$u = \sqrt{\frac{3P}{d}}$

129. [C]
$$KE = \frac{3}{2} nRT$$

130. [B]
$$r \propto \frac{1}{\sqrt{M}}$$

131. [D] Ideal gas can't be liquefied.

132. [B]
$$W_{rev.} - nRT \ \ell n \ \frac{P_1}{P_2}$$

133. [A]
$$\Delta H_{diss.} = \Delta H_{L} + \Delta H_{Hyd.}$$

$$= 778 + (-774.3) = 3.7 \text{ kJ}$$

$$\Delta G_{diss.} = \Delta H_{diss.} - T \Delta S_{diss}$$

134. [D] Factual

135. [C]
$$\Delta H_r = \Sigma (B.E)_R - \Sigma (B.E)_P$$

136. [C]
$$K = \frac{K_f}{K_r}$$

137. [C]
$$K = \frac{[PCI_3][CI_2]}{[PCI_5]}$$

138. [A]
$$K_p = K_c(RT)^{\Delta n}g$$

139. [B]
$$\frac{1}{K} = \frac{1}{0.025} = 40$$

$$\frac{\text{st. of HA}_1}{\text{st. of HA}_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$$

141. [D]
$$K_{sp} = 4s^3$$

142. [B]

140. [B]

$$K_b = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$$

143. [B]
$$pH = pK_a + log \frac{[Salt]}{[Acid]}$$

144. [C]
$$[OH^-] = C\alpha$$

145. [B]

$$r_{+} + r_{-} = \frac{a\sqrt{3}}{2}$$

$$2r = a$$

146. [B]
Volume of autric cell =
$$(200 \times 10^{-10})^3$$
 cm³
= 8×10^{-24} cm³

$$= log 2K = 0$$

 $2k = 1$
 $k = 1/2$

150. [D]

All members of any class of hydrcarbon do not have same empirical formula.

151. [C]

All moles remains constant vapour density remains constant.

152. [C]

$$C_nH_{2n+2} + \left(\frac{3n+1}{2}\right)O_2 \longrightarrow nCO_2 (n+1)H_2O$$
(Alkane)

$$C_nH_{2n} + \left(\frac{3n}{2}\right)O_2 \longrightarrow nCO_2 + nH_2O$$

(Alkane)

$$C_nH_{2n-2} + \left(\frac{3n-1}{2}\right)O_2 \longrightarrow nCO_2 + (n-1)H_2O$$

(Alkane)

moles of hydrocarbon < moles of O₂

153. [A]

Boyle temperature of hydrogen and helium gases are less than 273 K.