DPP - Daily Practice Problems

Da	te : Start Time : End Time :				
	CHEMISTRY (CC18)				
	SYLLABUS : The p-Block Elements (Group 15,16,17 and 18)				
Max	c. Marks : 74 Time : 60 min.				
	GENERALINSTRUCTIONS				
•	 The Daily Practice Problem Sheet contains 20 Questions divided into 5 sections. Section I has 6 MCQs with ONLY 1 Correct Option, 3 marks for each correct answer and -1 for each incorrect answer. Section II has 4 MCQs with ONE or MORE THAN ONE Correct options. For each question, marks will be awarded in one of the following categories: Full marks: +4 If only the bubble(s) corresponding to all the correct option(s) is (are) darkened. Partial marks: +1 For darkening a bubble corresponding to each correct option provided NO INCORRECT option is darkened. Zero marks: If none of the bubbles is darkened. Negative marks: -2 In all other cases. Section III has 5 Single Digit Integer Answer Type Questions, 3 marks for each Correct Answer and 0 marks in all other cases. Section IV has Comprehension/Matching Cum-Comprehension Type Questions having 5 MCQs with ONLY ONE correct option, 3 marks for each Correct Answer and 0 marks in all other cases. Section V has 1 Matching Type Questions, 2 mark for the correct matching of each row and 0 marks in all other cases. You have to evaluate your Response Grids yourself with the help of Solutions. 				
	Section I - Straight Objective Type (a) XeO_2F_2 (b) $XeOF_4$ (c) XeO_3 (d) XeO_4				

This section contains 5 multiple choice questions. Each question has 4 3. choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct.

- 1. Excess of KI reacts with $CuSO_4$ solution and then $Na_2S_2O_3$ solution is added to it. Which of the statements is incorrect for this reaction ?
 - (a) $Na_2S_2O_3$ is oxidised (b) CuI_2 is formed
 - (c) Cu_2I_2 is formed (d) Evolved I_2 is reduced
- 2. Which of the following xenon-oxo compounds may not be obtained by hydrolysis of xenon fluorides?

A yellow metallic powder when burnt in a stream of fluorine produced a colourless, thermally stable and chemically inert gas 'X'. A gas 'Y', which is colourless and consists of the same elements as are present in gas 'X', is obtained by heating together sulphur dichloride and sodium fluoride.

- Gases 'X' and 'Y' respectively are
- (a) SF_4 and SF_6 (b) SF_4 and S_2F_2
- (c) SF_6 and SF_4 (d) None of these

Response Grid 1. abcd 2. abcd 3. abcd

Space for Rough Work

- 4. If Cl_2 gas is passed into aqueous solution of KI containing some CCl_4 and the mixture is shaken then
 - (a) upper layer becomes violet
 - (b) lower layer becomes violet
 - (c) homogenous violet layer is formed
 - (d) None of these
- 5. The formation of $O_2^+[PtF_6]^-$ is the basis for the formation of xenon fluorides. This is because
 - (a) O_2 and Xe have comparable sizes
 - (b) both O_2 and Xe are gases
 - (c) O_2 and Xe have comparable ionisation energies
 - (d) Both (a) and (c)

Section II - Multiple Correct Answer Type

This section contains 4 multiple correct answer(s) type questions. Each question has 4 choices (a), (b), (c) and (d), out of which **ONE OR MORE** is/are correct.

- 6. Which of the following cannot be used as dehydrating agents for ammonia?
 - (a) Conc. H_2SO_4 (b) anhydrous CaCl₂
 - (c) P_4O_{10} (d) CaO
- 7. Sodium nitrate decomposes above 800° C to give
 - (a) N₂ (b) O₂
 - (c) NO_2 (d) Na_2O
- 8. Which of the following is/are correct for the characteristics indicated against each ?

- (a) $HClO \le HClO_2 \le HClO_3 \le HClO_4$ (oxidising power)
- (b) $ClO_4^- < BrO_4^- < IO_4^-$ (oxidising power)
- (c) $ClO^{-} \leq BrO^{-} \leq IO^{-}$ (disproportionation)
- (d) $HClO \le HClO_2 \le HClO_3 \le HClO_4$ (Acidic strength)
- 9. It is not suitable to add conc. H_2SO_4 to KI (s) for preparation of HI because
 - (a) I^- (iodide ions) are oxidized to I_2
 - (b) The product formed gets contaminated by compounds of sulphur.
 - (c) Both the acids (i.e., H_2SO_4 and HI) are strong acids
 - (d) H_2SO_4 is a strong acid and HI is a weak acid.

Section III - Integer Type

This section contains 5 questions. The answer to each of the questions is a single digit integer ranging from 0 to 9.

- 10. How many P–O–P bonds are present in P_4O_8 ?
- Among the oxides given below, how many are acidic? CrO₃, Mn₂O₇, CuO, CO, SO₂
- **12.** In the molecule ICl₃, how many lone pairs of electrons are associated with iodine?
- **13.** How many $d\pi$ -p π bonds are there in XeO₄?
- 14. What is the total number of lone pair of electrons present in Xe in XeF₂?

Space for Rough Work

Section IV - Comprehension Type

Directions (Qs. 15-19): Based upon the given paragraphs, 5 multiple choice questions have to be answered. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE is correct.

PARAGRAPH-1

Column I contains different acids & Column II & III contains their molecular formula and No. of $\sigma \& \pi$ bonds respectively

	Column I		Column II		Column III	
	Compound		Molecular Formula		No. of σ and π bonds	
(I)	Thiosulfuric acid	(i)	$H_2 S_2 O_6$	(P)	6σ and 2π	
(II)	Persulfuric acid	(ii)	$H_2 S_2 O_8$	(Q)	11 σ and 4π	
(III)	Peroxydisulfuric acid	(iii)	$H_2 SO_5$	(R)	9σ and 4π	
(IV)	Dithionic acid	(iv)	$H_2 S_2 O_3$	(S)	7σ and 2π	

15. Find appropriate combination for caro's acid

(a) $(IV)(iii)(R)$ (b)	(II) (iv) (P)
------------------------	---------------

- (c) (II)(iii)(S) (d) (I)(iii)(Q)
- 16. Find appropriate combination for marshall's acid
 - (a) (III)(i)(R) (b) (IV)(iii)(S)
 - (c) (I)(ii)(P) (d) (III)(ii)(Q)
- 17. The only correct combination among the following is
 - (a) (I)(iv)(R) (b) (II)(iii)(Q)
 - (c) (IV)(i)(R) (d) (III)(i)(S)

PARAGRAPH-2

In all the oxyacids of phosphorous, each phosphorous atom is in sp^3 hybrid state, i.e., it is tetrahedrally bonded to neighbouring

Response Grid 15. (a) **b C d** 16. (a) **b C d** 17. (a) **b C d**

Space for Rough Work -

- 18. Among the above acids, the acids having basicity 4 are :
 - (a) A&E (b) C&D
 - (c) C&F (d) D&F
- 19. Metaphosphoric acid (E) can be prepared by heating
 - (a) D&F (b) C&F
 - (c) C & D (d) B, C & F

Section V - Matrix-Match Type

This section contains 1 question. It contains statements given in two columns, which have to be matched. Statements in column I are labelled as A, B, C and D whereas statements in column II are labelled as p, q, r and s. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p, A-r, B-p, B-s, C-r, C-s and D-q, then the correctly bubbled matrix will look like the following:

20. Column I		Column I	Column II		
	(A)	H ₂ S	p.	decolourises acidified	
				soln. of KMnO ₄	
	(B)	SO ₂	q.	Disproportionation	
				reaction	
	(C)	NO ₂	r	Bleaching action	
	(D)	HNO ₂	s.	V-shaped structure	

Response	18. @ b C d 19. @ b C d
Grid	$20. \mathbf{A} - \mathbf{p}\mathbf{q}\mathbf{T}\mathbf{S}; \mathbf{B} - \mathbf{p}\mathbf{q}\mathbf{T}\mathbf{S}; \mathbf{C} - \mathbf{p}\mathbf{q}\mathbf{T}\mathbf{S}; \mathbf{D} - \mathbf{p}\mathbf{q}\mathbf{T}\mathbf{S}$

DAILY PRACTICE PROBLEM DPP CHAPTERWISE 18 - CHEMISTRY				
Total Questions	20	Total Marks	74	
Attempted		Correct		
Incorrect		Net Score		
Cut-off Score	24	Qualifying Score	35	
Success Gap = Net Score – Qualifying Score				
Net Score = (Correct × 4) – (Incorrect × 1)				

Space for Rough Work

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

DPP/CC18

1. **(b)** ${}^{-1}_{KI} + 2CuSO_4 \rightarrow {}^{0}_{I_2} + Cu_2I_2 + 2K_2SO_4$ ${}^{0}_{I_2} + 2Na_2 {}^{2+}_{S_2}O_3 \rightarrow Na_2 {}^{+2.5}_{S_4}O_6 + 2NaI$

Thus, CuI_2 is not formed.

2. (d) $XeF_6 + H_2O \xrightarrow{Partial} XeOF_4 + 2HF$

 $XeF_6 + 2H_2O \xrightarrow{Partial} XeO_2F_2 + 4HF$

$$XeF_6 + 3H_2O \xrightarrow{Complete} XeO_3 + 6HF$$

3. (c) $\underset{(Yellow powder)}{S} + 3F_2 \xrightarrow{heat} SF_6 \xrightarrow{'X'}$

 $3SCl_2 + 4NaF \xrightarrow{heat} SF_4 + S_2Cl_2 + 4NaCl$

[Note : SF₆ and SF₄ consist of sulphur and fluorine]

4. (b)
$$2KI + Cl_2 \rightarrow 2KCl + I_2$$

$$I_2 + CCl_4 \rightarrow Violet Colour$$

Note: The excess of Cl_2 should be avoided. The layer may become colourless due to conversion of I_2 to HIO₃

 $I_2 + 5Cl_2 + 6H_2O \rightarrow 2HIO_3 + 10HCl$

In case of Br_2 : $Br_2 + 2H_2O + Cl_2 \rightarrow 2HBrO + 2HCl$ The layer test is based upon distribution law

(d) (i) The first ionization energy of xenon (1, 170 kJ mol⁻¹) is quite close to that of dioxygen (1,180 kJ mol⁻¹).
(ii) The molecular diameters of xenon and dioxygen are almost identical.

Based on the above similarities Barlett (who prepared $O_2^+[PtF_6]^-$ compound) suggested that since oxygen combines with PtF₆, so xenon should also form similar compound with PtF₆.

6. (a, b, c) Being a basic gas, ammonia will not get dehydrated by conc. H_2SO_4 , anhydrous $CaCl_2$ and P_4O_{10} whereas it can directly react with them.

$$H_2SO_4 + 2NH_3 \longrightarrow (NH_4)_2SO_4;$$

$$CaCl_2 + 8NH_3 \longrightarrow CaCl_2.8NH_3;$$

$$P_4O_{10} + 12NH_3 + 6H_2O \longrightarrow 4(NH_4)_3PO_4$$

(a, b, d) Sodium nitrate on decomposition upto 500°C gives NaNO₂ and oxygen.

 $2NaNO_3 \xrightarrow{\Delta} 2NaNO_2 + O_2 \uparrow$

While at higher temperature (i.e. above to 800°C), NaNO₂ further decomposes into Na₂O, N₂ and O₂.

$$2NaNO_2 \xrightarrow{800^{\circ}C} Na_2O + 3/2O_2 \uparrow + N_2 \uparrow$$

8. (b,d)

In case of oxy-acids of halogens, acidic strength increases with increase in number of oxygen atom. Thus the correct acidic strength is $HCIO < HCIO_2 < HCIO_3 < HCIO_4$.

For the given ions the correct order of oxidising power is $CIO_4^- < BrO_4^- < IO_4^-$

12.

I⁻ is a strong reducing agent so it gets oxidised by H_2SO_4 (conc.) to I₂.

The products obtained by reduction of H_2SO_4 are SO_2 , S and H_2S (compounds of sulphur) and so they act as contaminants for the product.

10. (6) There are 6 P–O–P bonds in P_4O_8 .

11. (3)
$$CrO_3$$
, Mn_2O_7 and SO_2 are acidic oxides.

(2)
$$5s 5p 5d$$

I I I I I I I sp^3d with 2 1p

13. (4)
$$XeO_4$$
 is sp³ hybridised.

$$\begin{array}{c|c} \mathsf{Xe} & 1 & 1 & 1 & 1 \\ & & & \\ &$$

14. (3) In XeF₂

Xe
$$1 1 1 1$$

sp³d hybridised with 3 1p

Hence, there are 3 1ps in Xe in XeF_2 .

15. (c) Persulfuric acid (H_2SO_5) is also known as caro's acid

$$\begin{array}{c} \pi \parallel \sigma \\ H \ \overline{\sigma} \ O \ \overline{\sigma} \ O \ \overline{\sigma} \ S \ \overline{\sigma} \ O \ \overline{\sigma} \ H \ (7\sigma, 2\pi) \\ \pi \parallel \sigma \\ O \end{array}$$

16. (d) Peroxydisulfuric acid $(H_2S_2O_8)$ is also known as Marshall's acid

$$\begin{array}{cccc}
 & O & O \\
 \pi \| \sigma & \pi \| \sigma \\
 H_{\overline{\sigma}} O_{\overline{\sigma}} S_{\overline{\sigma}} O_{\overline{\sigma}} O_{\overline{\sigma}} O_{\overline{\sigma}} S_{\overline{\sigma}} O_{\overline{\sigma}} H (11\sigma, 4\pi) \\
 \pi \| \sigma & \pi \| \sigma \\
 O & O \end{array}$$

17. (c) Dithionic acid $(H_2S_2O_6)$

18. (c) The basicity is determined by the number of OH groups attached to the P atom.

19. (a)
$$H_3PO_4 \xrightarrow{\Delta} HPO_3 + H_2O;$$

(D) ortho- meta-

 $\begin{array}{c} H_4 P_2 O_7 \xrightarrow{\Delta} 2 HPO_3 + H_2 O \\ (F) \text{ pyro-} & \text{meta-} \end{array}$

20. A-p, s; B-p, q, r, s; C-p, s; D-p, s

 $A \rightarrow H_2S$ decolourises acidified solution of KMnO₄

$$2KMnO_4 + 3H_2SO_4 + 5H_2S \longrightarrow$$
$$K_2SO_4 + 2MnSO_4 + 8H_2O + 5S$$

The shape of the H_2S molecule is similar to that of the water molecule i.e. V-shaped structure with bond length (H–S) 1.35Å and bond angle (H–S–H) 92.5° involving sp³ hybridization of S atom.

 $B \rightarrow SO_2$ undergoes disproportionation (oxidation of two molecules of the same compound at the expense of the third which is reduced) reaction.

 $3SO_2 \xrightarrow{\text{Heat}} 2SO_3 + S$

Decolourises KMnO₄

$$5SO_2 + 2KMnO_4 + 2H_2O \longrightarrow K_2SO_4 + 2MnSO_4 + 2H_2SO_4$$

Sulphur dioxide acts as bleaching agent in the following way :

In the presence of water, it is oxidised with the liberation of nascent hydrogen which reduces the colouring matter to colourless.

$$SO_2 + 2H_2O \longrightarrow H_2SO_4 + 2[H]$$

Colouring matter $+2[H] \xrightarrow{air}$ Colourless compound

Sulphur dioxide has a planar triangular (V-shaped) structure involving sp² hybridisation of the sulphur atom (sp² hybridisation occurs between $3s^23p_x^{-1}$ and $3p_y^{-1}$ electrons). $C \rightarrow NO_2$ undergoes decolourisation of KMnO₄

$$2KMnO_4 + 3H_2SO_4 + 10NO_2 + 2H_2O \longrightarrow K_2SO_4 + 2MnSO_4 + 10HNO_3$$

 NO_2 molecule has angular structure (V-shape) with O–N–O bond angle of about 132° and N–O distance of about 1.19Å which is intermediate between a single and a double bond.

 $D \rightarrow HNO_2$ decolourises $KMnO_4$:

$$2KMnO_4 + 3H_2SO_4 + 5HNO_2 \longrightarrow$$

$$K_2SO_4 + 2MnSO_4 + 3H_2O + 5HNO_3$$

X-ray and Raman spectral studies indicate an angular structure for nitrite ion (NO_2^-) with O–N–O angle of 132° and bond length (N–O) of 1.13 Å.