6. HYDROCARBON

1.
$$X \xrightarrow{O_3} H \longrightarrow CHO$$

reactant 'X' is:

2.
$$X \xrightarrow{C_{10}H_{12}} \xrightarrow{(1) O_3} \xrightarrow{(2) Zn/H_2O} \xrightarrow{O} + HCHO X is :$$

$$\begin{array}{c} CH_2 \\ CH_2 \\ \end{array}$$

$$(3) \overset{\operatorname{CH}_2}{\longleftrightarrow}$$

3. By which compound's reductive ozonolysis the following products are obtained

$$H$$
— C — H ; CH_3 — C — C_2H_5 ; O + CHO (1 mole) (1 mole) (1 mole)

Possible compounds are:

$$(A) \qquad (B) \qquad (C) \qquad (D) \qquad (D)$$

- (1) A, B, D
- (2) A, B, C
- (3) B, C, D
- (4) A, C, D

The reagents used can be

(1) H_3O^+ ; conc. H_2SO_4/Δ

- (2) O_3 / Zn ; LAH ; conc. H_2SO_4 / Δ
- (3) O_3 / Zn ; $H_2(Ni)$; N_2H_4/OH^- (4) $B_2H_6 + H_2O_2 + NaOH$; Al_2O_3

5.
$$CH_2 = CH_2 \xrightarrow{PhCO_3H} A \xrightarrow{H_3O^{\oplus}} B \xrightarrow{HI(Excess)} C$$

Structure of C is

 $\begin{array}{c|c} \text{(1)} & \text{CH}_2 - \text{CH}_2 \\ & | & | \\ & \text{OH} & \text{I} \end{array}$

(2) $CH_2 = CH_2$

(4) CH₂ - CH₂

6. The correct statement for the given reaction is :

$$\begin{array}{c|c}
CH_3 \\
Br & H \\
CH_2
\end{array}
\xrightarrow{NaI} A \xrightarrow{CF_3CO_3H} B$$

- (1) B is optically inactive due to external compensation
- (2) B is optically inactive due to internal compensation
- (3) A is predominantly cis-alkene
- (4) B does not have chiral centres
- 7. Following conversion can not be carried out by using sequence

$$CH_3-CH_2-C$$

$$OH$$

$$CH_3-CH_2-C$$

$$H$$

- (1) (i) LiAlH₄, PCC
- (2) (i) R'-OH/H+ (ii) DIBAL-H
- (3) (i) Ca(OH)₂ (ii) (HCOO)₂Ca/ Dry distillation
- (4) (i) $LiAlH_4$ (ii) $CrO_3 + Conc. H_2SO_4$

8. List - I

(Conversion)

$$(P) \bigcirc \longrightarrow \bigcirc \bigcirc$$

$$(Q) \bigoplus \longrightarrow \bigoplus_{CO,H}$$

(R)
$$CH_3$$
– $CH = O \longrightarrow \left\langle \begin{matrix} O & -C \\ C & -C \end{matrix} \right\rangle$

(S)
$$PhCO_2H \rightarrow Ph-C = CH-C-Ph$$

 CH_3 O

Code:

	P	Q	R	\mathbf{S}
(1)	3	4	1	2
(2)	3	2	4	1
(3)	3	4	2	1
(4)	3	2.	1	4

9.
$$CH_{3} \xrightarrow{Cl_{2}(h\nu)} X_{1} \xrightarrow{aq.NaOH} Y_{1}$$

$$Cl_{2}(h\nu) \longrightarrow X_{2} \xrightarrow{aq.NaOH} Y_{2}$$

$$Cl_{2}(h\nu) \longrightarrow X_{2} \xrightarrow{aq.NaOH} Y_{2}$$

$$Cl_{2}(h\nu) \longrightarrow X_{3} \xrightarrow{aq.NaOH} Y_{3}$$

List - II

(Sequence of reagents for that conversion)

(1) (i)
$$SOCl_2$$
, (ii) $(CH_3)_2Cd$, (iii) $\overline{O}H/\Delta$

(2) (i)
$$SeO_2$$
, (ii) $\overline{O}H$, (iii) H^+/Δ

(3) (i)
$$O_3/Zn$$
, H_2O , (ii) $\overline{O}H/\Delta$, (iii) $N_2H_4 + \overline{O}H/\Delta$

(4) (i)
$$O_3/Zn$$
, H_2O , (ii) $\overline{O}H/\Delta$, (iii) $NaOH+I_2$; H^+

$$Y_{1} \xrightarrow{\text{reagent}} Y_{2}$$

$$Y_{1} \xrightarrow{\text{reagent}} Y_{3}$$

R₁ & R₂ are respectively:

(1) PCC; Cu + 300° C

(2) PCC; KMnO₄

(3) PCC; PDC

 $(4) CrO_3$; HIO_4

10. A polyene (1) reacts with 3 mole of H_2 gas in presence of platinum catalyst to form 1-isopropoyl 4-methyl cyclohexane. When (1) undergoes ozonolysis, following products are obtained

Structure of (1) is:

11. Identify reaction incorrectly match with its product?

(1)
$$Me-C \equiv C-CH_2-C-C1 \xrightarrow{Pd/BaSO_4} \longrightarrow C-H$$
 (2) $Me-C \equiv C-Me \xrightarrow{Na} \longrightarrow Br$

(3) $Me-C \equiv C-CH_2-C-C1 \xrightarrow{Pd/BaSO_4} \longrightarrow H$

(4) $Me-C \equiv C-Me \xrightarrow{Na} \longrightarrow Br$
 Br
 Br

12.
$$\underbrace{\frac{O_3/Zn}{(1 \text{ mole})}} X \xrightarrow{1. \text{ OH}^-} Y \xrightarrow{\Delta} Z , Z \text{ is :}$$

(1)
$$CH_2$$
 CH_2 CO_2H CH_2 CO_2H CH_2 CO_2 CH_2 CH_2 CO_2 C

- 13. An optically active compound 'X' has molecular formula $C_4H_8O_3$. It evolves CO_2 with NaHCO₃. 'X' reacts with LiAlH₄ to give an achiral compound 'X' is:
 - (1) CH₃CH₂CHCOOH (2) CH₃CHCOOH (3) CH₃CHCOOH (4) CH₃-CH-CH₂-COOH OH OH CH₂OH

14.
$$\begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \circ H^{-} \xrightarrow{\Delta} \text{Olefinic product., Identify major product}$$
Et Et

$$(1) \qquad \qquad (2) \qquad \qquad (3) \qquad \qquad (4) \text{ None of these}$$

Number of monochlorinated products when above compound undergo reaction with Cl₂/hv is :

- $(1)\ 10$
- (2) 15
- (3) 18
- (4) 20

16.
$$(A) \xrightarrow{CH_2CH_3} (A) \xrightarrow{Aq.KOH} (B) \xrightarrow{Conc.} C$$

Which statement is incorrect regarding C

- (1) C decolorised Br₂ water
- (2) C on reaction with HBr & HBr + H₂O₂ giving same product
- (3) C is also formed when A undergoes reaction with alcoholic KOH
- (4) C when reacts with H₃O⁺, B is formed

17.
$$\overbrace{ \begin{array}{c} \text{Conc. } H_2SO_4/\Delta \\ \text{Me} \end{array} }^{\text{Conc. } H_2SO_4/\Delta \rightarrow \text{Product mixture} \ ; \ \text{Identify correct statement about product mixture} :$$

(1) It is resolvable

(2) It is non resolvable

(3) Meso is obtained

- (4) Diastereoisomeric product is obtained
- **18.** Which of the following reaction will not produce given alkene as major product?

(1)
$$OH \xrightarrow{H^{+}} (2) OH \xrightarrow{H^{+}} (3) OH \xrightarrow{H^{+}} (4)$$
 None of these

19. Identify reaction incorrectly match with its product?

ANSWER KEY															
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	1	2	2	2	2	1	4	3	2	2	3	4	3	1	
Que.	16	17	18	19											
Ans.	2	1	2	1											