	INTRODUCTION						
1.	If $pH = 3.31$, then find out $[H^+]$ (Approxy)	10	EXPLANATION OF WATER				
	(1) 3.39×10^{-4} (2) 5×10^{-4}	10.	(1) Dissociation the pressure				
	(3) 3.0 x 10^{-3} (4) None		(2) Add H ⁺				
2	Find out nH of solution having 2×10^{-3} moles		(3) Add OH-				
2.	of OH^- ion's in 2 litre solution :-		(4) Increase the temperature				
	(1) $pH = 3$ (2) $pH = 3 + \log 2$	11.	At $25^{\circ}C$, the dissociation constant for pure water				
	(3) $pH = 3 - log2$ (4) $pH = 11$		is given by :-				
3.	8 g NaOH is dissolved in one litre of solution, the molarity of the solution is:-		(1) $(55.4 \times 10^{14})^{-1}$ (2) 1×10^{-14}				
	(1) 0.2 M (2) 0.4 M (3) 0.02 M (4) 0.8 M		(3) $\frac{1 \times 10}{18}$ (4) None of these				
4.	The number of milli equivalents of acid in 100 mL of 0.5N HCl solution is:-	12.	At 90°C, pure water has $[H_3O^+] = 10^{-6.7} \text{ mol } L^{-1}$ what is the value of K_w at 90°C:-				
	(1) 50 (2) 100 (3) 25 (4) 200		(1) 10^{-6} (2) 10^{-12}				
5.	If the molar concentration of PbI_2 is		$(3) 10^{-67} \qquad (4) 10^{-13.4}$				
	1.5×10^{-3} mol L ⁻¹ , the concentration of iodide	13.	At 373 K, temp. the pH of pure H_2O can be:				
	(1) 3.0×10^{-3} (2) 6.0×10^{-3}	1.4	(1) < 7 $(2) > 7$ $(3) = 7$ $(4) = 0$				
	(3) 0.3×10^{-3} (4) 0.6×10^{-6}	14.	If it is known that H_2S is a weak acid and it is ionised into $2H^+$ and S^{-2} . Then in this solution				
	OSTWALD'S DILUTION LAW		HCl is added so, pH becomes less, then what				
6.	Order of dissociation of 0.1 N CH_COOH is :-		will happen :-				
	(Dissociation constant = 1×10^{-5})		 (1) Decrease in S⁻² ion concentration (2) Concentration of S⁻² is not affected 				
	(1) 10^{-5} (2) 10^{-4} (3) 10^{-3} (4) 10^{-2}		(3) Increase in S^{-2} ion concentration				
7.	If $lpha$ is the degree of dissociation of weak dibasic		(4) It is not possible, to add HCl in solution				
	organic acid and y is the hydrogen ion		HYDROLYSIS OF SALTS				
	concentration, what is the initial concentration of acid (assume both H dissociate in one step)	15					
	(1) $\frac{\alpha(y)^{-1}}{2}$ M (2) $y(\alpha)^{-1}$ M	15.	(1) $h = \sqrt{K_h}$ (2) $h = \sqrt{\frac{K_h}{C}}$				
	(3) $\frac{y(\alpha)^{-1}}{2}$ M (4) None of them		(3) h = $\sqrt{\frac{K_h}{V}}$ (4) $K_h = \sqrt{hc}$				
8.	The pH of 0.15 M solution of HOCl ($K_a = 9.6 \times 10^{-6}$) is:-	16 .	The highest pH value is of :-				
	(1) 4.42 (2) 2.92 (3) 3.42 (4) None		(1) 0.1 M NaCl				
9.	The extent of ionisation increases (weak		(2) 0.1 M NH_4Cl				
	electrolytes)		(3) 0.1 M CH ₃ COONa				
	(1) With the increase in concentration of solute		(4) 0.1 M CH_3COONH_4				
	(2) On decreasing the temp. of solution(3) On addition of excess of water to the solution	17.	A weak acid react with strong base, ionisation constant of weak acid is 10 ⁻⁴ . Find out equilibrium constant for this reaction :-				
	(4) On stirring the solution vigorously		(1) 10^{-10} (2) 10^{10} (3) 10^{-9} (4) 10^{9}				

- **18.** Hydroxyl ion concentration [OH⁻] in the case of sodium acetate can be expressed as (where K_a is dissociation constant of CH₃COOH and C is the concentration of sodium acetate):-
 - (1) $[OH^{-}] = (CK_{w}, K_{a})^{1/2}$
 - (2) $[OH^{-}] = C.K_w \sqrt{K_a}$ (3) $[OH^{-}] = \left(\frac{C.K_w}{K_a}\right)^{1/2}$
 - (4) $[OH^{-}] = C. K_{a}. K_{w}.$
- **19.** K_a for cyano acetic acid is 3.5×10^{-3} . Then the degree of hydrolysis of 0.05 M. sodium cyano acetate solution will have the following value :-
 - (1) 4.559×10^{-6} (2) 5.559×10^{-6} (3) 6.559×10^{-6} (4) 7.559×10^{-6}

SOLUBILITY & SOLUBILITY PRODUCT(K_{sp})

- **20.** At 25°C, the K_{sp} value of AgCl is 1.8×10^{-10} . If 10^{-5} moles of Ag⁺ are added to solution then K_{sp} will be :-
 - (1) 1.8×10^{-15} (2) 1.8×10^{-10} (3) 1.8×10^{-5} (4) $18 \times 10^{+10}$
- **21.** Concentration of Ag⁺ ions in saturated solution of Ag₂CrO₄ at 20°C is 1.5×10^{-4} mol L⁻¹. At 20°C, the solubility product of Ag₂CrO₄ is :-(1) 3.3750×10^{-12} (2) 1.6875×10^{-10}

(3) 1.68 × 10 ⁻¹²	(4) 1.6875 × 10 ⁻¹¹

 $\label{eq:22.1} \textbf{22.} \quad If the solubility of lithium sodium hexeafluoro aluminate Li_3Na_3(AIF_6)_2 is 'S' mol L^{-1}. Its solubility product is equal to :-$

(1) S^8	(2) 12 S^3
(3) $18S^3$	(4) 2916 S

APPLICATION OF SOLUBILITY PRODUCT(K.,)

- $\label{eq:24. If the maximum concentration of PbCl_2 in water is 0.01 M at 298 K, Its maximum concentration in 0.1 M NaCl will be:-$

(1) 4×10^{-3} M	(2) $0.4 \times 10^{-4} M$
(3) 4×10^{-2} M	(4) 4×10^{-4} M

25. In which of the following, the solubility of AgCl will be maximum :-

(1)	0.1	M AgNO ₃	(2)	Wat	er	
(3)	0.1	M NaCl	(4)	0.1	М	KCl

(1) Cd⁺², Fe⁺², Sr⁺² (2) Cd⁺², Hg⁺², Cu⁺²

- (3) Hg⁺², Cu⁺², Fe⁺² (4) Cu⁺², Sr⁺², Fe⁺²
- **27.** What will happen if the pH of the solution of $0.001 \text{ M Mg}(\text{NO}_3)_2$ solution is adjusted to pH = 9
 - $(K_{sp}Mg(OH)_2 = 8.9 \times 10^{-12})$
 - (1) ppt will take place
 - (2) ppt will not take place
 - (3) Solution will be saturated
 - (4) None of these
- - (1) Enough As³⁺ are present in acidic medium
 - (2) Zinc salt does not ionise in acidic medium
 - (3) Solubility product of $As_{\rm 2}S_{\rm 3}$ is less than that of ZnS
 - (4) Solubility product changes in presence of an acid
- - (1) II A group of cation analysis
 - (2) II B group of cation analysis
 - (3) IV group of cation analysis
 - (4) Both II A and II-B gps.

 $K_{sp} Mg(OH)_2 > K_{sp} Zn(OH)_2 > K_{sp} Fe(OH)_3$ The order of precipitation of hydroxides is:-

- (1) $Fe(OH)_3$, $Zn(OH)_2$, $Mg(OH)_2$
- (2) Mg(OH)₂, Zn(OH)₂, Fe(OH)₃
- (3) Zn(OH)₂, Fe(OH)₃, Mg(OH)₂
- (4) Zn(OH)₂, Mg(OH)₂, Fe(OH)₃

pН

- **31.** pH of water is 7. When any substance Y is dissolved in water then pH becomes 13. Substance Y is a salt of :(1) Strong acid and strong base
 - (2) Weak acid and weak base
 - (3) Strong acid and weak base
 - (4) Weak acid and strong base

32. In the following solutions, the conc. of different acids are given, which mixture of the acid has highest pH (If equal volume of each mixed together) :-

(1)
$$\frac{M}{10}H_2SO_4$$
, $\frac{M}{20}HNO_3$, $\frac{M}{10}HCIO_4$
(2) $\frac{M}{20}H_2SO_4$, $\frac{M}{10}HNO_3$, $\frac{M}{20}HCIO_4$
(3) $\frac{M}{20}H_2SO_4$, $\frac{M}{10}HNO_3$, $\frac{M}{40}HCIO_4$

(4)
$$\frac{M}{20}$$
 H₂SO₄, $\frac{M}{5}$ HNO₃, $\frac{M}{5}$ HClO₄

- 33. The pH of solution is increased from 3 to 6.Its H⁺ ion concentration will be :-
 - (1) Reduced to half
 - (2) Doubled
 - (3) Reduced by 1000 times
 - (4) Increased by 1000 times
- **34.** Which of the following statements are (is) correct (a) The pH of 1.0×10^8 M solution of HCl is 8.
 - (b) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
 - (c) Autoprotolysis constant of water increases with temperature.
 - (d) When a solution of a weak monoprotic acid is titrated against a strong base, at half neutralization point pH = 1/2 pKa
 - (1) a (2) a, b (3) a, b, d (4) b, c
- **35**. The hydrogen ion concentration in a given solution is 6×10^{-4} M. Its pH will be :- (1) 6 (2) 3.22 (3) 4 (4) 2.
- **36.** The pOH of beer is 10.0. The hydrogen ion concentration will be :-

(a) 10 ⁻¹⁰	(b) $\frac{Kw}{10^{-10}}$	(c) $\frac{Kw}{10^{-8}}$	(d) 10 ⁻⁴
-----------------------	---------------------------	--------------------------	----------------------

```
(1) a, d (2) b, c (3) a, b, c (4) None
```

37. Following five solution of KOH were prepare as-

First	\rightarrow	0.1 moles	in 1 L
Second	\rightarrow	0.2 moles	in 2 L
Third	\rightarrow	0.3 moles	in 3 L
Fourth	\rightarrow	0.4 moles	in 4 L
Fifth	\rightarrow	0.5 moles	in 5 L
The pH of	resultant sol	ution is :-	
(1) 2	(2) 1	(3) 13	(4) 7

38. How many moles of HCl must be removed from 1 litre of aqueous HCl solution to change its pH from 2 to 3 :-

(1) 1 (2) 0.02 (3) 0.009 (4) 0.01

- **39**. What is the quantity of NaOH present in 250 cc of the solution, so that it gives a pH = 13:-
 - (1) 10^{-13} g (2) 10^{-1} g
 - (3) 1.0 g (4) 4.0 g

BUFFER SOLUTIONS and INDICATOR

- 40. In a buffer solution the ratio of concentration of NH₄Cl and NH₄OH is 1 : 1 when it changes in 2 : 1 what will be the value of pH of buffer :- (1) Increase (2) Decrease
 (3) No effect (4) N.O.T.
- **41.** In the volumetric estimation of HCl, if we make use of phenolphthalein as an indicator, which base is unsuitable for the titration :-
 - (1) NaOH (2) RbOH
 - (3) KOH (4) NH₄OH
- **42**. Phenolphthalein does not act as an indicator for the titration between :-
 - (1) KOH and H_2SO_4
 - (2) NaOH and $CH_{3}COOH$
 - (3) Oxalic acid and ${\rm KMnO}_4$
 - (4) Ba(OH)₂ and HCl
- 43. Which can act as buffer :-
 - (1) $NH_4OH + NaOH$
 - (2) HCOOH + CH₃COONa
 - (3) 40 mL 0.1 M NaCN + 20 mL of 0.1 M HCl
 - (4) None of them
- **44.** From the following in which titration methyl orange is a best indicator :-
 - (1) CH₃COOH + NaOH

(2) $H_2C_2O_4 + NaOH$

- (3) HCl + NaOH
- (4) $CH_3COOH + NH_4OH$
- **45**. The pH of blood is maintained by CO_2 and H_2CO_3 in the body and chemical constituents of blood. This phenomenon is called :-
 - (1) Colloidal (2) Buffer action
 - (3) Acidity (4) Salt balance

46 .	Which of the following as buffer :-	solutions does not act	53.	The conju
	(1) $H_3PO_4 + NaH_2PO_4$	4		(1) CH ₃ NI
	(2) NaHCO ₃ + H_2CO_3	•	54	(3) $(CH_3)_2$
	(3) $NH_4Cl + HCl$		34.	(1) CH_3NI
	(4) $CH_3COOH + CH_3$	COONa		(3) H ₂ O
47 .	Half of the formic acid on addition of a KO K_a (HCOOH) = 2 × 10 ⁻⁴ is : (log 2 = 0.3010)	l solution is neutralised DH solution to it. If then pH of the solution	55. 56.	The conju reaction H (1) HBr Mg ²⁺ is -
	(1) 3.6990	(2) 10.3010		(1) Strong (3) Weak
	(3) 3.85	(4) 4.3010	57 .	The two
48 .	0.05 M ammonium dissolved in 0.001 M solution. What will be th of this solution: K_{b} (NH	hydroxide solution is 1 ammonium chloride e OH ⁻ ion concentration $_4$ OH) = 1.8×10^{-5}		$HC_{2}O_{4}^{-} +$ (1) $HC_{2}O_{4}^{-}$ (2) HPO_{4}^{-2} (3) PO_{4}^{-3-}
	(1) 3.0×10^{-3}	(2) 9.0×10^{-4}		(4) HC ₂ O
	(3) 9.0 \times 10 ⁻³	(4) 3.0×10^{-4}	58 .	In which o
49 .	What amount of sodiu be added to one l solution containing 0.02	um propanoate should itre of an aqueous 2 mole of propanoic acid		(1) NH ₃ + (2) NH ₃ +
	$(Ka = 1.34 \times 10^{-5} at 2)$ solution of pH 4.75 :-	25° to obtain a buffer		(3) NH ₃ +
	(1) $4.52 \times 10^{-2} \text{ M}$	(2) $3.52 \times 10^{-2} \text{ M}$	59 .	Consider
	(3) $2.52 \times 10^{-2} \text{ M}$	(4) $1.52 \times 10^{-2} \text{ M}$		(i) CO_{2}^{2-}
50 .	Calculate the ratio of pH	l of a solution containing		
	1 mole of CH_3COONa litre and of other solution	tion containing 1 mole		(ii) CO_2 + (iii) NH_3 +
	$CH_3COOMa + Imole C$	(2) 1 (4) (2) 2		(iv) $HCl +$
51.	(1) $1 : 1$ (2) $2 : 1$ 10 mL of a solution cont M NH ₄ OH. Which add the pH of solution :-	(3) $1 : 2$ (4) $2 : 3$ tains 0.1 M NH ₄ Cl+ 0.01 ition would not change		Which of t is amphot (1) (i) and
	(1) Adding 1 mL water		60 .	Aluminium
	(2) Adding 5 mL of 0.	1 M NH ₄ Cl		(1) Bronst
	(3) Adding 5 mL of 0.	1 M NH4OH		(3) Lewis
	(4) Adding 10 mL of ().1 M NH ₄ Cl	61.	(1) Protoc
	ACID AND	BASE		(3) Amphi
52 .	In the reaction NH_3 + water behaves as :-	$H_2O \implies NH_4^+ + OH^-$	62 .	Species wi and base
	(1) Acid (3) Neutral	(2) Base (4) Both acid & Base		(1) (HSO ₄ (3) NH ₃

3.	The conjugated base of	$(CH_3)_2 \overset{+}{NH}_2$ is :-
	(1) CH ₃ NH ₂	(2) (CH ₃) ₂ N ⁺
	(3) (CH ₃) ₂ N	(4) (CH ₃) ₂ NH
4 .	Which of the following is	s not a Bronsted acid :-
	(1) $CH_3NH_4^+$	(2) CH_3COO^-
5	(3) $\Pi_2 O$ The conjugate base of	(4) ΠSO_4
J .	reaction HBr + $H_{2}O =$	\implies H ₂ O ⁺ + Br ⁻ is
	(1) HBr (2) H_0O	(3) Br ⁻ (4) H ₂ O ⁺
6 .	Mg^{2+} is than Al^{3+}	* :-
	(1) Strong Lewis acid	(2) Strong Lewis base
_	(3) Weak Lewis acid	(4) Weak Lewis base
7.	The two Bronsted base	s in the reaction
	$HC_2O_4^- + PO_4^{3-} \Longrightarrow$	$HPO_4^{2-} + C_2O_4^{2-}$ are
	(1) $HC_2O_4^-$ and PO_4^{2-}	
	(2) HPO_4^{2-} and $C_2O_4^{2-}$	
	(3) PO_4^{3-} and $C_2O_4^{-2}$	
8	(4) $\Pi C_2 O_4$ and $\Pi P O_4^2$ In which of the following	reactions NH acts as
0.	acid	3 reactions 141_3 acts as
	(1) $NH_3 + HCl \rightarrow NH_4$	Cl
	(2) $NH_3 + H^+ \rightarrow NH_4^+$	
	(3) NH ₂ + Na \rightarrow NaN	$H_{a} + \frac{1}{2}H_{a}$
	(1) NH cannot act as	2 2 2 acid
9 .	Consider the following	reactions :-
	(i) $CO_3 + \Pi_2 O \longleftarrow$	$\Pi CO_3 + O\Pi$
	(ii) $CO_2 + H_2O \implies H_2O$	H_2CO_3
	(iii) $NH_3 + H_2O \implies N$	IH ₄ OH
	(iv) HCl + $H_2O \implies O$	Cl⁻ + H ₃ O⁺
	Which of the pairs of rea	ctions proves that water
	is amphoteric in charac	ter :-
	(1) (1) and $(11)(3)$ (11) and (11)	(2) (11) and (111) (4) (i) and (iii)
0.	Aluminium chloride is :-	-
	(1) Bronsted Lowry acid	l(2) Arrhenius acid
	(3) Lewis acid	(4) Lewis base
1.	Water is a :-	
	(1) Protogenic solvent	(2) Protophilic solvent
_	(3) Amphiprotic solvent	(4) Aprotic solvent
2 .	Species which do not ac and base is :-	t both as Bronsted acid
	(1) (HSO ₄) ⁻¹	(2) Na ₂ CO ₃
	(3) NH ₃	(4) OH ⁻¹

ANSWER KEY

·

IONIC EQUILIBRIUM																				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	4	1	1	1	4	3	2	3	4	1	4	1	1	2	3	2	3	4	2
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	4	4	4	2	2	2	3	4	1	4	3	3	4	2	4	3	3	3	2
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	3	3	3	2	3	1	2	4	3	1	1	4	2	2	3	3	3	3	3
Que.	61	62																		
Ans.	3	2																		

SOLUTION

pH = 3.311. $-\log H^{+} = 3.31$ $[H^+] = Antilog (-3.31)$ = Antilog (-4 +.69) $= 5 \times 10^{-4}$ $[OH^{-}] = \frac{2 \times 10^{-3}}{2} = 10^{-3}$ 2. pOH = 3; pH = 11 $[NaOH] = \frac{8/40}{1} = \frac{1}{5} = 0.2 \text{ M}$ 3. no. of milli equivalent of HCl 4. $= N \times V_{ml}$ $= 0.5 \times 100 \text{ ml}$ = 50 $[PbI_{0}] = 1.5 \times 10^{-3} M$ 5. $[\Gamma] = 2 \times 1.5 \times 10^{-3} = 3 \times 10^{-3} \text{ M}$ $0.1N CH_3COOH = 0.1M CH_3COOH$ 6. $\frac{\mathrm{ka}}{\mathrm{C}} = \frac{1 \times 10^{-5}}{1} = 10^{-4} < 10^{-2}$ So α neglected $\alpha = \sqrt{ka/c} = \sqrt{10^{-4}}$ $= 10^{-2}$ 7. Let α is dissociation if both H ionises simultaneously in diabasic Acid H₂A H_oA \rightleftharpoons 2H⁺ + A²⁻ С C(1-α) 2.Ca Ca $[H^+] = 2C\alpha = y$ $C = \frac{y}{2} \alpha^{-1}$ 8. HOCl (weak Acid) $\frac{\mathrm{ka}}{\mathrm{C}} = \frac{9.6 \times 10^{-6}}{0.15} < 10^{-5}$ $[H^+] = \sqrt{ka.c} = \sqrt{9.6 \times 10^{-6} \times 0.15}$ $pH = -\log (9.6 \times 1.5 \times 10^{-6})^{1/2}$ $=\frac{1}{2}[6 - \log (9.6 \times 1.5)]$ = 2.92

9. $\alpha_{\text{weak}} \propto \sqrt{v}$ (monobasic)

10. $Kw = [H^+][OH^-]$ T \uparrow , K $\omega\uparrow$ **11.** $H_{2}O \rightleftharpoons H^{+} + OH^{-}$ $k_{d} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]} = \frac{1 \times 10^{-14}}{55.55}$ $= (55.55 \times 10^{14})^{-1}$ **12.** $[H_3O^+] = [H^+] = 10^{-6.7}$ at 90°C pure H₂O So $[OH-] = 10^{-6.7}$ $k\omega = [H^+][OH^-] = 10^{-13.4}$ **13.** pH (pure H_0O) < 7 at 373 k At 373 k kw(H₂O) > 10^{-14} **14.** $H_2S \rightleftharpoons 2H^+ + S^{2-}$ weak acid Addition of HCl result B.D. [S²⁻] Decreases Although effective $[H^+]$ increases So pH decreases. **15.** $HCOO^- + H_2O \rightleftharpoons HCOOH + OH^-$ С 0 0 C(1-h) Ch Ch $k_{h} = \frac{Ch^{2}}{1-h} (1-h \simeq 1)$ $k_{h} = Ch^{2}$ $h = \sqrt{\frac{k_h}{C}}$ $CH_2COONa(Salt = wA + S.B)$ 16. So pH will be High $HX + NaOH \rightleftharpoons NaX + H_{a}O$ (Let) 17. W.A S.B $K_{\rm C} = \frac{1}{kh(X^{-})}$ $NaX + H_{2}O \rightleftharpoons Hx + NaOH$ $X^- + H_0O \rightleftharpoons HX + OH^ S_{O} K_{C} = \frac{1}{k_{h}(X^{-})} = \frac{1}{k_{h}(X^{-})}$ $=\frac{1}{kw} = \frac{ka(HX)}{k\omega}$ ka(HX) $=\frac{10^{-4}}{10^{-14}}=10^{10}$

18.
$$CH_{c}COONa + H_{2}O \rightleftharpoons CH_{c}COOH + NaOH C C (H_{c}COO^{-} + H_{2}O \rightleftharpoons CH_{c}COOH + OHT C - - - C(1-h) Ch Ch Ch (h = $\sqrt{\frac{k_{n}}{k_{n}}}$ (k, $=\frac{kw}{k_{n}}$)
(OHT] = $Ch = \sqrt{k_{n}C}$ (k, $=\frac{kw}{k_{n}}$)
(OHT] = $Ch = \sqrt{k_{n}C}$ (OHT] = $Ch = \sqrt{k_{n}C}$ (OHT] = $Ch = \sqrt{k_{n}C}$ (OHT] = $\sqrt{\frac{k_{m}}{k_{n}}}$ (C) (OHT] = $Ch = \sqrt{k_{n}C}$ (OHT] = $\sqrt{\frac{k_{m}}{k_{n}}}$ (C) (OHT] = $\sqrt{\frac{k_{m}$$$

35. $[H^{+}] = 6 \times 10^{-4}$ pH = 4 - log6 = 3.22 **36.** pOH = 10; pH = 4; $[H^{+}] = 10^{-4}$ **37.** In each given solution [KOH] = 0.1M; After mixing $[OH^{-}]_{R} = 0.1$; pOH = 1 pH = 13 **38.** pH = 2 means 10^{-2} moles per lit pH = 3 means 10^{-3} moles per lit So n_{HCI} (removed) $= 10^{-2} - 10^{-3} = 0.009$ moles **39.** pH = 13; pOH = 1; $[OH^{-}] = 10^{-1}$ or [NaOH] = 0.1 M $[NaOH] = \frac{n_{NaOH}}{v_{lit}}$ $0.1 = \frac{n}{250/1000}$

$$n = \frac{0.1}{4}$$

w(NaOH) =
$$\frac{0.1 \times 40}{4}$$
 = 1 gm

40. buffer of NH₄Cl & NH₄OH is basic buffer

lnitialy $pOH = p^{k_b} + log\left(\frac{1}{1}\right)$

finaly $pOH = p^{k_b} + log\left(\frac{2}{1}\right)$ Now pOH increases so

pH decreases.

- **41.** Phenolphthalin indicator is suitable for titration of HCl with S.B.
- **42.** Phenolphthalein is suitable for titration of SA+SB and WA+SB
- **43.** Buffer may be solution of
 - (a) Salt (WA + WB)

(b) WA + its salt with S.B

- (c) WB + its salt with S.A
- 44. Methyl orange is best indicator for titration of (SA + SB) and (SA + W.B) among given

- **45.** pH of Blood is maintain by CO_2 and H_2CO_3 by making Buffer
- 46. Buffer may be
 - (a) Salt (WA + WB)
 - (b) WA. + its salt with S.B
 - (c) WB + its salt with S.A
 - So $NH_4Cl + HCl$ is not buffer

47. HCOOH + KOH
$$\rightleftharpoons$$
 HCOO⁻K⁺ + H₂O

$$C_{0} \qquad \frac{C_{0}}{2} \qquad - \qquad -$$

$$\frac{C_{0}}{2} \qquad 0 \qquad \frac{C_{0}}{2} \qquad -$$

$$pH = pK_{a} + \log\left(\frac{C_{0}/2}{C_{0}/2}\right)$$

$$pH = pK_{a} = 4 - \log 2$$

$$pH = 3.699$$
48. 0.05 M NH_{4}OH + 0.001M NH_{4}CI

$$pOH = p^{Kb} + log\left(\frac{NH_4^+}{NH_4OH}\right)$$

$$= 4.74 + \log\left(\frac{0.001}{.05}\right) = 4.74 + \log\left(\frac{1}{50}\right)$$

pOH = 3.14 $[OH^{-}] = 9 \times 10^{-4}$ 2^{nd} methode

 $NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$

$$K_{h}(NH_{4}^{+}) = K_{a}(NH_{4}^{+}) = \frac{kW}{K_{b}(NH_{4}OH)}$$

$$K_{h}(NH_{4}^{+}) = \frac{[NH_{4}OH][H^{+}]}{[NH_{4}^{+}]}$$

$$\frac{\mathrm{kw}}{1.8 \times 10^{-5}} = \frac{0.05}{0.001} [\mathrm{H}^+]$$

 $\frac{[\text{H}^+][\text{OH}^-]}{1.8 \times 10^{-5}} = 50[\text{H}^+]$ $[\text{OH}^-] = 9 \times 10^{-4}$

49. 0.02 mole $C_2H_5COOH + a_0$ mole C_2H_5COONa in one litre So Acidic Bufter

$$pH = pKa + \log_{10} \left(\frac{Salt}{Acid}\right)$$

$$4.75 = 5 - \log 1.34 + \log_{10} \left(\frac{a_0}{0.02} \right)$$

 $a_0 = 1.52 \times 10^{-2} \text{ M}$ (in 1 liter solution)

50. 1 mole CH₃COONa +1 mole HCl in 1 liter means effectivily 1M CH₃COOH

$$pH_1 = \frac{1}{2} [pKa + \log C]$$
$$= \frac{1}{2} [pKa + \log 1]$$

$$=\frac{1}{2}$$
pKa

1 mole $CH_3COONa + 1$ mole CH_3COOH in 1 litre

$$pH_{2} = pKa + \log_{10}\left(\frac{Salt}{Acid}\right)$$
$$= pKa + \log_{10}\left(\frac{1M}{1M}\right)$$
$$= pka$$

So
$$pH_1 : pH_2 = \frac{1}{2} : 1 = 1 : 2$$

51. 10 ml of 0.1 M $NH_4Cl + 0.01$ M NH_4OH pH of Solution does not change by adding small amount of H_2O

52.
$$NH_3 + H_2O_{\downarrow} \longrightarrow NH_4^+ + OH^-$$

H₂O act as acid

53.
$$(CH_3)_2 \overset{+}{\underset{\text{Acid}}{N}} H_2 \underset{C.B}{\longrightarrow} (CH_3)_2 \overset{-}{\underset{C.B}{NH}} H^+$$

54. Bronsted acid : H^+ doner

 $\rm CH_3\rm COO^-$ is not Bronsted acid

55.
HBr + H₂O
$$\rightleftharpoons$$
 H₃O⁺ + Br⁻
Acid base C.A. C.B.
H⁺ aceptor

C.B. of weak Acid (H_3O^+) is H_2O

56. Mg^{2+} is weaker lewis acid than Al^{3+}

57.
$$\operatorname{HC}_{2}O_{4}^{-} + \operatorname{PO}_{4}^{3-} \rightleftharpoons \operatorname{HPO}_{4}^{2-} + C_{2}O_{4}^{2-}$$

 $\operatorname{H}^{+}\operatorname{doner}$ Base $\operatorname{H}^{+}\operatorname{doner}$ $\wedge C.B$
Acid $\wedge C.Acid$

So Bronsted base are $PO_4^{3\text{-}}, C_2O_4^{2\text{-}}$

- **58.** $\operatorname{NH}_{3} + \operatorname{Na} \longrightarrow \operatorname{NaNH}_{2} + \frac{1}{2}\operatorname{H}_{2}^{+}$
- **59.** Amphoteric : H^+ doner as well as H^+ aceptar
- **60.** AlCl₃ is lone pair aceptor so it is lewis acid
- **61.** H₂O can act as acid as well as base
- **62.** Na_2CO_3 is neighter Bronsted acid nor bronsted base