QUADRATIC EQUATIONS

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

 1. The roots of the quadratic equation $(a + b - 2c) x^2 - (2a - b - c) x + (a - 2b + c) = 0$ are

 (A) a + b + c & a - b + c

 (B) 1/2 & a - 2b + c

 (C) a - 2b + c & 1/(a + b - 2c)

 (D) none of these

2. If the A.M. of the roots of a quadratic equation is $\frac{8}{5}$ and A.M. of their reciprocals is $\frac{8}{7}$, then the quadratic equation is -(A) $5x^2 - 8x + 7 = 0$ (B) $5x^2 - 16x + 7 = 0$ (C) $7x^2 - 16x + 5 = 0$ (D) $7x^2 + 16x + 5 = 0$

3. If $\sin \alpha \& \cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$ then -(A) $a^2 - b^2 + 2ac = 0$ (B) $a^2 + b^2 + 2ac = 0$ (C) $a^2 - b^2 - 2ac = 0$ (D) $a^2 + b^2 - 2ac = 0$

4. If one root of the quadratic equation $px^2 + qx + r = 0$ ($p \neq 0$) is a surd $\frac{\sqrt{a}}{\sqrt{a} + \sqrt{a-b}}$, where p, q, r; a, b are all rationals then the other root is -

(A)
$$\frac{\sqrt{b}}{\sqrt{a} - \sqrt{a - b}}$$
(B) $a + \frac{\sqrt{a(a - b)}}{b}$
(C)
$$\frac{a + \sqrt{a(a - b)}}{b}$$
(D)
$$\frac{\sqrt{a} - \sqrt{a - b}}{\sqrt{b}}$$

5. A quadratic equation with rational coefficients one of whose roots is $tan\left(\frac{\pi}{12}\right)$ is -

(A)
$$x^2 - 2x + 1 = 0$$
 (B) $x^2 - 2x + 4 = 0$ (C) $x^2 - 4x + 1 = 0$ (D) $x^2 - 4x - 1 = 0$

6. $ax^2 + bx + c = 0$ has real and distinct roots α and $\beta(\beta > \alpha)$. Further a > 0, b < 0 and c < 0, then -

- (A) $0 < \beta < |\alpha|$ (B) $0 < |\alpha| < \beta$ (C) $\alpha + \beta < 0$ (D) $|\alpha| + |\beta| = \left|\frac{b}{a}\right|$
- 7. If the roots of $(a^2 + b^2) x^2 2b (a + c) x + (b^2 + c^2) = 0$ are equal then a, b, c are in (A) A.P. (B) G.P. (C) H.P. (D)

(A) A.P. (B) G.P. (C) H.P. (D) none of these

8. If a (b - c) x^2 + b (c - a) x + c (a - b) = 0 has equal root, then a, b, c are in

(B) 9

(A) 15

(A) A.P. (B) G.P. (C) H.P. (D) none of these

(C) 7

(D) 8

9. Let p, $q \in \{1, 2, 3, 4\}$. Then number of equation of the form $px^2 + qx + 1 = 0$, having real roots, is

10. If the roots of the quadratic equation ax² + bx + c = 0 are imaginary then for all values of a, b, c and x ∈ R, the expression a²x² + abx + ac is (A) positive
(B) non-negative

(C) negative (D) may be positive, zero or negative

11. If x, y are rational number such that $x + y + (x - 2y)\sqrt{2} = 2x - y + (x - y - 1)\sqrt{6}$, then (A) x and y connot be determined (B) x = 2, y = 1(C) x = 5, y = 1 (D) none of these **12.** Graph of the function $f(x) = Ax^2 - BX + C$, where

$$A - (\sec \theta - \csc \theta) (\csc \theta - \sin \theta)(\tan \theta + \cot \theta), \\ B - (\sin \theta + \csc \theta)^2 + (\cot \theta + \sec \theta)^2 - (\tan^2 \theta + \cot^2 \theta) \& \\ C = 12, is represented by
(A)
(A)
(A)
(A)
(A)
(B)
(B)
(B)
(C)
(C)$$

26.	Number of real solutions of the equation $x^4 + 8x^2 + 16 = 4x^2 - 12x + 9$ is equal to -											
	(A) 1		(B) 2			(C) 3		(D)	4			
27. The complete solution set of the inequation $\sqrt{x+18} < 2-x$ is -												
	(A) [-18, -2]		(B) (-	∞, −2) ∪ (7	⁄,∞)	(C) (-18, 2	2) ∪ (7, ∞)	(D)	[-18, -2)			
28.	If $\log_{1/3} \frac{3x-1}{x+2}$ is less than unity then x must lie in the interval -											
	(A) (−∞, −2) ((B) (-2, 5/8)									
	(C) (−∞, −2)	∪ (1/3, 5/	8)			(D) (-2, 1/3)						
29.	Exhaustive set of value of x satisfying $\log_{ x }(x^2 + x + 1) \ge 0$ is -											
	(A) (-1, 0)		(B) $(-\infty, 1) \cup (1, \infty)$									
	(C) $(-\infty, \infty) - \{-1, 0, 1\}$					(D) (−∞, –	1) \cup (-1, 0)	∪ (1,∞)				
30. Solution set of the inequality, $2 - \log_2(x^2 + 3x) \ge 0$ is -												
	(A) [-4, 1]		(B) [-4	4, −3) ∪ (0	, 1]	(C) (−∞, −.	3) ∪ (1, ∞)	(D) ((−∞, −4) ⊂	ע [1, ∞)		
<u>SELE</u>	SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)											
31. If α is a root of the equation $2x(2x + 1) = 1$, then the other root is -												
	(A) $3\alpha^3 - 4\alpha$		(B) –2	$\alpha(\alpha + 1)$	(C) $4\alpha^3 - 3\alpha$ (D) none of these							
32.	If $b^2 \ge 4ac$ for the equation $ax^4 + bx^2 + c = 0$, then all roots of the equation will be real if -											
	(A) b > 0, a (C) b > 0 a	a < 0, c > a > 0, c >	0		(D) b > 0, a > 0, c > 0 (D) b > 0, a < 0, c < 0							
33.	3. Let α , β be the roots of $x^2 - ax + b = 0$, where $a \& b \in \mathbb{R}$. If $\alpha + 3\beta = 0$, then -											
(A) $3a^2 + 4b = 0$ (B) $3b^2 + 4a = 0$ (C) $b < 0$ (D) $a < 0$								a < 0				
34. For $x \in [1, 5]$, $y = x^2 - 5x + 3$ has -												
	(A) least valu		(B) greatest value = 3									
(C) least value = -3.25						(D) greatest value = $\frac{5 + \sqrt{13}}{2}$						
35. Integral real values of x satisfying $\log_{1/2}(x^2 - 6x + 12) \ge -2$ is -												
	(A) 2		(C) 4		(D)	(D) 5						
36. If $\frac{1}{2} \le \log_{0,1} x \le 2$, then -												
	(A) the maximum value of x is $\frac{1}{\sqrt{10}}$ (B) x lies between $\frac{1}{100}$ and $\frac{1}{\sqrt{10}}$											
(C) x does not lie between $\frac{1}{100}$ and $\frac{1}{\sqrt{10}}$ (D) the minimum value of x is $\frac{1}{100}$												
ANSWER KEY												
Que	e. 1	2	3	4	5	6	7	8	9	10		
Ans	. D	В	Α	С	С	В	В	С	C	A		
Que	e. 11	12 P	13	14	15	16	17 D	18	19 P	20		
Ans Que	2. 21	<u>В</u> 22	23	2.4	A 25	А 26	2.7	28	<u>в</u> 29	A 30		
Ans	. C	A	C	A	D	A	D	A	D	B		
Que	e. 31	32	33	34	35	36						

B,C

A,B,C

A,B,D

A,C

B,C

B,D

Ans.

EXTRA PRACTICE QUESTIONS ON QUADRATIC EQUATIONS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS) 1. The equation whose roots are sec² α & cosec² α can be -(B) $x^2 - 3x + 3 = 0$ (C) $x^2 - 9x + 9 = 0$ (A) $2x^2 - x - 1 = 0$ (D) $x^2 + 3x + 3 = 0$ If cos α is a root of the equation $25x^2$ + 5x - 12 = 0, - 1 < x < 0, then the value of sin 2α is -2. (B) - 12 / 25 (A) 12/25 (C) - 24 / 25 (D) 24 / 25 If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude and opposite in sign, then -3. (A) p + q = r(B) p + q = 2r(C) product of roots = $-\frac{1}{2}(p^2 + q^2)$ (D) sum of roots = 1Graph of $y = ax^2 + bx + c = 0$ is given adjacently. What conclusions can be drawn 4. from this graph - \cap (B) b < 0 (A) a > 0 Vertex (D) $b^2 - 4ac > 0$ (C) c < 0 5. If a, b, c are real distinct numbers satisfying the condition a + b + c = 0 then the roots of the quadratic equation $3ax^2 + 5bx + 7c = 0$ are -(A) positive (B) negative (C) real and distinct (D) imaginary The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then -6. Vertex (B) b > 0 (A) a > 0 (D) $b^2 < 4ac$ I_{X_1} (C) c > 0 If $x^2 + Px + 1$ is a factor of the expression $ax^3 + bx + c$ then -7. (B) $a^2 - c^2 = -ab$ (A) $a^2 + c^2 = -ab$ (C) $a^2 - c^2 = ab$ (D) none of these The set of values of 'a' for which the inequality (x - 3a) (x - a - 3) < 0 is satisfied for all x in the interval $1 \le x \le 3$ 8. (A) (1/3, 3)(B) (0, 1/3) (C) (-2, 0) (D) (-2, 3) Let p(x) be the cubic polynomial $7x^3 - 4x^2 + K$. Suppose the three roots of p(x) form an arithmetic progression. 9. Then the value of K, is -(A) $\frac{4}{21}$ (B) $\frac{16}{147}$ (C) $\frac{16}{441}$ (D) $\frac{128}{1323}$ If the quadratic equation $ax^2 + bx + 6 = 0$ does not have two distinct real roots, then the least value of 10. 2a + b is -(C) - 6 (A) 2 (B) – 3 (D) 1 If p & q are distinct reals, then 2 {(x - p) (x - q) + (p - x) (p - q) + (q - x) (q - p)} = (p - q)^2 + (x - p)^2 + (x - q)^2 11. is satisfied by -(A) no value of x (B) exactly one value of x (C) exactly two values of x (D) infinite values of xThe value of 'a' for which the expression $y = x^2 + 2a \sqrt{a^2 - 3} x + 4$ is perfect square, is -12. (B) $\pm \sqrt{3}$ (A) 4 (D) $a \in (-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$ (C) ± 2

13.	Set of values of 'K' for (A) both less than 2 is	which roots of the quadratic \mathbf{x}^{2} K \in (2, ∞)	² - (2 (B)	2K - 1 x + K(K - 1) = 0 of opposite sign is K	0 are – ∈ (-∞, 0)(J(1, ∞)				
	(C) of same sign is K	$= (-\infty, 0) (1, \infty)$	(D)	both greater than 2 is	$K \in (2, \infty)$				
14.	The correct statement i	s / are -	(2)						
	(A) If $x_1 \& x_2$ are roots of the equation $2x^2 - 6x - b = 0$ (b > 0), then $\frac{x_1}{x_2} + \frac{x_2}{x_1} < -2$								
	(B) Equation $ax^2 + bx + c = 0$ has real roots if $a < 0$, $c > 0$ and $b \in R$								
	(C) If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + bx + c$, where $ac \neq 0$ and $a, b, c \in R$, then $P(x).Q(x)$ has at least two real roots.								
	(D) If both the roots of the equation $(3a + 1)x^2 - (2a + 3b)x + 3 = 0$ are infinite then $a = 0$ & h $\in \mathbb{R}$								
15.	If $\alpha_1 \le \alpha_2 \le \alpha_4 \le \alpha_5 \le \alpha_6$, then the equation $(x - \alpha_2)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4)(x - \alpha_5)(x - \alpha_5) = 0$ has -								
	(A) three real roots	b b i b i i i i i i i i i i	(B) no real root in $(-\infty, \alpha_{-})$						
	(C) one real root in (α	α_{0}	(D) no real root in (α_{-}, α_{-})						
16.	Equation $2x^2 - 2(2a + 1)x + a(a + 1) = 0$ has one root less than 'a' and other root greater than 'a'. if								
	(A) 0 < a < 1	(B) −1 < a < 0	(C)	a > 0	(D) a < −1				
17.	The value(s) of 'b' for which the equation, $2\log_{1/25}(bx + 28) = -\log_5(12 - 4x - x^2)$ has coincident roots								
	is/are -								
	(A) $b = -12$	(B) $b = 4$	(C)	b = 4 or b = -12	(D) $b = -4$ or $b = 12$				
18.	For every x \in R, the polynomial x ⁸ - x ⁵ + x ² - x + 1 is -								
	(A) positive		(B) never positive						
	(C) positive as well as	negative	(D) negative						
19.	If α , β are the roots of the quadratic equation $(p^2 + p + 1) x^2 + (p - 1) x + p^2 = 0$ such that unity lies between the roots then the set of values of p is -								
	(A)	(B) p \in (- ∞ , - 1) \cup (0, ∞)	(C)	$p \in (-1, 0)$	(D) (- 1, 1)				
20.	Three roots of the equation, $x^4 - px^3 + qx^2 - rx + s = 0$ are tanA, tanB & tanC where A, B, C are the								
	angles of a triangle. T	The fourth root of the biquad	dratic	is -					
	(A) $\frac{p-r}{1-q+s}$	(B) $\frac{p-r}{1+q-s}$	(C)	$\frac{p\!+\!r}{1\!-\!q\!+\!s}$	(D) $\frac{p+r}{1+q-s}$				
21. If $\log_{\left(\frac{x^2-12x+30}{10}\right)} \left(\log_2 \frac{2x}{5}\right) > 0$ then x belongs to interval -									
	(A) $(\frac{5}{2}, 6 + \sqrt{6})$	(B) $(\frac{5}{2}, 6 - \sqrt{6})$	(C)	(6, 6 + $\sqrt{6}$)	(D) (10, ∞)				
			R I						
		Allowel							

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	C,D	B,C	A,B,C,D	С	B,C	С	В	D	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	С	С	A,B,C	A,B,C	A,C,D	В	А	С	A
Que.	21									
Ans.	B,D									