å}$
- (2) $6.64 \times 10^5 \,\text{Å}$
- (3) $6.64 \times 10^{-8} \text{ Å}$
- (4) $6.64 \times 10^{18} \,\text{Å}$

BOHR'S ATOMIC MODEL

- 10. Angular momentum in second Bohr orbit of H-atom is x. Then find out angular momentum in 1st excitetd state of Li+2 ion:
 - (1) 3x
- (2) 9x
- (3) $\frac{x}{2}$
- (4) x
- The radius of a shell for H-atom is 4.761A°. The 11. value of n is :-
 - (1) 3
- (2) 9
- (3) 5
- (4) 4
- The velocity of electron in third excited state of Be3+ ion will be:-
 - (1) $\frac{3}{4}$ (2.188 × 10⁸) ms⁻¹ (2) $\frac{3}{4}$ (2.188 × 10⁶)ms⁻¹
 - (3) $(2.188 \times 10^6) \text{ Kms}^{-1}$ (4) $(2.188 \times 10^3) \text{ Kms}^{-1}$
- According to Bohr theory, the radius (r) and **13**. velocity (v) of an electron vary with the increasing principal quantum number 'n' as :-
 - (1) r increases, v decreases
 - (2) r and v both increases
 - (3) r & v both decreases
 - (4) r decreases, v increases
- The ratio of radius of first orbit in hydrogen to 14. the radius of first orbit in deuterium will be :-
 - (1) 1 : 1
- (2) 1 : 2
- (3) 2 : 1
- (4) 4 : 1
- The energy of second Bohr orbit of the hydrogen **15**. atom is -328 kJ/mol. Hence the energy of fourth Bohr orbit should be:
 - (1) -41 kJ/mol
- (2) -1312 kJ/mol
- (3) -164 kJ/mol
- (4) -82 kJ/mol
- The ratio between kinetic energy and the total **16**. energy of the electron of hydrogen atom according to Bohr's model is :-
 - (1) 2 : 1

- $(2) 1 : 1 \quad (3) 1 : -1 \quad (4) 1 : 2$

- 17. Maximum frequency of emission is obtained for the transition :-
 - (1) n = 2 to n = 1
- (2) n = 6 to n = 2
- (3) n = 1 to n = 2 (4) n = 2 to n = 6
- 18. The radiation of low frequency will be emitted in which transition of hydrogen atom :-
 - (1) n = 1 to n = 4
- (2) n = 2 to n = 5
- (3) n = 3 to n = 1
- (4) n = 5 to n = 2
- **19.** A single electron orbits a stationary nucleus (z = 5). The energy required to excite the electron from third to fourth Bohr orbit will be :-
 - (1) 4.5 eV
- (2) 8.53 eV
- (3) 25 eV
- (4) 16.53 eV
- **20**. Which of the following is a correct relationship:
 - (1) E_1 of $H = 1/2 E_2$ of $He^+ = 1/3 E_3$ of $Li^{+2} = 1/4 E_4 \text{ of } Be^{+3}$
 - (2) E_1 (H) = E_2 (He⁺) = E_2 (Li⁺²) = E_4 (Be⁺³)
 - (3) E_1 (H) = 2 E_2 (He⁺) = 3 E_3 (Li⁺²) = 4 E_4 (Be⁺³)
 - (4) No relation
- **21**. Which of the following is a correct graph :-

- **22**. The ionisation potential of the hydrogen atom is 13.6 eV. The energy needed to ionise a hydrogen atom which is in its second excited state is about:-
 - (1) 13.6 eV(2) 10.2 eV
 - (3) 3.4 eV (4) 1.5 eV
- **23.** The ionisation potential of a singly ionised helium ion is equivalent to :-
 - (1) Kinetic energy of first orbit
 - (2) Energy of last orbit
 - (3) Average energy in orbits
 - (4) Maximum energy in orbits

SPECTRUM AND SPECTRAL LINES

- 24. The spectrum of He is expected to be similar to that of :-
 - (1) H
- (2) Na
- (3) He+
- (4) Li+
- **25**. Which one of the following electron transitions between energy levels produces the line of shortest wavelength in hydrogen spectrum?
 - $(1) n_2 \rightarrow n_1$
- (2) $n_3 \rightarrow n_1$
- $(3) n_4 \rightarrow n_1$
- (4) $n_4 \rightarrow n_3$
- **26**. Find out ratio of following for photon

$$(v_{\text{max}})_{\text{Lyman}} : (v_{\text{max}})_{\text{Brakett}}$$

- $(1)\ 1:16$
- $(2)\ 16:1$ $(3)\ 4:1$
- $(4)\ 1:4$
- **27**. If the shortest wavelength of Lyman series of H atom is x, then the wave length of first line of Balmer series of H atom will be :-

 - (1) $\frac{9x}{5}$ (2) $\frac{36x}{5}$ (3) $\frac{5x}{9}$ (4) $\frac{5x}{36}$
- **28**. The first emission line in the H-atom spectrum in the Balmer series will have wave number :-

 - (1) $\frac{5R}{36}$ cm⁻¹ (2) $\frac{3 R}{4}$ cm⁻¹

 - (3) $\frac{7 \text{ R}}{144} \text{ cm}^{-1}$ (4) $\frac{9 \text{ R}}{400} \text{ cm}^{-1}$
- **29**. The figure indicates the energy level diagram for the origin of six spectral lines in emission spectrum (e.g. line no. 5 arises from the transition from level B to X) which of the following spectral lines will not occur in the absorption spectrum:-
 - (1) 1, 2, 3
 - (2) 3, 2
 - (3)4,5,6
 - (4) 3, 2, 1

DE-BROGLIE CONCEPT AND HEISENBERG PRINCIPLE

30. An electron has a kinetic energy of 2.8×10^{-23} J. de-Broglie wavelength will be nearly :-

$$(m_e = 9.1 \times 10^{-31} \text{ kg})$$

- (1) 9.28×10^{-24} m
- (2) 9.28×10^{-7} m
- (3) 9.28×10^{-8} m
- (4) $9.28 \times 10^{-10} \,\mathrm{m}$

		_		_
31.	Number	of waves	in fourth	orbit :-

- (1) 4
- (2)5
- (3) 0
- (4) 1

32. What is the ratio of the de-Broglie wavelengths for electrons accelerated through 200 volts and 50 volts :-

- (1) 1 : 2
- (2) 2 : 1
- $(3) \ 3 : 10$
- (4) 10 : 3

33. A particle X moving with a certain velocity has a debroglie wavelength of 1Å. If particle Y has a mass of 25% that of X and velocity 75% that of X, de-Broglie wavelength of Y will be :-

- (1) 3Å
- (2) 5.33 Å
- (3) 6.88 Å
- (4) 48 Å

$$\bf 34.$$
 The uncertainity in position of an electron & helium atom are same. If the uncertainity in momentum for the electron is 32×10^5 , then the uncertainity in momentum of helium atom will be

- (1) 32×10^5
- (2) 16×10^5
- (3) 8×10^5
- (4) None

35. Calculate the uncertainty in the position of an electron (mass
$$9.1 \times 10^{-28}$$
g) moving with a velocity of 3×10^{4} cm sec⁻¹, if the uncertainity in velocity is 0.011% ?

- (1) 1.92 cm
- (2) 7.68 cm
- (3) 0.175 cm
- (4) 3.84 cm

36. What should be the momentum (in gram centimetre per second) of a particle if its de-Broglie wavelength is 1Å and the value of h is 6.6252×10^{-27} erg second?

- (1) 6.6252×10^{-19} gcm/s
- (2) 6.6252×10^{-21} gcm/s
- (3) 6.6252×10^{-24} gcm/s
- (4) 6.6252×10^{-27} gcm/s

37. What should be the mass of the photon of sodium if its wavelength is
$$5894\text{\AA}$$
, the velocity of light is 3×10^8 metre/second and the value of h is $6.6252\times10^{-34}\,\text{kg m}^2/\text{s}$?

- (1) $3.746 \times 10^{-26} \text{ kg}$
- (2) $3.746 \times 10^{-30} \,\mathrm{kg}$
- (3) $3.746 \times 10^{-34} \,\mathrm{kg}$
- (4) $3.746 \times 10^{-36} \,\mathrm{kg}$

38. Which of the following has least de-Broglie
$$\lambda$$
?

- (1) e^{-}
- (2) p
- (3) CO₂ (4) SO₂

QUANTUM NUMBERS

- **39**. The following quantum no. are possible for how many orbitals n = 3, $\ell = 2$, m = +2?
- (2) 2
- (3) 3
- **40**. Which sub-shell is not permissible :-
 - (1) 2d
- (2) 4f
- (3) 6p
- 41. Which of the following is correct for a 4d-electron
 - (1) n = 4, $\ell = 2$, $s = +\frac{1}{2}$
 - (2) n = 4, $\ell = 2$, s = 0
 - (3) n = 4, $\ell = 3$, s = 0
 - (4) n = 4, $\ell = 3$, $s = +\frac{1}{2}$
- Which statement is not correct for n = 5, **42**. m = 2 : -
 - (1) $\ell = 4$
 - (2) $\ell = 0, 1,2,3$; s = +1/2
 - (3) $\ell = 3$
 - $(4) \ell = 2, 3, 4$
- **43**. Spin angular momentum for electron :-
 - (1) $\sqrt{s(s+1)} \frac{h}{2\pi}$
- (2) $\sqrt{2s(s+1)} \frac{h}{2\pi}$
- (3) $\sqrt{s(s+2)} \frac{h}{2\pi}$
- (4) None
- 44. 36Kr has the electronic configuration (18Ar) 4s² 3d10 4p6. The 39th electron will go into which one of the following sub-levels :-
 - (1) 4f
- (2) 4d
- (3) 3p
- (4) 5s

RULES FOR FILLING OF ORBITALS

- Which configuration does not obey pauli's **45**. exclusion principle :-
 - (1)

- 46. Which of the following configuration follows the Hund's rule :-
 - 2s(1) [He]|↑↓||↑
- (2) [He] **|**↑↓
- 2s 2p
- 2p (4) [He] ↑↓

	n orbital 'A' are 3 and 2 and B' are 5 and 0. The energy	51 . The atomic number of an element is 17, the number of orbitals containing electron pairs in the valence shell is:-
of :-		life valence shell is:-
(1) B is more than (2) A is more than (3) A and B are o (4) None	B f same energy	(1) 8 (2) 2 (3) 3 (4) 6 52. The atomic number of the element having maximum number of unpaired 3p electrons is (in ground state):- (1) 15 (2) 10 (3) 12 (4) 8 53. Which one represent ground state configuration:-
has violated :- (1) Hund's rule (2) Pauli's principle (3) Aufbau principle (4) $(n + \ell)$ rule (9). Which of the following set of quantum numbers is correct for the 19^{th} electron of Chromium :-		
(1) 3 0 (2) 3 2 - (3) 4 0 (4) 4 1 - (50). An atom of Cr [Z]	n s 1/2 -2 1/2 1/2 -1 1/2 -1 1/2 = 24] loses 2 electrons. d electrons shall be there in	(3) 11 1 1 1 (4) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cr^{+2} : (1) 4 (2) 3	(3) 2 (4) 1	element with atomic number 24 is :- (1) 24 (2) 12 (3) 8 (4) 13

SOLUTION

ATOMIC STRUCTURE

- Rutherfords ∞ particle
 Scattering proved existance of nucleous at center of atom.
- **2.** Isoneutronic : Same no. of neutron.

i.e.
$$6^{\frac{14}{C}} = 14 - 6 = 8$$
 neutron $7^{\frac{15}{N}} = 15 - 7 = 8$ neutron $9^{\frac{17}{F}} = 17 - 9 = 8$ neutron

- 3. isolectronic : Same no. of $e^$ i.e CN^- : 6+7+1=14 $e^ N_2$: 7+7=14 e^- CO : 6+8=14 e^-
- **4.** Isotopes : same no. of Z Isotones : same no. of neutron Isobars : same mass number isoelectronic : same no. of e
- A & C are not isotonesA & B are not isobarsB & C are not isotopes
- **6.** Av. atomic $\omega t = \frac{85 \times 75 + 87 \times 25}{75 + 25}$ = 85.5
- 7. Let havier 22 Ne has relative abundance is x %

Av. Atomic
$$\omega t = \frac{x \times 22 + (100 - x)20}{100}$$

$$20.2 = \frac{x \times 22 + (100 - x)20}{100}$$

- 8. $v = \frac{C}{\lambda} \implies \lambda = \frac{C}{v} = \frac{3 \times 10^8 \text{ m/sec}}{8 \times 10^{15} \text{ sec}^{-1}}$ = 3.75 × 10⁻⁸ m
- 9. $\Delta E = \frac{hc}{\lambda}$ $\Rightarrow 3 \times 10^{-8} = \frac{6.64 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$ $\lambda = 6.64 \times 10^{-18} \text{ m}$ $= 6.64 \times 10^{-8} \text{ A}^{\circ}$
- **10.** $(mvr)_{2nd\ bohr\ orbit}$ of $H=x=2\times\hbar$ $(mvr)_{2nd\ bohr\ orbit}$ of $Li^{2+}=2\times\hbar=x$
- 11. $r_n = (0.53A)^n \frac{n^2}{z}$ 4.761 $A^\circ = (0.53\text{Å})^n \frac{n^2}{1} (Z=1)$ n = 3

- 12. 3^{rd} excited state n = 4 $v_n(Be^{3+}) = (2.188 \times 10^6 \, \text{m/sec}) \frac{Z}{n}$ $= (2.188 \times 10^6) \times \frac{4}{4} \, \text{m/sec}$ $= 2.188 \times 10^3 \, \text{km/sec}$
- $v_{n} \propto \frac{1}{n}$ $\mathbf{14.} \quad {}_{1}^{1}H \Rightarrow Z_{1} = 1$ $1^{2}D \Rightarrow Z_{2} = 1$ $r \propto \frac{n^{2}}{n}$

13. $r_n \propto n^2$

$$\frac{r_1(H)}{r_1(D)} = \frac{1}{1}$$

- 15. $E_n = (-13.6 \text{ eV}) \frac{z^2}{n^2}$ $\frac{E_2}{E_4} = \frac{4^2}{2^2} \implies \frac{-328 \text{kJ/mole}}{E_4} = 4$ $E_4 = -82 \text{ kJ/mole}$
- 16. $E_{\text{total}} = -E_{\text{KE}}$ So $\frac{E_{\text{KE}}}{E_{\text{total}}} = \frac{1}{-1}$
- $E_{\text{KE}}: Etotal = 1:-1$ **17.** $v_{\text{max}} \propto \Delta E_{\text{max}}$ (emmision) n = 2 to n = 1
- 18. $v_{min} \propto \Delta E_{min}$ (emmission)
- n = 5 to n = 2 **19.** $\Delta E = E_4 - E_3$ = -13.6eV $\left(\frac{1}{4^2} - \frac{1}{3^2}\right).5^2$

= 16.53 eV
20.
$$E_n = (-13.6\text{ev})\frac{z^2}{r^2}$$

So $E_1(H) = E_2(He^+) = E_4 (Be^{3+})$ **21.** KE = $-E_n = (13.6eV) \frac{z^2}{n^2}$

22.
$$(I.E.)_n = \frac{(I.E_H)_1}{n^2}$$

$$(IE)_3 = \frac{13.6eV}{3^2} = 1.51eV$$

23. (I
$$E_{He^+}$$
) = (13.6 eV) × 2²
= $-E_1$ (He⁺)
= KE_1 (He⁺)

24. He; N(e) = 2;
$$1s^2$$

Li+; N(e) = 2; $1s^2$
So expected spectrum is similar

25.
$$\lambda_{shortest} \propto \frac{1}{\nu_{max}} \propto \frac{1}{\Delta E_{max}}$$
 n_a to n_1

26.
$$\frac{(v_{\text{max}})_{\text{Lymen}}}{(v_{\text{max}})_{\text{Bracket}}} = \frac{(\Delta E_{\text{max}})_{\text{Lymen}}}{(\Delta E_{\text{man}})_{\text{Bracket}}} = \frac{\Delta E_{\infty \text{tol}}}{\Delta E_{\infty \text{tol}}}$$

$$= \frac{-13.6 \text{eV} \left(\frac{1}{\infty^2} - \frac{1}{1^2}\right)}{-13.6 \text{eV} \left(\frac{1}{\infty^2} - \frac{1}{4^2}\right)}$$

$$=\frac{16}{1}$$

27.
$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Shortest wavelength of lymen

$$\frac{1}{x} = R(1)^2 \left(\frac{1}{1^2} - \frac{1}{\infty^2} \right)$$
(i)

1st line of balmer series.

$$\frac{1}{\lambda} = R(1)^2 \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$$
(ii)

$$\frac{\lambda}{x} = \frac{1}{5/36}$$

$$\lambda = \frac{36x}{5}$$

28.
$$\frac{1}{\lambda} = R(1)^2 \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$$

1st line in balmer series

$$\overline{\nu} = \frac{1}{\lambda} = \frac{5R}{36} \text{ cm}^{-1}$$

Absorption spectrum take place from A level to uper level So 4, 5, 6 lines not possible.

30.
$$\lambda_{\text{De.brog}} = \frac{h}{\sqrt{2m \, k\epsilon}} = \frac{6.62 \times 10^{-34}}{\sqrt{(2 \times 9.1 \times 10^{-31} \times 2.8 \times 10^{-23})}}$$

= 9.28 × 10⁻⁸ m

31.
$$(\text{mvr})_4 = 4 \cdot \frac{h}{2\pi}$$

So number of wave = 4
32. $\lambda_{\text{De. brog for e}^-} = \sqrt{\frac{150}{V}} \text{ Å}$

32.
$$\lambda_{\text{De. brog for e}^-} = \sqrt{\frac{150}{V}} \text{ Å}$$

$$\frac{(\lambda_{e^{-}})_{1}}{(\lambda_{e^{-}})_{2}} = \sqrt{\frac{v_{2}}{v_{1}}} = \sqrt{\frac{50}{200}} = \frac{1}{2}$$

33.
$$\frac{\lambda_{\text{Debrog}}(x)}{\lambda_{\text{De.brog}}(y)} = \frac{(h / mv)_x}{(h / mv)_y} = \frac{(mv)_y}{(mv)_x}$$

$$= \frac{\frac{25}{100} \times m_x \times \frac{75}{100} \times v_x}{m_x v_x}$$

$$\frac{1\text{A}^{\circ}}{\lambda_{\text{De.brog(y)}}} = \frac{3}{16}$$

$$\lambda_{\text{De brag}}(y) = \frac{16}{3} \text{A}^{\circ}$$

$$n = 4$$

$$\ell = 2$$

$$S = \pm \frac{1}{2}$$

42. for
$$n = 5$$
; $m = 2$ ℓ may be 2, 3, 4

- **43.** Spin angular momentum of $e^- = \sqrt{s(s+1)} \frac{h}{2\pi}$
- **44.** $36^{Kr}: 18^{Ar}: 4s^2 \ 3d^{10}, \ 4p^6$ 39^{th} e⁻ goes in to 4d
- 45. Pauli's exclusion principle: No two e have some spin in any orbital
- 46. Hund's Rule; Maximum multiplicity

47.
$$(n + \ell)_A = 3 + 2 = 5$$

 $(n + \ell)_B = 5 + 0 = 5$

$$(n + \ell)_{B}^{A} = 5 + 0 = 5$$

$$n_{_{\! B}} > n_{_{\! A}}$$
 so $E_{_{\! B}} < E_{_{\! A}}$

- **49.** 19^{th} e⁻ of 24^{Cr} : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$

$$n = 4$$
; $\ell = 0$; $m = 0$; $s = \pm \frac{1}{2}$

- **50.** $_{14}\text{Cr}^{2+}$: no. of unpaired $e^- = 4$
- **51.** $17 : 1s^2 2s^2 2p^6 3s^2 3p^5$

Orbitals in valence shell containing e hair =3

- $15: 1s^2 2s^2 2p^6 3s^2 3p^3$ **52**.
- Without complete pairing in P orbital d orbital can not filled.
- **54**. M-shell means n = 3 $24 : 1s^2, 1s^2, 2p^6, 3s^2, 3p^6, 4s^1, 3d^5$ N(e) = 13