
14. H E A T  T R A N S F E R

1. INTRODUCTION

Heat can be transformed from one place to another place by the three processes - conduction, convection and 
radiation. In conduction, the heat flows from a place of higher temperature to a place of lower temperature through 
a stationary medium. The molecules of the medium oscillate about their equilibrium positions more violently at 
a place of higher temperature and collide with the molecules of adjacent position, thus transferring a part of 
their energy to these molecules which now vibrate more violently. Thus heat can be transmitted by collision of 
molecules. In metals, the conduction of heat takes place by the movement of free electrons. In the cases of liquids 
and gases, the heat is transferred not only by collision but also by motion of heated molecules which carry the heat 
in such media. This process is called convection. When a liquid in a vessel is heated, the lighter molecules present 
in the lower layer of the liquid get heated which rise to the surface of the liquid and cold molecules at the surface 
go towards the bottom of vessel. These are convection currents and are the major means of heat transport in fluids. 
Radiation is mode of transfer of heat in which the heat travels directly from one place to another without the role 
of any intervening medium. The heat from the sun propagates mostly through vacuum to reach the earth by the 
process of radiation.

2. CONDUCTION

The figure shows a rod whose ends are in thermal contact with a hot reservoir at 
temperature T1 and a cold reservoir at temperatureT2 . The sides of the rod are insulated, 
hence heat transfer is only along the rod and not through its sides. The molecules at the 
hot reservoir have greater vibrational energy. This energy is transferred by collisions to 
the atoms at the end face of the rod. These atoms in turn transfer the energy to their 
neighbors further along the rod. Such transfer of heat through a substance in which 
heat is transported without direct mass transport is called conduction.

The quantity of heat conducted Q in time t across a slab of length L, area of cross-
section A and steady state temperature θ1 and θ2 at respective hot and cold ends is 

given by 1 1kA( )t
Q

L
θ − θ

=  , where k is the coefficient of thermal conductivity which is equal to the quantity of heat 

flowing per unit time through unit area of cross-section of a material per unit length along the direction of flow of 

heat.

Units of k are kilocalorie/meter second degree centigrade or J.m-1sec-1 K-1. In C.G.S. units,

k is expressed in calcm-1 (℃)-1 sec-1

The temperature Gradient ⁄ (unit distance) = d
dx
θ

−
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∴	 dQ kA t
dx

 



θ
− 


= ;	 Q dT kA 

t dx
∆

= −
∆

The quantity dT/dx is called the temperature gradient. The minus sign indicates that dT/dx is negative along the 
direction of the heat flow, i.e., heat flows from a higher temperature to a lower one.

 dT t TH
dx L / kA R

∆ ∆
= = =

Here ∆T = temperature difference (TD) and R= L
kA

= Thermal resistance of the rod. 

This relation is mathematically equivalent to Ohm’s Law and can be used very effectively in solving 
problems effectively by considering temperature analogous to potential and heat transferred per unit 
time as current.

Nivvedan (JEE 2009, AIR 113)

Heat flow through a conducting rod Current flow through a resistance

Heat current dQH
dt

= =Rate of heat flow 

T(temp diff)TH
R R
∆

= =

where R=
L

kA
 and k = Thermal conductivity

Electric current dqi
dt

= = Rate of charge flow 

PD(potential diff)Vi
R R
∆

= = ;	 iR
A

=
σ

 σ = Electrical conductivity.

3. GROWTH OF ICE ON PONDS

When temperature of the atmosphere falls below 0°C, the water in the pond starts freezing. Let at time t thickness 
of ice in the pond is y and atmospheric temperature is -T°C. The temperature of water in contact with the lower 
surface of ice will be 0°C. 

Using dQ dmL
dt dt

 
=  

 
 ; 		   { }TD dL A y

R dt
= ρ 			   (A = Area of pond)

( )
( )
0 T dy

LA .
dty kA

 − − ∴ = ρ

 

( )
( )
0 T dy

LA .
dty kA

 − − ∴ = ρ

 
 dy kT 1.

dt Ly
∴− =

ρ
 where L -> Latent heat of fusion

And hence time taken by ice to grow a thickness y	
y

0

Lt ydy
kT
ρ

= ∫  or 21 Lt y
2 kT
ρ

=  

Time does not depend on the area of pond.

Time taken by ice to grow on ponds is independent of area of the pond and it is only dependent only 
the thickness of ice sheet.

Vaibhav Krishnan (JEE 2009, AIR 22)
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4. SERIES AND PARALLEL CONNECTION OF RODS

4.1 Series Connection
Consider two rods of thermal resistances 
R1 and R2 joined one after the other as 
shown in figure. The free ends are kept 
at temperatures T1 and T2 with T1>T2. In 
steady state, any heat that goes through 
the first rod also goes through the second 
rod. Thus, the same heat current passes through the two rods. Such a connection of rods is called a series connection.

Suppose, the temperature of the junction is T, the heat current through the first rod is, 

1

1

T TQi
t R

−∆
= =

∆
 or 1 1T T R i− =  �  ... (i)

 and that through the second rod is 2

2

T TQi
t R

−∆
= =

∆
 or 2 2T T R i− =  �  … (ii) 

Adding (i) and (ii)	 ( )1 2 1 2T T R R i− = +  or 1 2

1 2

T T
i

R R
−

=
+

 

Thus, the two rods together is equivalent to a single rod of thermal resistance R1+R2.

If more than two rods are joined in series, the equivalent thermal resistance is given by, 1 2 3R R R R ...= + + +

4.2 Parallel Connection
Now, suppose the two rods are joined at their ends as shown in figure. 
The left end of both the rods are kept at temperature T1 and the right 
ends are kept at temperature T2.

So the same temperature difference is maintained between the ends of 
each rod. Such a connection of rods is called a parallel connection. The 

heat current going through the first rod is 1 1 2
1

1

Q T T
i

t R
∆ −

= =
∆

and that through the second rod is 2 1 2
2

2

Q T T
i

t R
∆ −

= =
∆

The total heat current going through the left end is 1 2 1 2
1 2

1 1i i i (T T )
R R
 

= + = − +  
 

 

or 1 2T T
i

R
−

=

Where 
1 2

1 1 1
R R R
= + �  … (i)

5. RADIAL FLOW OF HEAT THROUGH A CYLINDRICAL TUBE

Consider a cylindrical tube of length l and respective inner and outer radii as r1 and r2. If the heat flows radially i.e., 
perpendicular to the axis of the tube from the steady state temperatures θ1 at the inner surface to the temperature 
θ2 at the outer surface, then the rate of heat flowing through an element of shell lying between radius r and r+ dr 

is given by ( )dQ k 2 r
dr
θ

∆ = − π 
 
where dθ  is temperature difference across the shell. 

It can be integrated for total heat flow per second.
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∴Total heat flowing per second, 

( )1 2
r2

r1

2 k
Q

dr
r

π θ − θ
=

∫



;	  
( )1 2

2

1

2 k
Q

r
ln

r

π θ − θ
=

 
  
 



No mass movement of matter occurs in conduction. Solids are better 
conductors than liquids, liquids are better conductors than gases. 

Consider a section ab of a rod as shown in figure. Suppose Q1 heat 
enters into the section at ‘a’ and Q2 leaves at ‘b’, then Q2 < Q1. 

Part of the energy Q2 - Q1 is utilized in raising the temperature of 
section ab and the remaining is lost to the atmosphere through ab. If heat is continuously supplied from 
the left end of the rod, a stage comes when temperature of the section becomes constant. In that case 
Q1=Q2  if rod is insulated from the surroundings (or loss through ab is zero). This is called the steady state 
condition. Thus, in steady state temperature of different sections of the rod becomes constant (but not 
same). 

Nitin Chandrol (JEE 2012, AIR 134)

Illustration 1: One face of a copper cube of edge 10 cm is maintained at 100℃ and the opposite face is maintained 
at 0℃. All other surfaces are covered with an insulating material. Find the amount of heat flowing per second 
through the cube. Thermal conductivity of copper is 385 Wm-1 ℃-1.	� (JEE MAIN)

Sol: Always consider the A which perpendicular to the flow of heat.

The heat flows from the hotter face towards the colder face. The area of cross section perpendicular to the heat 
flow is ( )2A 10cm=

The amount of heat flowing per second is 1 2T TQ KA
t X

−∆
=

∆ ( ) ( ) ( )21 1 100 C 0 C
385Wm C 0.1m

0.1m
− − ° − °

= ° × ×  3850W.=

Illustration 2: A cylindrical block of length 0.4 m and area of cross-section 0.04m2 is placed coaxially on a thin 
metallic disc of mass 0.4 kg and of the same cross-section. The upper face of the cylinder is maintained at the 
constant temperature of 400 K and initial temperature of the disc is 300 K. If the thermal conductivity of the 
material of the cylinder is 100 watt/m-K and the specific heat of the material of the disc is 600 J/kg-K, how long 
will it take for the temperature of the disc to increase to 350 K? Assume, for the purpose of calculation, the thermal 

Q2Q1

a b

Figure 14.6
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conductivity of the disc to be very high and the system to be thermally insulated except for the upper face of the 
cylinder. �
� (JEE ADVANCED)

400 K

0.4n

300 K

Figure 14.7

Sol: Write the equation rate of heat transfer at any temperature ‘T’ for the disc. Rate of heat transfer proportional 
to rate of change in temperature.

As heat is conducted from the cylinder to the disc, the temperature of the disc increases. If the temperature of the 

disc at some instant is T, then rate of flow of heat through the cylinder at that instant is 
( )KA 400 TdQ

dt L

−
=  � … (i)

If dT is the further increase in the temperature of the disc in the infinitesimal time interval dt, 

then dQ dTms
dt dt

=  � … (ii)

Where m is the mass of the disc and c is its specific heat.

From equations (i) and (ii)

 
( )KA 400 T dTms ;

L dt

−
=

msL dTdt
KA 400 T

 
=  − 

Integrating we get,	  
350

10
300

msL dT msL 400 300t 2.303log
KA 400 T KA 400 350

 −
= = ×  − − 

∫ 	 

	  	  	  0.4 600 0.4 2.303 0.3010 166s.
10 0.04
× ×

= × × =
×

6. CONVECTION

In this process, actual motion of heated material results in transfer of heat from one place to another. For example, 
in a hot air blower, air is heated by a heating element and is blown by a fan. The air carries the heat wherever it 
goes. When water is kept in a vessel and heated on a stove, the water at the bottom gets heated due to conduction 
through the vessel’s bottom. Its density decreases and consequently it rises. Thus, the heat is carried from bottom 
to the top by the actual movement of the parts of the water. If the heated material is forced to move, say by 
a blower or by a pump, the process of heat transfer is called forced convection. If the material moves due to 
difference in density, it is called natural or free convection.
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The convection currents created in a room by a radiator means that the warm air is circulated around and 
the warming is more uniform than just being the air around the radiator. When heating water on a stove, 
the convection currents created by the rising hot water means that all the water gets heated instead of 
just the water at the very bottom of the pan. Some rainfall is also caused by moist air being heated and 
rising, then cooling quickly and allowing the water vapor to condense into rain. 

Anand K (JEE 2011, AIR 47)

7. RADIATION

The third means of energy transfer is radiation which does not require a medium. The best known example of this 
process is the radiation from Sun. All objects radiate energy continuously in the form of electromagnetic waves. 
The rate at which an object radiates energy is proportional to the fourth power of its absolute temperature. This is 
known as the Stefan’s law and is expressed in equation form as 4P AeT= σ

Here P is the power in watts(J/s) radiated by object, A is the surface area in 2m ,e lies between 0 and 1 and 
is called emissivity of the object and σ is universal constant called Stefan’s constant, which has the value, 

8 2 45.67 10 W / m K−σ = × − .

8. PERFECTLY BLACK BODY

A body that absorbs all the radiation incident upon it and has as emissivity equal 
to 1 is called a perfectly black body. A black body is also an ideal radiator. It implies 
that if a black body and an identical another body is kept at the same temperature, 
then the black body will radiate maximum power as is obvious from equation 	

4P AeT= σ

This is also because e=1 for a perfectly black body while for any other body, 
e<1.	

Always remember that black body is a perfect absorber and emitter of light. At temperatures higher than 
the surrounding, it is the most shining thing and at lower temperatures it is the darkest thing.

There is no perfect black body. Materials like black velvet or lamp black come close to being ideal black 
bodies, but the best practical realization of an ideal black body is a small hole leading into a cavity, as 
this absorbs 98% of the radiation incident on them. 

GV Abhinav (JEE 2012, AIR 329)

Illustration 3: A solid copper sphere of density ρ, specific heat c and radius r is at temperature T1. It is suspended 
inside a chamber whose walls are at temperature 0K. What is the time required for the temperature of sphere to 
drop to T2? Take the emissivity of the sphere to be equal to e.� (JEE MAIN)

Sol: Heat lost by radiation cause temperature to fall.

Figure 14.8
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The rate of loss of energy due to radiation, 4P AeT= σ . This rate must be equal to dTmc
dt

 Hence, 4dTmc AeT
dt

− = σ

Negative sign is used as temperature decreases with time. In this equation,

34m r
3

 
= π ρ 
 

 and 2A 4 r= π  4dT 3e T
dt cr

σ
∴− =

ρ
 or 

T1 2

4
0 T1

cr dTdt
3e T
ρ

− =
σ∫ ∫ ;	

3 3
2 1

cr 1 1t
9e T T

 ρ  = −
 σ  

9. ABSORPTIVE POWER ‘a’

 “It is defined as the ratio of the radiant energy absorbed by a body in a given time to the total radiant energy 
incident on it in the same interval of time.” 

			 
Energy absorbeda
Energy incident

=

As a perfectly black body absorbs all radiations incident on it, the absorptive power of perfectly black body is 
maximum and unity.

10. SPECTRAL ABSORPTIVE ‘aλ’

This absorptive power ‘a’ refers to radiations of all wavelengths (or the total energy) while the spectral absorptive 
power is the ratio of radiant energy absorbed by a surface to the radiant energy incident on it for a particular 
wavelength λ. It may have different values for different wavelengths for a given surface. Let us take an example, 
suppose a = 0.6, aλ = 0.4 for 1000 Å and aλ = 0.7 for 2000 Å for a given surface. Then it means that this surface 
will absorb only 60% of the total radiant energy incident on it. Similarly it absorbs 40% of the energy incident 
on it corresponding to 1000 Å and 70% corresponding to 2000 Å. The spectral absorptive power aλ is related to 

absorptive power a through the relation 
0

a a d
∞

λ= λ∫

11. EMISSIVE POWER ‘e’

(Don’t confuse it with the emissivity e which is different from it, although both have the same symbols e).

“For a given surface it is defined as the radiant energy emitted per second per unit area of the surface.” It has the 
units of 2 2W / m  or J/s-m , for a black body 4e T= σ

Note: Absorptive power is dimensionless quantity where emissive power is not.

12. SPECTRAL EMISSIVE POWER 

 Similar to the definition of the spectral absorptive power, it is emissive power for a particular wavelength λ. 

Thus, 
0

e e d
∞

λ= λ∫

13. KIRCHHOFF’S LAW 

The ratio of emissive power to absorptive power is the same for all bodies at a given temperature and is equal to 
the emissive power E of a blackbody at that temperature. Thus,
E(body) E(blackbody)
a(body)

=  
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Kirchhoff’s law tells that if a body has high emissive power, it should also have high absorptive power to have the 
ratio e/a same. Similarly, a body having low emissive power should have low absorptive power. Kirchhoff’s law may 
be easily proved by a simple argument as described below.

Consider two bodies A and B of similar geometrical shapes placed in an enclosure. Suppose A is any random body 
and B is a blackbody. In thermal equilibrium, both the bodies will have the same temperature as the temperature 
of the enclosure. Suppose an amount ∆U of radiation falls on the body A in a given time ∆t. As A and B have the 
same geometrical shapes, the radiation falling on the blackbody B is also ∆U. The blackbody absorbs all of this ∆U. 
As the temperature of the blackbody remains constant, it also emits an amount ∆U of radiation in that time. If the 
emissive power of the blackbody is e0, we have 0 0U E  or U kE∆ ∝ ∆ =  � ... (i) 

where k is constant.

Let the absorptive power of A be a. Thus, it absorbs an energy of a ∆U of the radiation falling on it in time ∆t. As 
its temperature remains constant, it must also emit the same energy a ∆U in that time. If the emissive power of the 
body A is e, we have a ∆U=ke� ... (ii)

The same proportionality constant k is used in (i) and (ii) because the two bodies have identical geometrical shapes 
and radiation emitted in the same time ∆t is considered.

From ( i ) and ( ii ),

0

Ea
E

=  or 0
E E
a
=  or E(body) E(blackbody)

a(body)
=

It can be thought like, good absorber is a good emitter because at some point of time, it might have 
stored energy because it is a good absorber. Now as soon as the temperature of the surrounding 
becomes low than that of the body, this energy starts decreasing until the steady state is reached. Hence, 
it must be a good emitter too.

Good absorbers for a particular wavelength are also good emitters of the same wavelength.

Anurag Saraf (JEE 2011, AIR 226)

14. STEFANS-BOLTZMANN LAW

The energy of thermal radiation emitted per unit time by a blackbody of surface area A is given by 4u AT= σ � … (i)

Where is a universal constant known as Stefan Boltzmann constant and T is its temperature on absolute scale. 
The measured value of σ is 5.67×1-8 Wm-2 K-4. Equation (i) itself is called the Stefan-Boltzmann law. Stefan had 
suggested this law based on his experimental data on radiation and Boltzmann derived it from thermo dynamical 
analysis. The law is also quoted as Stefan’s law and the constant σ as Stefan constant.

A body which is not a blackbody, emits less radiation than given by equation (i). It is, however, proportional to 4T . 
The energy emitted by such a body per unit time is written as 4u e AT= σ  � … (ii)

Where e is a constant for the given surface having a value between 0 and 1. This constant is called the emissivity 
of the surface. It is zero for completely reflecting surface and is unity for a blackbody.

Using Kirchhoff’s law	 E(body) a
E(blackbody)

=  � … (i)

Where a is the absorptive power of the body. The emissive power E is proportional to the energy radiated per unit 

time, that is, proportional to u. Using above equations, 
4

4

AT ae
AT
σ

σ
=  or e=a.
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Thus, emissivity and absorptive power have the same value. 

Consider a body of emissivity e kept in thermal equilibrium in a room at temperature 0T .

The energy of radiation absorbed by it per unit time should be equal to the energy emitted by it per unit time. This 
is because the temperature remains constant. Thus, the energy of the radiation absorbed per unit time is 4

0u e AT= σ .

Now suppose the temperature of the body is changed to T but room temperature remains 0T .  The energy of the 
thermal radiation emitted by the body per unit time is 4u e AT .= σ

The energy absorbed per unit time by the body is 4
0 0u e AT .= σ

Thus, the net loss of thermal energy per unit time is 0u u u∆ = −  4 4
0 )e A(T T= −σ �  … (iii)

Illustration 4: A blackbody of surface area 10cm2 is heated to 127℃ and is suspended in a room at temperature 
27℃. Calculate the initial rate of loss of heat from the body to the room. � (JEE MAIN)

Sol: Heat lost by radiation and gained by absorption.

For a blackbody at temperature T, the rate of emission is 4u AT= σ . When it is kept in a room at temperature 0T , 
the rate of absorption is 4

0 0u AT .= σ

The net rate of loss of heat is 4 4
0 0u u A(T T )σ −− =

Here 4 2A 10 10 m−= × T 400K= 0T 300K=

Thus, 8 2 4 4 2 4 4 4
0u u (5.67 10 Wm K )(10 10 m )(400 300 )K− − − −− = × × −  0.99W=

Illustration 5: Energy falling on 1.0 area placed at right angles to a sun beam just outside the earth’s atmosphere 
is 1.35 K joule in one second. Find sun’s surface temperature. Mean distance of earth from sun is 81.50 10 km ,×  
mean distance of sun= 61.39 10 km×  and Stefan’s constant= 8 2 45.67 10 watt m K− − −× . � (JEE MAIN)

Sol: 4
sun earthA T S Aσ = ×

The temperature of the sun is given by

 
2

4 S RT
r

 
=  σ  

2 3 2
10 4

8 2 2 8 2 4

1.35kJ m sec 135 10 watt mS 2.38 10 K
5.67 10 watt m K 5.67 10 watt m K− −

− ×
= = = ×

σ × − × −

 
8

6

R 1.50 10 km 215.8
r 0.695 10 km

×
= =

×
4 10 4 2T (2.38 10 K )(215.8)∴ = × 12 41108 10 K= ×

 3T 5.770 10 K= ×  or T 5770K=

15. NEWTON’S LAW OF COOLING

The rate of cooling of a body is directly proportional to the difference of temperature of the body over its 
surroundings.

If a body at temperature θ1 is placed in surroundings at lower temperature θ2, the rate of cooling is given by 

( )1 2
dQ
dt

∝ θ − θ  where dQ is the quantity of heat lost in time dt.
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Newton’s law of cooling gives ( )1 2
dQ k
dt

= − θ − θ  where k is constant.

If a body of mass m and specific heat s loses a temperature dθ in time dt, then 1 2
dQ dms k( )
dt dt

θ
= = − θ − θ

Illustration 6: A liquid cools from 70℃ to 60℃ in 5 minutes. Calculate the time taken by the liquid to cool from 
60℃ to 50℃, if the temperature of the surrounding is constant at 30℃. � (JEE MAIN)

Sol: Use newton’s law cooling and taking temperature of the body is average of initial and final value.

The average temperature of the liquid in the first case is 1
70 C 60 C 65 C

2
° + °

θ = = °

The average temperature difference from the surrounding is 1 0 65 C 30 C 35 Cθ − θ = ° − ° = ° .

The rate of fall of temperature is 11d 70 C 60 C 2 Cmin
dt 5mins

−θ ° − °
− = = ° .

From Newton’s law of cooling, 12 Cmin bA(35 C)−° = ° 	 Or	  2bA
35min

=  � … (i)

In the second case, the average temperature of the liquid is 2
60 C 50 C 55 C

2
° + °

θ = = °

So that,	 2 0 55 C 30 C 25 Cθ − θ = ° − ° = °

If it takes a time t to cool down from 60℃ to 50℃, the rate of fall in temperature is 2d 60 C 50 C 10 C
dt t t
θ ° − ° °

− = = .

From Newton’s law of cooling and (i), 10 C 2 25 C
t 35min
°

= × ° 	 Or	  t 7min.=

Illustration 7: At midnight, with the temperature inside your house at 70℉ and the temperature outside at 20℉, 
your furnace breaks down. Two hours later, the temperature in your house has fallen to 50℉. Assume that the 
outside temperature remains constant at 20℉. At what time will the inside temperature of your house reach 40℉?
� (JEE ADVANCED)

Sol: Newton’s law of cooling, follow logarithm curve in cooling.

The boundary value problem that models this situation is

	 dT k(20 T)
dt

= − 		
T(0) 70
T(2) 50

=
=

Where time 0 is midnight. The solution of this boundary value problem is
t 2

3T 20 50
5
 

= +  
 

This is obtained by solving above differential equation. 

Note (for the purpose of a reasonableness check) that this formula given us
0 2

3T(0) 20 50 70.
5
 

= + = 
 

 and 
2 2

3T(2) 20 50 50.
5
 

= + = 
 

To find when the temperature in the house will reach 40℉, we must solve equation 
t 2

320 50 40
5
 

+ = 
 

The solution of this equation is ln(2 5)
t 2 3.6

ln(3 5)
 

= ≈ 
 

Thus, the temperature in the house will reach 40℉ a little after 3.30 a.m.
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Newton’s law of cooling can also be thought in the context of Stefan-Boltzmann law by considering 
the temperature difference between the body and the surroundings very close to zero, i.e. it can be 
considered as a special case of the latter. 

Vijay Senapathi (JEE 2011, AIR 71)

16. WIEN’S DISPLACEMENT LAW

At ordinary temperatures (below about 600℃), the thermal radiation emitted by bodies is invisible, most of them 
lie in wavelengths longer than visible light. The figure shows how the energy of a black body radiation varies 
with temperature and wavelength. As the temperature of the black body increases, two different behaviors are 
observed. The first effect is that the peak of the distribution shifts to shorter wavelengths. This shift is found to 
satisfy the following relationship called Wien’s displacement law.

λmaxT=b . Here b is a constant called Wien’s constant. The value of this constant in SI unit is 32.898 10−×  m-K. Thus, 
max 1/ Tλ α

Here λmax is the wavelength corresponding to the maximum spectral emissive power eλ.

The second effect is that the total amount of energy the black body emits per unit area per unit time (=σT4) 
increases with fourth power of absolute temperature T.

This is also known as emissive power. We know

0
e e d

∞
λ= λ =∫ 4Area under graph, e Vs Tλ λ = σ

4Area T∝  4
2 1A (2) 16A= =

Thus, if the temperature of the black body is made two fold, maxλ  remains half while the area becomes 16 times.

Have you ever wondered how do scientists calculate the temperature of sun and other stars? It is through 
this law.

Ankit Rathore (JEE Advanced 2013, AIR 158)

Illustration 8: The light from the sun is found to have a maximum intensity near the wavelength of 470 nm. 
Assuming that the surface of the sun emits as a blackbody, calculate the temperature of the surface of the sun.�
�  (JEE MAIN)

Sol: Formula of Wien’s displacement law.

For a blackbody, λm T=0.288 cmK.	 Thus, 0.288cmK
T 6130K

470nm
= =

Illustration 9: What is the wavelength of the brightest part of the light from our next closest star, Proxima Centauri? 
Proxima Centauri is a red dwarf star about 4.2 light years away from us with an average surface temperature of 
3,042 Kelvin? �  (JEE MAIN)

Sol: max T bλ =
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We don’t really need the distance to solve this. All we need is the surface temperature to plug into our Wien’s law 
equation

Wavelength maxλ  in meters = 0.0029meters K
3.042K

− which is 0.000000953 meters. 

We can convert this to nanometers and we get a peak wavelength of 953 nm.

Illustration 10: Two bodies A and B have thermal emissivity of 0.1 and 0.81 respectively. The outer surface areas 
of the two bodies are identical. These two bodies emit total radiative power at the same rate. The wavelength Bλ  
corresponding to the maximum spectral radiancy in the radiation from B is 1.0 µm larger than the wavelength Aλ  
corresponding to the maximum spectral radiancy in the radiation from A. If the temperature of body A is 5802 K, 
find (a) temperature of (B) and (b) Bλ . � (JEE MAIN)

e�

A1

�m

T

�

e�

�
2T

�m

2

A2

Figure 14.9

Sol: By equating their emissive power, ratio of temperatures (a) could be calculated.
4

A A A A(a) Power radiated from A P E A e T A= = = σ
4

B A B BPower radiated from B  P E A e T A= = = σ

Where A is surface area of both the bodies as 1 2P P= , 4 4
A A B Be T e T=

4
4 4 B B
A B

A A

T T0.01 1 10.01T 0.81T ;
T 0.81 81 T 3
       

∴ = ∴ = = =       
        

	 B A
1 1or T T 5802 1934K
3 3

= × = × =  

(b) mTλ  = constant as per Wien’s law

A A B BT T∴λ = λ  or B A

A B

T
3

T
λ

= =
λ

 ; B
A 3

λ
λ = ;	 B B

B A B
2

1 m, 1 m
3 3
λ λ

λ − λ = µ λ − = = µ

B
1 3 1.5 m

2
×

∴λ = = µ

17. SOLAR CONSTANT AND TEMPERATURE OF SUN

Solar constant is defined as the amount of radiation received from the sun at the earth per minute per cm2 of a 
surface placed at right angle to the solar radiation at a mean distance of the earth from the sun. Assuming that the 
absorption of solar radiation by the atmosphere near the earth is negligible, the value of solar constant, S, is equal 
to 1.94 2 1cal.cm min .− −

The temperature of the sun, T, is given as follows 
2

4 S RT
r

 
=  σ  

Where S is solar constant, σ is Stefan’s constant, R is mean distance of earth from sun and r is radius of sun.
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PROBLEM-SOLVING TACTICS
 1.	 Problems of conduction can be easily solved by making analogy with current electricity (Problems like 

calculation of net conductance of series and parallel connection. Actually, the way in which steady state is 
achieved in heat transfer and current electricity is very similar. At steady state considering a cylindrical rod, 
potential at each point becomes constant in current electricity and so does temperature in heat transfer. 
The amount of charge transferred per unit time is related in same way to potential as that of heat energy 
transferred relates to temperature difference and the constant of proportionality have similar properties.)

 2.	 Most of the problems involve concepts of integration, so be careful with infinitesimal elements. Basically, try 
to be physically involved in the problem and understand it event by event so that you learn more. Toughness 
in most of the questions is involved only in its mathematical analysis.

 3.	 Problems from radiation and law of cooling also generally involve integration which becomes necessary to 
do at times. However an approximate approach is also available in case of law of cooling useful in solving 
problems without involving integration.

 4.	 Laws must be carefully known because many questions directly focus on understanding of laws rather than 
involving calculations (Example - If temperature of a body is doubled, find the ratio of maximum wavelength 
for final and initial state.)

 5.	 Noting down the known and asked quantities and thinking of a link between them will always prove to be a 
good way.

 6.	 Questions from this topic usually come in a hybrid involving concepts of other topics like thermodynamics, 
gaseous state and calorimetry. So one must be strong in their concepts too!!

FORMULAE SHEET

S. No. Term 			   Descriptions

1. Conduction Due to vibration and collision of medium particles.

2. Steady state In this state heat absorption stops and temperature gradient throughout the rod becomes 

constant i.e. dT constant.
dx

=  

3. Before steady state Temp of rod at any point changes.

Note: If specific heat of any substance is zero, it can be considered always to be in steady 
state.

4. Ohm’s law for thermal 
Conduction in Steady 
state

Let the two ends of rod of length L is maintained 

At temp ( )1 2 1 2T  and T T T>

Thermal Current 	 1 2

Th

T TdQ .
dT R

−
= Where Th

LR
KA

=  

(L is length of material, K is coefficient of thermal conductivity, A is area of cross- section)

5. Differential form of 
Ohm’s law

dQ dTKA
dT dx

=

dT
dx

 = Temperature gradient 

6. Convection Heat transfer due to movement of medium particles.

L

T1 T2

T T-dT

dx
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7. Radiation Every body radiates electromagnetic radiation of all possible wavelength at all temp>0 K

8. Stefan’s Law Rate of heat emitted by a body at temp T K from per unit area 4 2E T J / sec/ m= σ

Radiation power 4dQ P AT watt
dT

= = σ

If body is placed in a surrounding of temperature Ts 
4 4

s
dQ A(T T )
dT

= σ − valid only for 
black body

heat from general bodyEmissivity or emmisive power e
heat from black body

=

If temp of body falls by dT in time dt 

( )4 4
s

dT eA T T
dt ms

σ
= − 	(dT/dt=Rate of cooling)

9. Newton’s law of 
cooling

If temp difference of body with surrounding is small i.e.

sT T= 	 Then, ( )3
s s

dT 4eA T T T
dt ms

σ
= − 	 So	 ( )s

dT T T
dt

∝ −

10. Average form of 
Newton’s law of 
cooling

If a body cools from 1 2T  to T  in time tδ

1 2 1 2
S

T T T TK T
t mS 2

 − +
= −  δ  

(Used generally in objective questions) S
dT K (T T )
dt mS

= −

(For better results use this generally in subjective )

11. Wien’s black body 
radiation

At every temperature (>0K) a body radiates energy radiations of all wavelengths. 
According to Wien’s displacement law if the wavelength 
corresponding to maximum energy is mλ  then mλ  T=b 

where b= is a constant( Wien’s Constant )

T=Temperature of body

I

T
3

T
2

T
2

T
3

T
2

T
1

> >

�m
3

� m
2

�m
3 �

Sol: Recall the formula of heat transfer.

(a) Thermal resistance 

2

1 1R
kA k( r )

= =
π

 or 
2 2

2R 15.9K / W
(401)( )(10 )−

= =
π

(b) Thermal current, T 100H
R R 15.9
∆ ∆θ

= = =  or

H 6.3W=

(c) Temperature gradient

0 100 50K / m 50 C / m
2
−

= = − = − °

JEE Main/Boards

Example 1: A copper rod 2 m long has a circular 
cross section of radius 1 cm. One end is kept at 100℃ 
and other at 0℃, and the surface is insulated so that 
negligible heat is lost through the surface. Find

(a) The thermal resistance of bar

(b) The thermal current H 

(c) The temperature gradient dT
dx

(d) The temperature 25 cm from hot end. Thermal 
conductivity of copper is 401 W/m-K

Solved Examples
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(d) Let be θ°C the temperature at 25 cm from hot end 
then

100 C
o �o

C 0o
C

2.0 m

0.25 m

(θ – 100)=(Temperature gradient) × (Distance)
100 ( 50)(0.25)
87.5 C

θ − = −
θ = °

Example 2: In a murder investigation, a corpse was 
found by a detective at exactly 8 P.M. Being alert, the 
detective also measured the body temperature and 
found it to be 70℉. Two hours later, the detective 
measured the body temperature again and it found to 
be 60℉. If the room temperature is 50℉, and assuming 
that the body temperature of the person before death 
was 98.6℉, at what time did the murder occur?

Sol: Newton’s law of cooling is used.

With time 0 taken to be 8 P.M., we have the boundary 
value problem

dT k(50 T);
dt

= −  	
T(0) 70
T(2) 60

=
=

Whose solution is	
t 2

1T 50 20
2

 
= +  

 

We would like to find the value of t for which T(t)=98.6. 
Solving the equation

t 2
150 20 98.6
2

 
+ = 

 

Given us ln(48.6 20)
t 2 2.56.

ln(1 2)
 

= ≈ − 
 

It appears that this person was murdered at about 530 
P.M. or so. 

From the function
t 2

1T 50 20
2

 
= +  

 
Over the time interval 2.56. t 2.56.− ≤ ≤

Example 3: Two metal cubes with 3 cm edges of copper 
and aluminium are arranged as shown in fig. find

(a) The total thermal current from one reservoir to the 
other

(b) The ratio of the thermal current carried by the 
copper cube to that of the aluminium cube. Thermal 

conductivity of copper is 401 W/m-K and that of 
aluminium is 237 W/m-K

100 C
o

20 C
o

Sol: This is parallel combination and thermal current 
would be sum of both cubes.

(a) Thermal resistance of aluminum cube 

1
1R

kA
=  or 

2

1 2 2

(3 10 )R 0.14K / W
(237)(3 10 )

−

−

×
= =

×

and Thermal resistance of aluminum cube 
2

2 2 2

(3 10 )R 0.08K / W
(401)(3 10 )

−

−

×
= =

×

As these two resistances are in parallel, their equivalent 
resistance will be

1 2

1 2

R R (0.14)(0.08)R 0.05K / W
R R (0.14) (0.08)

= = =
+ +

Thermal Current H Temperature difference
Thermal resistance

=

3(100 20) 1.6 10 W
0.05
−

= = ×

(b) In parallel thermal current distributes in the inverse 
ratio of resistance. 

Hence, Cu Al 1

Al Cu 2

H R R 0.14 1.75
H R R 0.08

= = = =

Example 4: One end of a copper rod of length 1 m 
and area of cross section 4 24.0 10 m−×  is maintained at 
100℃. At the end of rod ice is kept at 0℃. Neglecting 
the loss of heat from the surroundings, find the mass 
of ice melted in 1 h. Given cuk 401W m K= −  and

5
fL 3.35 10 J kg= × .

Sol: Find total heat transfer in 1 hr time through rod 
and hence, melted ice can be found.

Thermal resistance of the rod,

100 C
o

0o
C

H

4

1 1.0R 6.23K W
kA (401)(4 10 )−

= = =
×

Heat Current H Temperature difference
Thermal resistance

=
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(100 0) 16W
6.23

−
= =

Heat transferred in 1 h,

Q Ht=  (16)(3600) 57600 J= =  QH
T

 
= 

 
 

Now, let m mass of ice melts in 1 h, then
Qm
L

=  (Q=mL)

 
5

57600 0.172kg
3.35 10

= =
×

 or	  172g

Example 5: A body cools in 10 minutes from 60℃ 
to 40℃. What will be its temperature after next 10 
minutes? The temperature of the surrounding is 10℃

Sol: Think of Newton’s law of cooling.

According to Newton’s law of cooling

1 2 1 2
0t 2

    θ − θ θ + θ
= α − θ            

For the given conditions,

60 40 60 40 10
10 2

 − +
= α − 

 
 � … (i)

Let be the temperature after next 10 minutes. 

Then 40 40 10
10 2

 − θ + θ
= α − 

 
 � … (ii)

Solving Eqs. ( i ) and ( ii ), we get 28 Cθ = °

Example 6: Two bodies A and B have thermal emissivity 
of 0.01 and 0.81 respectively. The outer surface areas 
of the two bodies are same. The two bodies emit 
total radiant power at the same rate. The wavelength 
corresponding to maximum spectral radiancy from 
B is shifted from the wavelength corresponding to 
maximum spectral radiancy in the radiation from A by 
1.0 µm. If the temperature of A is 5802 K. calculate (a) 
The temperature of B, 

(b) Wavelength Bλ

Sol: Compare the emissive power of both and then 
temperature and mλ of B can be calculated, Use 

B A 1 mλ − λ = µ .

(a) A BP P= 		  4 4
A A A B B Be A T e A T∴ σ = σ

1
4

A
B A

B

e
T T

e
 

∴ =   
 

 	  … A B(A A )=

Substituting the values
1
4

B
0.01T (5802) 1934K
0.81

 
= = 
 

(b) According to Wein’s displacement law,

A A B B

B A B A

T T

5802 or 3
1934

λ = λ

 
∴ λ = λ λ = λ 

 

 

Also, B A 1 mλ − λ = µ 		 or B B
1 1 m
3

 
λ − λ = µ 

 

Or	 B 1.5 mλ = µ

Example 7: Two plates each of area A, thickness L1 
and L2 thermal conductivities K1 and K2 respectively are 
joined to form a single plate of thickness L1 + L2. If the 
temperatures of the free surfaces are T1 and T2, calculate

Heat

Flow
T2

T1

K1 K2

L1 L2

(a) Rate of flow of heat 

(b) Temperature of interface 

(c) Equivalent thermal conductivity

Sol: Consider as thermal current where thermal resistors 
in series.

(a) If the thermal resistances of the two plates are R1 
and R2 respectively then as plates are in series.

1 2
S 1 2

1 2

L L
R R R

AK AK
= + = +  

As 
L

R
AK

= 	 and so

1 2 1 2

1 2 1 2

1 2

(T T ) A(T T )dQ QH
dt R (R R ) L L

K K

− −∆
= = = =

+  
+ 

 

(b) If T is the common temperature of interface then 
as in series, rate of flow of heat remains same. i.e. 

1 2H H ( H )= =

1 2 1

1 2 1

T T T T
R R R

− −
=

+
 i.e. 1 2 2 1

1 2

TR T R
T

(R R )
+

=
+
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or	

1 2
2 1

1 2

1 2

1 2

L L
T T

K K
T

L L
K K

 
+ 

 =
 

+ 
 

(c) If K is the equivalent conductivity of composite slab 
i.e. slab of thickness 1 2L L+  and cross sectional area A, 
then as in series

S 1 2R R R= +  or 
( )1 2

1 2
eq

L L
R R

AK

+
= +

( )1 2 1 2
eq

1 2 1 2

1 2

L L L L
K

A(R R ) L L
K K

+ +
= =

+  
+ 

 

 As 
L

R
AK

=  

Example 8: One end of a rod of length 20cm is 
inserted in a furnace at 800K. The sides of the rod are 
covered with an insulating material and the other end 
emits radiation like a black body. The temperature of 
this end is 750K in the steady state. The temperature 
of the surrounding air is 300K. Assuming radiation is 
the only important mode of energy transfer between 
the surrounding and the open end of the rod. Find the 
thermal conductivity of the rod. Stefan constant 

3 2 46.0 10 W / m K−σ = × −

Furnace

800 K
20 cm

750 K

air temp

300 K

Sol: Rate of heat through radiation would be equal to 
rate of heat transfer through rod.

Quantity of heat flowing though the rod per second in 
steady state

dQ K.A.d
dt x

θ
= � … (i)

Quantity of heat radiated from the end of the rod per 
second in steady state

4 4
0

dQ A (T T )
dt

= σ − �  … (ii)

From Eqs. (i) and (ii),

4 4
0

8 4 4 8

K.d (T T )
x

K 50 6.0 10 (7.5) (3) 10
0.2

K 74 W mK

−

θ
= σ −

×  = × − × 
=

Example 9: The lower surface of a slab of stone of 
face-area 3600 cm and thickness 10 cm is exposed to 
steam at 100℃. A block of ice at 0℃ rests on the upper 
surface of slab. 4.8 g of ice melts in one hour. Calculate 
the thermal conductivity of the stone. Latent heat of 
fusion of ice = 5 13.36 10 Jkg .−×

Sol: Amount of heat transfer per second would be used 
to melt the mass of ice per second.

The amount of heat transferred through the slab to the 
ice in one hour is

3 5 1Q (4.8 10 kg) (3.36 10 Jkg )− −= × × ×

 4.8 336J.= ×

Using the equation 1 2KA( )t
Q

x
θ − θ

=

2K(3600cm) (100 C)(3600s)
4.8 336J

10cm
°

× =

or 3 1 1K 1.24 10 Wm C− − −= × °

Example 10: An icebox made of 1.5 cm thick 
Styrofoam has dimensions 60cm 60cm 30cm× × . It 
contains ice at 0℃ and kept in a room at 40℃. Find 
the rate at which ice is melting. Latent heat of fusion of  
ice = 5 13.36 10 Jkg−×  and thermal conductivity of 
Styrofoam = 1 10.04Wm C− −° .

Sol: Heat transfer through Styrofoam will melt the ice.

The total surface area of the walls

2

2(60cm 60cm 60cm 30cm 60cm 30cm)

1.44m

= × + × + ×

=
 

The rate of heat flow into the box is

1 2KA( )Q
t x

θ − θ∆
=

∆

1 1 2(0.04 Wm C )(1.44m )(40 C) 154W
0.015m

− −° °
= =

The rate at which the ice melts is

1
5 1

154W 0.46gs
3.36 10 Jkg

−
−

= =
×

JEE Advanced/Boards

Example 1: Three rods of the material x and three rods 
of material y are connected as shown in figure. All the 
rods are of identical length and cross sectional area. If 
the end A is maintained at 60℃ and the junction E is 
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at 10℃ Calculate temperature of junction B, C, D. the 
thermal conductivity of x is 0.92 cal/cm-s℃ and that of 
y is 0.46 cal/cm-s℃.

60 C
o y

x

B
x

x

y y

10 C
o

E

C

D

Sol: Think of temperature drop across BCE and across 
BDE, temperature of C and D would be same as similar 
drop across BC and CE, 

R 2R

K2

K1

�1 �2

Heat flow

also across BD and DE.Thermal resistance 1R
kA

=  

yx

y x

kR
R k

∴ = 	 (as x yl l= and x yA A= )

x

y

R 0.46 1
R 0.92 2

∴ = =

So, if xR R= then yR 2R=

CEDB forms a balanced Wheatstone bridge i.e.

C DT T=  and no heat flows through CD

∴ 
BE

1 1 1
R R R 2R 2R

∴ = +
+ +

 or BE
4R R
3

=

The total resistance between A and E will be,

AE AB BE
4 10R R R 2R R R
3 3

= + = + =

∴ Heat current between A and E is

AE

( T) (60 10) 15H
R (10 3)R R
∆ −

= = =

Now, if TB is the temperature at B,

AB
AB

AB

( T)
H

R
∆

=  or B60 T15
R 2R

−
=  or BT 30 C= °  

AB BC BDFurther, H H H= +  or c D30 T 30 T15
R R 2R

− −
= +  

(Say C DT T T= = )

Or (30 T)15 (30 T)
2
−

= − +

Solving this we get T 20 C= °  or C DT T 20 C= = °

Example 2: A cylinder of radius R made of a thermal 
conductivity K1 is surrounded by cylindrical shell of inner 
radius R and another radius 2R made of a material of 
thermal conductivity K2. The two ends of the combined 
system are maintained at two different temperatures. 
There is no loss of heat across the cylindrical surface 
and system is in steady state. What is the effective 
thermal conductivity of system?

Sol: Assume this to parallel combination of thermal 
resistors. As both have same temperature across their 
ends.

In this situation a rod of length L and area of cross 
section 2Rπ  and another of same length L and area 

of cross-section 2 2 2(2R) R 3 R π − = π  will conduct heat 

simultaneously so total heat flowing per second will be,

1 2dQ dQdQ
dt dt dt

= +  

2 2
1 1 2 2 1 2K R ( ) K 3 R ( )

L L
π θ − θ π θ − θ

= +  � ...(i)

Now, if the equivalent conductivity is K then,

2
1 24 R ( )dQ K

dt L
π θ − θ

=  [ 2As A (2R)= π ]� …(ii)

So, from Eqs. (i) and (ii), we have 

1 24K K 3K= + 	 1 2(K 3K )
i.e. K

4
+

=

Example 3: A point source of heat of power P is 
placed at the center of a spherical shell of mean radius 
R. the material of the shell has thermal conductivity 
k. calculate the thickness of the shell if temperature 
difference between the outer and inner surfaces of the 
shell in steady state is T. 

r2

r1
P

r

d�

d
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Sol: Total thermal resistance 
2

dr l
KAk 4 r

 
=  

π  
∫ . Power 

of source equal to rate of heat transfer at steady state.

Consider a concentric spherical shell of radius r and 
thickness dr as shown in figure. In steady state, the rate 
of heat flow (heat current) through this shell will be,

2

T ( d )H
drR

(k)(4 r )

∆ − θ
= =

π

 1R
kA

 
= 

 

or 2 dH (4 kr )
dr
θ

= − π

Here, negative sign is used because with increase in r, 
decreases.

∴ 
r2

2r1

dr 4 k
Hr
π

= −∫  2

1
d

θ

θ
θ∫

This equation gives, 1 2 1 2

2 1

4 kr r ( )
H

(r r )
π θ − θ

=
−

In steady state, 2
1 2 1 2H P,r r R and T= = θ − θ =

∴Thickness of shell, 
2

2 1
4 kR Tr r

P
π

− =

Example 4: A steam pipe of radius 5cm carries steam 
at 100℃. The pipe is covered by a jacket of insulating 
material 2cm thick having a thermal conductivity 0.07 
W/m-K. If the temperature at the outer wall of the pipe 
jacket is 20℃, how much heat is lost through the jacket 
per meter length in an hour?

Sol: Heat lost through curved surface of the pipe. 

thermal
drR

K 2 rl
=

π∫  for pipe of length l.

Thermal resistance per meter length of an element at 
distance r of thickness dr is

7cm

5cm

r dr

k=0.07W/m-k

drdR
k(2 r)

=
π

 1(R )
kA

=

r 7cm2
r 5cm1

Total resistance R dR
=

=
∴ = ∫

27 10 m
25 10 m

1 dr
2 k r

−×
−×

=
π ∫  1 7ln

2 k 5
 

=  π  
 

( )1 ln 1.4
2 (0.07)

=
π

 0.765K / W=

Temperature difference
Heat current H

Thermal resistance
=  

(100 20) 104.6W
0.765

−
= =

Heat lost in one hour Heat current time∴ = ×

(104.6)(3600) J= 53.76 10 J= ×  

Example 5: A closed cubical box is made of perfectly 
insulating material and the only way for heat to enter 
or leave the box is through two solid cylindrical metal 
plugs, each of cross sectional area 12 cm2 and length 
8 cm fixed in the opposite walls of the box. The outer 
surface of the plug is kept at a temperature of 100℃ 
while the outer surface of the other plug is maintained 
at a temperature of 4℃. The thermal conductivity of the 
material of the plug is 2.0Wm-1 ℃-1. A source of energy 
generating 13 W is enclosed inside the box. Find the 
equilibrium temperature of the inner surface of the box 
assuming that it is the same at all points on the inner 
surface.

Sol: At steady state, rate of heat transfer through both 
plugs would be same.

100 C
o�1=

S

4 C
o�2=

The situation is shown in figure. Let the temperature 
inside the box be θ. The rate at which heat enters the 

box through the left plug is	 1 1Q KA( )
t x

∆ θ − θ
=

∆

The rate of heat generation in the box=13 W. The rate 
at which heat flows out of the box through the right 
plug is

2 2Q KA( )
t x

∆ θ − θ
=

∆

In the steady state	 1 2Q Q
13W

t t
∆ ∆

+ =
∆ ∆

1 2
KA KAor, ( ) 13W ( )
x x

θ − θ + = θ − θ
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1 2

1 2

KA KAor, 2 ( ) 13W
x x

(13W)xor,
2 2KA

θ = θ + θ +

θ + θ
θ = +

1 2

1 2

KA KAor, 2 ( ) 13W
x x

(13W)xor,
2 2KA

θ = θ + θ +

θ + θ
θ = +

1 1 4 2

100 C 4 C (13W) 0.08m
2 2 (2.0Wm C )(12 10 m )− − −

° + ° ×
= +

× ° ×

52 C 216.67 C 269 C= ° + ° = °

Example 6: Two thin metallic spherical shells of radii r1 
and r2 (r1 < r2) are placed with their centres coinciding. 
A material of thermal conductivity K is filled in the 
space between the shells. The inner shell is maintained 
at temperature and the outer shell at temperature θ1  
(θ1< θ2). Calculate the rate at which heat flows radially 
through the material.

�2

�1

r2

r1

X

Sol: Heat flowing radially outward through spherical 
shells. Both connected in series. 

Let us draw two spherical shells of radii x and x+dx 
concentric with the given system. Let the temperatures 
at these shells be θ and θ + dθ respectively. The amount 
of heat flowing radially inward through the material 
between x and x+dx is

2Q K4 x . dQ
t dx

∆ π
=

∆

r2 2

2
r1 1

Thus,

Q dxK4 d
t x

θ

θ

∆
π θ =

∆∫ ∫

2 1
1 2

1 2 2 1

2 1

Q 1 1or, K4 ( )
t r r

K4 r r ( )Qor,
t r r

 ∆
π θ − θ = −  ∆  

π θ − θ∆
=

∆ −

2 1
1 2

1 2 2 1

2 1

Q 1 1or, K4 ( )
t r r

K4 r r ( )Qor,
t r r

 ∆
π θ − θ = −  ∆  

π θ − θ∆
=

∆ −

Example 7: The temperature of air above a lake is 
-10℃. At some instant, the thickness of ice in the lake is 

2 cm. calculate the time required for the thickness to be 
doubled. Thermal conductivity ice = 0.004cal/cm/s/℃, 
density of ice = 0.92 g/cm3 and latent heat of ice  
= 80cal/g.

Sol: Amount of Heat transfer through ice at any time 
would result in freezing the water of lake. Proceed with 
assuming Area of lake = A, eventually it will cancel out.

As the temperature of air is below 0℃, water begins to 
freeze to form a layer of ice. The thickness of the layer 
gradually increases.

Consider that a layer of thickness x has already been 
formed on a lake at 0℃. Let A be the area of the layer, 
L the latent heat of ice and ρ its density. The amount 
of heat required when the thickness of ice increases by 
dx is

-�

0 C
o

x+dx
x

Q mL (Adx )L= = ρ

This quantity of heat is conducted upwards through the 
layer in time dt when the temperature of air is −θ .

KA(0 ( ))A Ldx dt;
x
− −θ

∴ ρ =
dx K
dt Lx

θ
=
ρ

; Lxdxdt
K

ρ
=

θ

Time taken t for the thickness to increase from x1 and x2  
to is obtained by integrating

xt 2

0 x1

Lt dt xdx
K
ρ

= =
θ∫ ∫  Or

2 2
2 1

Lt (x x )
2K
ρ

= −
θ

 2 20.92 80t (4 2 )
2 0.004 10

×
∴ = −

× ×

11040s 3.07hr= =

Example 8: A liquid placed in a container open to 
atmosphere takes 5 minutes to cool from 80℃ to 50℃. 
How much time will it take to cool from 60℃ to 30℃? 
The temperature of the surroundings is 20℃.

Sol: Newton’s law of cooling.

The rate of cooling of a body at temperature T is given 

by Newton’s law of cooling as 0
dT K(T T )
dt

= − −

Where K is a constant for the body and 0T  is the 
temperature of the surroundings.

0T T
Kdt

dT
−

= −
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The negative sign indicates that the temperature is 
falling.

Integrating, we get 
T t2

0T 01

dT K dt
T T

= −
−∫ ∫

2 0
e

1 0

T T
log Kt

T T
 −

= −  − 

As 1 2 0t 5,T 80 C,T 50 C,T 20 C= = ° = ° = °

e
1 80 205 log
K 50 20

 −
∴ =  − 

or e5K log (2)= � … (i)

If t is time taken when 

1 2T 60 CandT 30 C= ° = °

e
60 20Kt log
30 20

 −
=  − 

 � … (ii) 

eor Kt log (4)=

Dividing equation (ii) by equation (i)

e

e

log 4t 1.386 2
5 log 2 0.693
= = = 	 or t 10 minutes=

Example 9: A solid copper sphere cools at the rate of 
2.8℃ per minute, when its temperature is 127℃. Find 
the rate at which another copper sphere of twice the 
radius will lose its temperature at 327℃, if in both the 
cases, the room temperature is maintained at 27℃.

Sol: Get the rate of heat loss through radiations.

dQ dTThe rate of loss of heat ms
dt dt

= =

4 4
0A(T T )= σ − 4 4

0
dT Aor (T T )
dt ms

σ
= −

If r is radius of sphere is r, then 34m r
3

= π ×ρ

Where is density and s is specific heatρ

2
4 4 4 4

0 0
3

4 4

127 C

dT 4 r 3(T T ) (T T )
4dt r sr s
3

dT 32.8 (400 300 )......(i)
dt r s°

σ× π σ
= − = −

ρ×π ρ×

  σ
= = −  ρ× 

� …(i)

For the second sphere of radius 2r

4 4

327 C

dT 3 (600 300 )......(ii)
dt (2r) s°

  σ
= −  ρ× 

� …(ii)

Dividing equation (ii) by equation (i), we get

4 4

4 4
327 C

dT 2.8 6 3 9.72 C / minute
dt 2 4 3°

   −
= = °  

−    

Example 10: A 2m long wire of resistance 4 ohm and 
diameter 0.64 mm is coated with plastic insulation of 
thickness 0.06 mm. When a current of 5 ampere flows 
through the wire, find the temperature difference 
across insulation in steady state if 

2K 0.16 10 cal / cm Cs− = × − ° 

Sol: Tricky one! Rate of heat generation in the wire due 
to flow of current must be same as rate of heat transfer 
through plastic insulation.

Considering a concentric cylindrical shell of radius r and 
thickness dr as shown in figure. The radial rate of flow 
of heat through this shell in steady state will be 

�2

dr

r a b
�1

dQ dH KA
dt dr

θ
= = −  

Negative sign is used as with increase in r, θ decrases

Now as for cylindrical shell A 2 rL= π

dH 2 rLK
dr
θ

= − π

b 2

a 1

dr 2 rLKor d
r H

θ

θ

− π
= − θ∫ ∫

Which on integration and simplification gives

1 22 LK( )dQH .......(i)
bdt ln( )a

π θ − θ
= = − � … (i)

2 2I R (5) 4 calHere, H 24
4.2 4.2 s

×
= = =

1

2 1

L 2m 200cm
r (0.64 2) 0.032cm
and R r d 0.032 0.006 0.038

= =
= =

= + = + =

( )
1 2

10 10

3824 ln 32So ( )
2 2.3026 log 38 log 32

×
θ − θ =

 × − 
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10 1024 2.3026 log 38 log 32

3.14 0.64

 × − =
×

1 2

55 1.57 1.50
or ( ) 2 C.

2

 × − θ − θ = = °

Example 11: A rod CD of thermal resistance 5.0KW-1 is 
joined at the middle of an identical rod AB as shown in 
figure. The ends A, B and D are maintained at 100℃, 
0℃, and 25℃ respectively. Find the heat current in CD. 

100 C
o

0 C
o

25 C
o

C

D

A B

Sol: At point C, total thermal current inflow equal to 
total thermal current out flow.

The thermal resistance of AC is equal to that of CB and 
is equal to 2.5KW-1. Suppose, the temperature at C is θ. 
The heat current through AC, CB, and CD are

1
1

Q 100 C
t 2.5KW−

∆ ° − θ
=

∆
;

32
1 1

QQ 0 C 25 Cand
t t2.5KW 5.0KW− −

∆∆ θ − ° θ − °
= =

∆ ∆

We also have

31 2 QQ Q
t t t

∆∆ ∆
= +

∆ ∆ ∆

100 C 0 C 25 Cor,
2.5 2.5 5.0
° − θ θ − ° θ − °

= +

or, 225 C 5° = θ

 or, 45 Cθ = °

3
1 1

Q 45 C 25 C 20KThus,
t 5.0KW 5.0KW− −

∆ ° − °
= =

∆
4.0W.=

Example 12: Figure shows a large tank of water at a 
constant temperature θ0 and a small vessel containing 
a mass m of water at an initial temperature θ1 (<θ0). A 
metal rod of length L, area cross section A and thermal 
conductivity K connects the two vessels. Find the time 
taken for the temperature of the water in the smaller 
vessel become θ2 (θ1<θ2 <θ0). Specific heat capacity of 
water is s and all other heat capacities are negligible.

�0

L
�1

Sol: Rate of heat transfer is variable as temperature of 
small vessel will be changing.

Suppose, the temperature of the water in the smaller 
vessel is at time t. In the next time interval dt, a heat dQ 
is transferred to it where

 0
KAQ ( )dt .
L

∆ = θ − θ
�

 … (i)

This heat increases the temperature of the water of 
mass m to dθ + θ  where

Q msd∆ = θ  � … (ii) 

From (i) and (ii),

0
KA ( )dt msd
L

θ − θ = θ

0

Lms dor, dt
KA

θ
=

θ − θ
 

T 2

00 1

Lms dor, dt
KA

θ

θ

θ
=

θ − θ∫ ∫

Where T is the time required for the temperature of the 
water to become.

0 1

0 2

LmsThus, T ln
KA

θ − θ
=

θ − θ

Example 13: The earth receives solar radiation at a rate 
of. 2 18.2 J cm min .− −

 Assuming that the sun radiates 
like a blackbody, calculate surface temperature of the 
sun. The angle subtended by the sun on the earth is 

00.53 and Stefan constant 8 3 45.67 10 Wm K− − −σ = ×  .

Sol: Think of intensity of thermal heat out a distance R 
from the source.

Let the diameter of the sun be D and its distance from 
the earth be R. From the question, 

D 0.53
R 180

π
= × 39.25 10 ...(i)−= ×

The radiation emitted by the surface of the sun per unit 
time is 

D

Sun
R

2
4 2 4D4 T D T

2
 

π σ = π σ 
 
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At distance R, this radiation falls on an area of 4πR2 in 
unit time. The radiation received at the earth’s surface 
per unit time per unit area is, therefore,

22 4 4

2

D T T D
4 R4 R

 π σ σ
=  

π  

24
2 1T DThus, 8.2Jcm min

4 R
− − σ

= 
 

8 2 4 4

3 2 4

1or, (5.67 10 Wm K )T
4

(9.25 10 ) x T

− − −

−

× × ×

×

8 2 4 4

3 2 4

1or, (5.67 10 Wm K )T
4

(9.25 10 ) x T

− − −

−

× × ×

×

2
4

8.2 Wm
10 60

−
−

=
×

or, T 5794K 5800K= ≈

Example 14: On a cold winter day, the atmospheric 
temperature is θ (on Celsius scale) which is below 0℃. 
A cylindrical drum of height h made of a bad conductor 
is completely filled with water at 0℃ and is kept outside 
without any lid. Calculate the time taken for the whole 
mass of water to freeze. Thermal conductivity of ice is K 
and its latent heat of fusion is L. Neglect expansion of 
water on freezing. 

Sol: Rate of heat transfer would be dependent on 
thickness of layer of ice. Write equation of heat transfer 
at any time ‘t’ when thickness of ice is ‘x’.

Suppose, the ice starts forming at time t=0 and a 
thickness x is formed at time t. The amount of heat 
flown from the water to the surrounding in the time 
interval t to t+dt is

KAQ dt.
x
θ

∆ =

The mass of the ice formed due to the loss of this 
amount of heat is 

Q KAdm dt.
L xL
∆ θ

= =

The thickness dx of ice formed in time dt is

dm KAdx dt
A xL

θ
= =

ρ ρ
 Lor, dt xdx.

K
ρ

=
θ

Thus, the time T taken for the whole mass of water to 
freeze is given by

T h

0 0

Ldt xdx
K
ρ

=
θ∫ ∫ 	

2Lhor, T
2K
ρ

=
θ

Example 15: A thermometer is taken from a room that 
is 20℃ to the outdoors where the temperature is 5℃. 
After one minute, the thermometer reads 12℃. Use 
Newton’s law of cooling to answer following questions. 
(a) What will the reading on the thermometer be after 
one more minute?

(b)When will the thermometer read 6℃.?

Sol: Get the ‘k’ for Newton’s law of cooling by given 
condition, then the all desired value.

If T is the thermometer temperature, then Newton’s law 
of cooling tells us that

dT k(5 T)
dt

= − ;	  T(0) 20.=

The solution of this initial value problem is
ktT 5 15e .−= +

We still need to find the value of k. We can do this by 
using the given information that T(1)=12. In fact, let us 
pause here to consider the general problem of finding 
the value of k. We will obtain some facts that can be 
used in the rest of the problems involving Newton’s law 
of cooling. 

-�

0 C
o

h dx

x

Suppose that we have the model 

s
dT k(T T)
dt

= − ;	  0

1 1

T(0) T
T(t ) T

=

=

Where 1t  is some time other than O. then the first two 
equations in the model, we obtain kt

s 0 sT T (T T )e−= + −
and from the third equation we obtain 

kt1
s 0 s 1T (T T )e T−+ − =

Thus, kt1
0 s 1 s(T T )e T T−− = −

which gives us

kt kt1 s 0 s1 1

0 s 1 s

0 s

1 1 s

T T T T
e or e

T T T T

T T1or k ln
t T T

− − −
= =

− −

 −
=   − 

The latter equations give us the value of k. However, 
note that, in most problems that we deal with, it is not 
really necessary to find the value of k. Since the term 
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kte−  that appears in the solution of Newton’s Law of 

cooling can be written as	 kt t tkt 1 1e (e )−− =

We really just need (in most situations) to know the 

value of kt1e− , and this value has been obtained in the 
work done above. In particular, the solution of Newton’s 
Law of Cooling,

	 kt
s 0 ST T (T T )e ,−= + −

Can be written as

	 kt t t1 1
s 0 ST T (T T )(e )−= + −

t t1
1 s

s 0 S
0 s

T T
or as T T (T T )

T T
 −

= + −   − 
t t1

1 s
s 0 S

0 s

T T
T T (T T )

T T
 −

= + −   − 

Returning now to the problem at hand (with the 
thermometer), we see that temperature function for 

the thermometer is
t

7T 5 15 .
15
 

= +  
 

Note that this makes sense because this formula gives 

us 
0

7T(0) 5 15 20.
15
 

= + = 
 

1
7And T(1) 5 15 12.

15
 

= + = 
 

	

Exercise 1 

Q.1 Which metal is the best conductor of heat?

Q.2 Which mode of transfer of heat is quickest?

Q.3 What is temperature gradient?

Q.4 How can heat be transferred from one place to 
other?

Q.5 What are the basic differences between conduction, 
convection and radiation?

Q.6 What are the thermal radiations? From where do 
you obtain them? How do they transfer from one place 
to another?

Q.7 Discuss the variation of temperature of the hot 
body with time during cooling process. What do you 
conclude from this?

Q.8 What is meant by thermal conductivity and its 
coefficient? What are its SI units and CGS units?

Q.9 Explain Newton’s law of cooling and discuss its 
experimental verification.

Q.10 Thickness of ice on a lake is 5 cm. and the 
temperature of air is -20℃. If the rate of cooling of 

JEE Main/Boards

To find what the thermometer will read two minutes 
after being taken outside, we compute

2
7T(2) 5 15 8.3.

15
 

= + ≈ 
 

This tells us that the thermometer will read about 8.3℃ 
two minutes after being taken outside.

Finally, to determine when the thermometer will read 
6℃, we solve the equation

	
t

75 15 6
15
 

+ = 
 

The step-by-step solution of this equation is 
t

715 1
15
 

= 
 

t
7 1

15 15
 

= 
 

 

t
7 1ln ln

15 15

      =        
;	 7 1tln ln

15 15
   

=   
   

	

ln(1 15)
t 3.5.

ln(7 15)
= ≈

Thus, the thermometer will reach 6℃ after being 
outside for about 3.5 minutes.
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water inside the lake be 20000 cal min-1 through each 
square meter surface, find K of ice?

Q.11 A metal plate 4 mm thick has a temp difference of 
32℃ between its faces. It transmits 200kcal h-1 through 
an area of 5 cm2. Calculate thermal conductivity of the 
material of the plate.

Q.12 Estimate the rate at which ice would melt in a 
wooden box 2.5 cm thick and of inside measurements 
100×60×40 cm, assuming that the external temperature 
is 32℃ and coefficient of thermal conductivity of wood 
is 0.168 Wm-1 K-1. Given L=80cal/g.

Q.13 A pan filled with hot food cools from 94℃ to 
86℃ in 2 minutes when the room temperature is at 
20℃. How long will it take to cool from 71℃ to 69℃? 
Here cooling takes place according to Newton’s law of 
cooling.

Q.14 A liquid initially at 70℃ cools to 55℃ in 5 minutes 
and 45℃ in 10 minutes. What is the temperature of the 
surroundings?

Exercise 2 

Single Correct Choice Type 

Q.1 Four rods of same material with different radii r and 
length l are used to connect two reservoirs of heat at 
different temperatures. Which one will conduct most 
heat?

(A) r=2cm, l=0.5 cm 	 (B) r=2cm, l=2m

(C) r=0.5cm,l=0.5m 	 (D)r=1cm, l=1m

Q.2 A wall has two layers A and B each made of different 
materials, both the layers have same thickness. The 
thermal conductivity of the material A is twice of that 
of B. Under thermal equilibrium, the temperature 
difference across the wall B is 36℃. The temperature 
difference across wall A is

(A) 6℃ 	 (B) 12℃ 	 (C) 18℃ 	 (D) 72℃

Q.3 A black metal foil is warmed by radiation from a 
small sphere at temperature ‘T’ and at a distance‘d’. It 
is found that the power received by the foil is P. If both 

the temperature and distance are doubled, the power 
received by the foil will be

(A) 16 P 	 (B) 4 P 	 (C) 2 P	 (D) P

Q.4 The rate of emission of radiation of a black body at 
273℃ is E, then the rate of emission of radiation of this 
body at 0℃ will be 

E E E(A) (B) (C) (D)0
16 4 8

Q.5 The power radiated by a black body is P and it 
radiates maximum energy around the wavelength 0λ .  
If the temperature of the black body is now changed 
so that it radiates maximum energy around wavelength 
3/4 0λ , the power radiated by it will increase by a factor 
of

(A) 4/3 	 (B) 16/9 	 (C) 64/27 	 (D) 256/81

Q.6 Star S1 emits maximum radiation of wavelength 
420 nm and the star S2 emits maximum radiation of 
wavelength 560 nm, what is the ratio of the temperature 
of S1 and S2

( ) ( )1/4 1/2
(A)4 3 (B) 4 3 (C)3 4 (D) 3 4

Q.7 Spheres P and Q are uniformly constructed from 
the same material which is a good conductor of heat 
and the radius of Q is thrice the radius of P. the rate of 
fall of temperature of P is x times that of Q when both 
are at the same surface temperature. The value of x is

(A) 1/4 	 (B) 1/3 	 (C) 3 	 (D) 4

Q.8 A black body calorimeter filled with hot water cools 
from 60℃ to 50℃ in 4 min and 40℃ to 30℃ in 8 min. 
The approximate temperature of surrounding is

(A) 10℃ 	 (B) 15℃ 	 (C) 20℃ 	 (D) 25℃

Q.9 A system S receives heat continuously from an 
electrical heater of power 10W. The temperature of 
S becomes constant at 50℃. When the surrounding 
temperature is 20℃. After the heater is switched off, 
S cools from 35.1℃ to 34.9℃ in 1 minute. The heat 
capacity of S is

(A) 100 J/℃ 	 (B) 300 J/℃ 

(C) 750 J/℃ 	 (D) 1500 J/℃
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Previous Years’ Questions 

Q.1 A cylinder of radius R made of a material of thermal 
conductivity K1 is surrounded by a cylindrical shell of 
inner radius R and outer radius 2R made of a material of 
thermal conductivity K2. The two ends of the combined 
system are maintained at two different temperatures. 
There is loss of heat across the cylindrical surface and 
the system is in steady state. The effective thermal 
conductivity of the system is_________.� (1988)

Q. 2 Two metallic spheres 1S  and 2S  are made of the 
same material and have got identical surface finish. The 
mass of 1S  is thrice that of 2S . Both the spheres are 
heated to the same high temperature and placed in the 
same room having lower temperature but are thermally 
insulated from each other. The ratio of the initial rate of 
cooling of 1S  to that 2S  is________.� (1995)

Q.3 The intensity of radiation emitted by the sun has 
its maximum value at a wavelength of 510 nm and that 
emitted by the North Star has the maximum value at 
350 nm. If these stars behave like blackbodies, then 
the ratio of the surface temperature of the North Star 
is______.� (1997)

Q. 4 A spherical black body with radius of 12 cm radiates 
450 W power at 500 K. If the radius were halved and 
the temperature doubled, the power radiated would 
be____________.� (1997)

Q.5 A black body is at temperature of 2880 K. The energy 
of radiation emitted by this body with wavelength 
between 499 nm and 500 nm is U1, between 999 nm 
and 1000 nm is U2 and between 1499 nm and 1500 
nm is U3. The Wien constant, 6b 2.88 10 nm K.= × − Then, 
what can be inferred about the relation between the 
energies?� (1998)

Q.6 Two identical conducting rods are first connected 
independently to two vessels, one containing water at 
100℃ and the other containing ice at 0℃. In the second 
case, rods are joined end to end and connected to the 
same vessels. Let 1q  and 2q  gram per second be the 
rate of melting of ice in the two cases respectively. The 

ratio 1

2

q
q

 is ______. � (2004) 

Q.7 Three discs, A, B and C having radii 2m, 4m and 
6m respectively are coated with carbon black on their 

outer surfaces. The wavelengths corresponding to 
maximum intensity are 300 nm, 400 nm and 500 nm 
respectively. The power radiated by them are QA, QB and 
QC respectively. Which is the maximum power radiated?
� (2004)

Q.8 A long metallic bar is carrying heat from one of its 
ends to the other end under steady-state. The variation 
of temperature θ along the length x of the bar from 
its hot end is best described by which of the following 
figure.� (2009)

x

�

x

�

x

�

x

�

(B)

(D)

(A)

(  )C

Q.9. 100g of water is heated from 30°C to 50°C. 
Ignoring the slight expansion of the water, the change 
in its internal energy is (specific heat of water is 4148 J/
kg/K):� (2011)

(A) 8.4 kJ 	 (B) 84 kJ

(C) 2.1 kJ 	 (D) 4.2 kJ

Q.10. A liquid in a beaker has temperature θ(t) at time t 
and θ0 is temperature of surroundings, then according 
to Newton’s law of cooling the correct graph between 
loge (θ – θ0) and t is� (2012)
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�
� 0
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�
� 0

t0

lo
g

e
(

-
)

�
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-
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(C) (D)
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Exercise 1

Q.1 A thin walled metal tank of surface area 5 m2 is 
filled with water and contains an immersion heater 
dissipating 1kW. The tank is covered with 4 cm thick 
layer of insulation whose thermal conductivity is 0.2 
W/m/K. The outer face of the insulation is 25℃. Find 
the temperature of the tank in the steady state.

Q.2 The figure shows the face and interface temperature 
of a composite slab containing of four layers of two 
materials having identical thickness. Under stady state 
condition, find the value of temperature θ

20 C
o

10 C
o

-5 C
o

-10 C
o�

k 2k k 2k

k=thermal conductivity

Q.3 Three conducting rods of same material and cross-
section are shown in figure. Temperature of A,D and C 
are maintained at 20℃, 90℃ and 0℃. Find the ratio of 
length BD and BC if there is no heat flow in AB

A B C
20 C

o
0 C

o

90 C
o

D

Q.4 In the square frame of side L of metallic rods, the 
corners A and C are maintained at T1 and T2 respectively. 
The rate of heat flow from A to C is W. If A and D are 
instead maintained at T1 and T2 respectively, find the 
total rate of heat flow.

L
B

A

C

D

L L

L

Q.5 One end of copper rod of uniform cross-section 
and of length 1.5 meters is in contact with melting ice 
and the other end with boiling water. At what point 
along the length should a temperature of 200℃ be 
maintained, so that in steady state, the mass of ice 
melting is equal to that of steam produced in the same 
interval of time? Assume that the whole system is 
insulated from the surroundings.

Q.6 An empty pressure cooker of � Whistle
volume 10 liters contains air at 
atmospheric pressure 105 Pa and 
temperature of 27℃. It contains a 
whistle which has area of 0.1 cm2 and weight of 100 gm. 
What should be temperature of air inside so that the 
whistle is just lifted up?

Exercise 2

Multiple Correct Choice Type

Q.1 Two metallic spheres A and B are made of same 
material and have got identical surface finish. The mass 
of sphere A is four times that of B. Both the spheres are 
heated to the same temperature and placed in a room 

JEE Advanced/Boards

Q.11. If a piece of metal is heated to temperature θ and 
then allowed to cool in a room which is at temperature 
θ0, the graph between the temperature T of the metal 
and time t will be closest to:� (2013)

t

T

O

t

T

O

�o

t

T

O

�o

(A)

t

T

O

�o

(B)

(  )C (D)

t

T

O

t

T

O

�o

t

T

O

�o

(A)

t

T

O

�o

(B)

(  )C (D)
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having lower temperature but thermally insulated from 
each other.

(A) The ratio of heat loss of A to that of B is 4/32

(B) The ratio of heat loss of A to that of B is 2/32

(C) The ratio of the initial rate of cooling of A to that of 
B is 2/32−

(D) The ratio of the initial rate of cooling of A to that of 
B is 4/32−

Q.2 Two bodies A and B have thermal emissivity of 0.01 
and 0.81 respectively. The outer surface areas of the two 
bodies are the same. The two bodies radiate energy at 
the same rate. The wavelength Bλ , corresponding to 
the maximum special radiancy in the radiation from B, 
is shifted from the wavelength corresponding to the 
maximum spectral radiancy in the radiation from A by 
1.00 µm. If the temperature of A is 5802 K,

(A) The temperature of B is 1934 K

(B) B 1.5 mλ = µ

(C) The temperature of B is 11604 K

(D) The temperature of B is 2901 K

Comprehension Type

Paragraph 1: 

T

O

dE�
d�

�m �

Q.3 The figure shows a radiant energy spectrum graph 
for a black body at a temperature T.

Choose the correct statement(s) 

(A) The radiant energy is not equally distributed among 
all the possible wavelengths

(B) For a particular wavelength the spectral intensity is 
maximum

(C) The area under the curve is equal to the rate at 
which heat is radiated by the body at that temperature

(D) None of these

Q.4 If the temperature of the body is raised to higher 
temperature T’, then choose the correct statement(s)

(A) The intensity of radiation for every wavelength 
increases

(B) The maximum intensity occurs at a shorter 
wavelength

(C) The area under the graph increases 

(D) The area under the graph is proportional to the 
fourth power of temperature

Paragraph 2:

Two rods A and B of same cross-sectional area A 
and length l connected in series between a source  

(T1 = 100 °C) and a sink
 
(T2 = 0 °C) as shown in figure. 

The rod is laterally insulated

100 C
o

0 C
o

T2T1 3K K

L L

Q.5 The ratio of the thermal resistance of the rod is

A A A

B B B

R R R1 3 4(A) (B) 3 (C) (D)
R 3 R R 4 3

= = =

Q.6 If TA and TB are the temperature drops across the 
rod A and B, then

A A A A

B B B B

T T T T3 1 3 4(A) (B) (C) (D)
T 1 T 3 T 4 T 3

= = = =

Q.7  If GA and GB are the temperature gradients across 
the rod A and B, then

A A A A

B B B B

G G G G3 1 3 4(A) (B) (C) (D)
G 1 G 3 G 4 G 3

= = = =

Paragraph 3: 

In fluids heat transfer takes place and molecules of 
the medium take very active part. The molecules 
take energy from high temperature zone and move 
towards low temperature zone. This method is known 
as convection, when we require heat transfer with fast 
phase, we use some mechanism to make the flow 
of fluid on the body fast. The rate of loss of heat is 
proportional to velocity of fluid (v), and temperature 
difference (∆T) between the body and fluid, of course 
more surface area of body , more rate of loss of heat. 
We can write the rate of loss of heat as 

dQ KAv T where K is Positive constant.
dt

= ∆  

Now answer the following questions:-
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Q.8 A body is being cooled with fluid. When we 
increase the velocity of fluid 4 times and decrease the 
temperature difference ½ time, the rate of loss of heat 
increases

(A) Four times 	 (B) Two times 

(C) Six times 	 (D) No change

Q.9 In the above question, if mass of the body 
increased two times, without change in any of the other 
parameters, the rate of cooling

(A) Decreases 

(B) Increases 

(C) No effect of change of mass 

(D) None of these

Previous Years’ Questions

Q.1 A solid sphere of copper of radius R and a hollow 
sphere of the same material of inner radius r and outer 
radius R are heated to the same temperature and 
allowed to cool in the same environment. Which of 
them cools faster?� (1982)

Q.2 An electric heater is used in a room of total wall 
area 137 m2 to maintain a temperature of +20℃ inside 
it, when the outside temperature is -10℃. The walls 
have three different layers. The innermost layer is of 
wood of thickness 2.5 cm, the middle layer is of cement 
of thickness 1.0 cm and the outer most layer is of brick 
of thickness 25.0 cm. Find the power of the electrical 
heater. Assume that there is no heat loss through the 
floor and the ceiling. The thermal conductivities of 
wood, cement and brick are 0.125, 1.5 and 1.0 W/m/℃ 
respectively. � (1986) 

Q.3 A cylindrical block of length 0.4 m and area of 
cross-section 0.04 m2 is placed coaxially on a thin metal 
disc of mass 0.4 kg and of the same cross-section. The 
upper face of the cylinder is maintained at a constant 
temperature of 400K and initial temperature of the disc 
is 300K. If the thermal conductivity of the material of 
the cylinder is 10W/mK and specific heat capacity of 
the material of the disc is 600 J/kg-K, how long will 
it take for the temperature of the disc to increase to 
350 K? Assume, for purpose of calculation, the thermal 
conductivity of the disc to be very high and the system 
to be thermally insulated except for the upper face of 
the cylinder.� (1992) 

Q.4 A double-pane window used for insulating a room 
thermally from outside consists of two glass sheets 
each of area 1 m2 and thickness 0.01 m separated 
by a 0.05 m thick stagnant air space. In the steady 
state, the room glass interface and glass-outdoor 
interface are at constant temperatures of 27℃ and 0℃ 
respectively. Calculate the rate of heat of flow through 
window pane. Also find the temperatures of other 
interfaces. Given thermal conductivities of glass and air 

1 1as 0.8 and 0.08Wm K respectively.− −  � (1997) 

Q.5 A solid body X of heat capacity C is kept in an 

atmosphere whose temperature is AT 300 K.=  At 

time t=0, the temperature of X is 0T 400 K.=  It cools 

according to Newton’s law of cooling. At time t1 its 
temperature is found to be 350 K.

At this time (t1), the body X is connected to a large body 
Y at atmospheric temperature TA through a conducting 
rod of length L, cross-sectional area A and thermal 
conductivity K. The heat capacity of Y is so large that 
any variation in its temperature may be neglected. The 
cross-sectional area A of the connecting rod is small 
compared to the surface area of X. Find the temperature 
of X at time 1t 3t .= � (1998) 

Q.6 The top of an insulated cylindrical container is 
covered by a disc having emissivity 0.6 and conductivity 
0.167 W/Km and thickness 1 cm. The temperature is 
maintained by circulating oil as shown

Oil in

Oil out

(a) Find the radiation loss to the surroundings  in W/m2  
if temperature of the upper surface of the disc is 127℃ 
and temperature of surroundings is 27℃.

(b) Also find the temperature of the circulating oil. 
Neglect the heat loss due to convection� (2003) 

Q.7 One end of a rod of length L and cross-sectional 
area A is kept in a furnace of temperature T1. The other 
end of the rod is kept at temperature T2. The thermal 
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conductivity of the material of the rod is K and emissivity 
of the rod is e.

T1

Furnace

Insulated

Rod

Insulated

L

TS

T2

It is given that 2 ST T T= + ∆ , where ∆T<< ST , ST  being 
the temperature of the surroundings. If ( )1 ST T T ,∆ ∝ −
find  he proportionality constant. Consider that heat is 
lost only by radiation at the end where the temperature 
of the rod is 2T .� (2004)

Q.8 Two spherical bodies A (radius 6 cm) and B (radius 
18 cm) are at temperatures 1T  and 2T , respectively. The 
maximum intensity in the emission spectrum of A is at 
500 nm and in that of B is at 1500 nm. Considering 
them to be black bodies, what will be the ratio of the 
rate of total energy radiated by A to that of B? � (2010)

Q.9 A composite block is made of slabs A, B, C, D and 
E of different thermal conductivities (given in terms of 
a constant K) and sizes (given in terms of length, L) as 
shown in the figure. All slabs are of same width. Heat 
‘Q’ flows only from left to right through the blocks. 
Then in steady state

1L

3L

0

4L

1L

A

2K

B 3K

C 4K

D 5K

6K

E

5L 6L

Heat

(A) Heat flow through A and E slabs are same.

(B) Heat flow through slab E is maximum.

(C) Temperature difference across slab E is smallest.

(D) Heat flow through C = heat flow through B + heat 
flow through D.� (2011)

Q.10 Three very large plates of same area are kept 
parallel and close to each other. They are considered 
as ideal black surfaces and have very high thermal 
conductivity. The first and third plates are maintained at 
temperatures 2T and 3T respectively. The temperature 

of the middle (i.e. second) plate under steady state 
condition is� (2012)

(A) 
1/4

65 T
2

 
 
 

	 (B)
1/4

97 T
4

 
 
 

(C)
1/4

97 T
2

 
 
 

	 (D) ( )1/4
97 T

Q.11 Two rectangular blocks, having identical 
dimensions, can be arranged either in configuration I 
or in configuration II as shown in the figure. One of the 
blocks has thermal conductivity κ  and the other 2 κ . 
The temperature difference between the ends along the 
x-axis is the same in both the configurations. It takes 9 
s to transport a certain amount of heat from the hot 
end to the cold end in the configuration I. The time to 
transport the same amount of heat in the configuration 
II is� (2013)

Configuration I
Configuration II

� 2 �

2 �

�
x

(A) 2.0 s 	 (B) 3.0 s	 (C) 4.5 s 	 (D) 6.0 

Q.12 Two spherical stars A and B emit blackbody 
radiation. The radius of A is 400 times that of B and A 
emits 104 times the power emitted from B. The ratio 

A B( / )λ λ of their wavelengths Aλ  and Bλ  at which 
the peaks occur in their respective radiation curves is
� (2015)

Q.13. A metal is heated in a furnace where a sensor 
is kept above the metal surface to read the power 
radiated (P) by the metal. The sensor has scale that 
displays log2(P/P0), whre P0 is a constant. When the 
metal surface is at a temperature of 487°C, the sensor 
shows a value 1. Assume that the emissivity of the 
metallic surface remains constant. What is the value 
displayed by the sensor when the temperature of the 
metal surface is raised to 2767°C?� (2016)

Q.14 Two moles of ideal helium gas are in a rubber 
balloon at 30°C. The balloon is fully expandable and can 
be assumed to require no energy in its expansion. The 
temperature of the gas in the balloon is slowly changed 
to 35°C. The amount of heat required in raising the 
temperature is nearly (take R =8.31 J/mol.K)� (2012)

(A) 62 J	 (B) 104 J	 (C) 124 J	 (D) 208 J
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Q.15 One mole of mono-atomic ideal gas is taken 
along two cyclic processes E→ F→ G→ E and E→ F→
H→ E as shown in the PV diagram.

The processes involved are purely isochoric, isobaric, 
isothermal or adiabatic.

Match the paths in list I with the magnitudes of the 
work done in list II and select the correct answer using 
the codes given below the lists.� (2013)

List I List II

P. G→ E 1. 160 P0V0 ln2

Q. G→ H 2. 36P0 V0

R. F→ H 3. 24P0 V0

S. F→ G 4. 31P0 V0

Codes:
	 P	  Q 	 R 	 S
(A) 	 4 	 3 	 2 	 1
(B)	 4 	 3 	 1	 2
(C) 	 3 	 1 	 2 	 4
(D) 	 1	  3 	 2 	 4

Paragraph 1:

In the figure a container is shown to have a movable 
(without friction) piston on top. The container and the 
piston are all made of perfectly insulating material 

allowing no heat transfer between outside and inside 
the container. The container is divided into two 
compartments by a rigid partition made of a thermally 
conducting material that allows slow transfer of heat. 
The lower compartment of the container is filled with 
2 moles of an ideal monatomic gas at 700 K and the 
upper compartment is filled with 2 moles of an ideal 
diatomic gas at 400 K. The heat capacities per mole 

of an ideal monatomic gas are V P
3 5C R,C R
2 2

= = , and 

those for an ideal diatomic gas are V P
5 7C R,C R
2 2

= = .

Q.16 Consider the partition to be rigidly fixed so that it 
does not move. When equilibrium is achieved, the final 
temperature of the gases will be� (2014)

(A) 550 K        (B) 525 K          (C) 513K         (D) 490 K

Q.17 Now consider the partition to be free to move 
without friction so that the pressure of gases in both 
compartments is the same. Then total work done by 
the gases till the time they achieve equilibrium will be
� (2014)

(A) 250 R        (B) 200 R 	          (C) 100 R       (D) –100 R

PlancEssential Questions
JEE Main/Boards

Exercise 1
Q.10	 Q.11	 Q.12	 Q.13

Exercise 2 
Q.1	 Q.2	 Q.5	 Q.6

Q.9

JEE Advanced/Boards

Exercise 1
Q.2	 Q.3	 Q.4	 Q.6

Exercise 2
Q. 1	 Q.2	 Q.5	 Q.6

Q.7	 Q.12	 Q.15
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Answer Key

JEE Main/Boards

Exercise 1
Q.1 Silver is the best conductor of heat

Q.2 Radiation is the quickest mode of transfer of heat.

Q.3 The fall in temperature in a body per unit distance is called temperature gradient.

Q.10 1 13.5Wm C− −° 			  Q.11 1 158.33Wm C− −°

Q.12 11.587gms− 			   Q.13 42 s

Q.14 25℃		

Exercise 2 

Single Correct Choice Type

Q.1 A	 Q.2 C	 Q.3 B	 Q.4 A	 Q.5 D	 Q.6 A

Q.7 C	 Q.8 B	 Q.9 D

Previous Years’ Questions

Q.2 (1/3)1/3	 Q.3 0.69	 Q.4 1800 W	 Q.5 U2>U1	 Q. 6 4/1	 Q.7 QB	

Q.8 B 	 Q.9 A	 Q.10 A	 Q.11 C

JEE Advanced/Boards

Exercise 1
Q.1 65℃	 Q.2 5℃	 Q.3 7/2	 Q.4 (4/3) W	 Q.5 10.34 cm	 Q.6 327 oC

Exercise 2
Multiple Correct Choice Type

Q.1 A, C	 Q.2 A, B	

Comprehension Type

Paragraph 1:	 Q.3 A, B	 Q.4 A, B, C, D	

Paragraph 2:	 Q.5 A	 Q.6 B	 Q.7 B

Paragraph 3:	 Q.8 B	 Q.9 A 
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Previous Years’ Questions
Q.1 Hollow Sphere	 	 Q.2 9091 W	  	 Q.3 T=166.32 s 

 Q.4 41.6 W, 26.48 °C, 0.52 °C 	 Q.5 
2AKt1
CL

2T 300 12.5e
− 

 = +
 
 

 	 Q.6 (a) 595 W/m2, (b) 162.6℃

Q.7 
3

S

K
4e LT Kσ +

 		  Q.8 9		  Q 9: A, C, D or A, B, C, D 

Q.10 C		  Q.11 A		  Q.12 2

Q.13 9		  Q.14 D		  Q.15 A	

Q.16 D		  Q.17 D

Solutions

JEE Main/Boards

Exercise 1

Sol 1: Silver is the best conductor of heat

Sol 2: Radiation

Sol 3: Temperature gradient → Fall in temperature 
in a body per unit distance is called the temperature 
gradient.

Sol 4: Three Methods:

(i) Conduction

(ii) Convection

(iii) Radiation – fastest one because heat travels without 
any intervening medium.

Sol 5: Conduction:- Heat flows from a place of higher 
temperature to a place of lower temperature with the 
medium remaining stationary.

Eg. A metal rod heated from one end 

Convection: When a fluid in a vessel is heated, lighter 
molecules present in the lower layer of the fluid get 
heated, which rise and cold molecules go to the bottom 
of the vessel. i.e. by movement of the molecules of fluid.

E.g. A gas vessel filled with fluid being heated from 
bottom.

Cold fluid

replaces

Heated

fluid

rises

Radiation:- Heat travels directly from one place to 
another without any intervening medium.
E.g. Heat from the sun to the earth.

Sol 6: Thermal radiations are electromagnetic waves 
which are invisible. These are radiated from a heated 
surface in all directions. These travel with velocity 
of light in a straight line and does not require an 
intervening medium to carry it.

Sol 7: If a body at temperature q1 is placed in 
surroundings at lower temperature q2, then it is 
observed that magnitude of temperature gradient 
decreases with time

i.e. – d
dt
θ  ∝ + (θ – q2) [Newton’s law of cooling]

⇒ d
dt
θ  = – k (θ – q2) k → a constant
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�

t

Sol 8: Thermal conductivity is the property of a material 
to conduct heat.

Coefficient of thermal conductivity (k) is the measure 
of thermal conductivity which is equal to the quantity 
of heat flowing per unit time through area of cross-
section of a material per unit length along the direction 
of flow of heat.

S.I. Units: - J.m-1 sec-1 K-1

C.G.S. Units: - cal. cm-1 (°C)-1 

Sol 9: The rate of cooling of a body is directly 
proportional to the difference of temperature of the 
body over its surrounding.

Body temperature at any time ’t’ → θ 

Body initial temperature → q1 

Surrounding temperature → q2 

∴ Rate of cooling i.e. dQ
dt
− ∝ (θ – q2)

∴ dQ
dt

 = -k (θ – q2) 

⇒ ms d
dt
θ  = – k (θ – q2)

⇒ d
dt
θ  = – k

ms
 
 
 

 (θ – q2) 

Sol 10: dQ
dt

 = 20000 cal min-1 

	 = 20000 4.2
60
×  J sec-1 

5cm Ice

T =-20 C
air

o

T=0 C
o

Ice-water

juctionm

Water

⇒ K
x

− ∆θ
∆

 = 20000 4.2
60
×  

⇒ K[( 20) (0)]
5 / 100

− − −  = 1400 ⇒ K = 3.5 Wm-1 °C-1 

Sol 11:  = 4mm = 4 × 10-3 m 

DT = 32° C

dQ
dt

 = 200 k cal h -1 _


 233.33 J/sec

T2T1

Area = 5cm
2

4mm

⇒ KA T∆


 = 233.33 J/sec

⇒ K = 
3

4

233.33 4 10
32 5 10

−

−

× ×

× ×
 = 58.33 J/m °C sec 

Sol 12: Area of surface perpendicular to direction of 
flow of heat _



 surface area of inner rectangle

2.5cm

k=0.168Wm K
-1 -1

T=0 C
o

T =32 Cext

o

inner

_


 [2 [100 × 60]+2 [60 × 40]+2 [100×40]×10-4 

= 2.48 m2 

∴ dQ
dt

 = kA−


 (Text – Tinner)

= -
2

0.168 2.48 32
2.5 10−

× ×

×
 = -533.29 J/sec 

Therefore, rate at which ice melts

	 = 533.29
80 4.2×

 gm/sec =1.587 gm/sec 

Sol 13: T = Tsurrounding + (Tinitial-Tsurrounding) e-kt 

⇒ ln surrounding

initial surrounding

T T

T T

 −
 
 − 

 = -kt

Let when t = 0, Tinitial = 94oC, Tsurrounding = 20oC

∴ -k × 2 = ln 86 20
94 20

 −
 − 

 

⇒ -2k = ln 66
74

 
 
 

 ⇒ -k = 0.114
2

−  
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and let t = 0 when, Tinitial = 71 oC

∴ -kt = ln 69 20
71 20

 −
 − 

 = ln 49
51

 
 
 

 

⇒ t _


 0.70 min = 42 sec 

Sol 14: Ti = 70°C

Tf = 55°C → t = 5 min

T’f = 45° C → t’ = 10 min

T0 → Temperature of surrounding

∴ From Newton’s law

T – T0 = (Ti – T0) e-kt 

We have following equation.

⇒ 55 – T0 = (70 – T0) e-5k � …(i)

And 45 – T0 = (70 – T0) e-10k � …(ii)

Dividing equations (ii)/(i)

⇒ 0

0

45 T
55 T

−

−
 = e-5k 

Substitute value of e-5k in (i)

⇒ (55 – T0) = (70 – T0) 
0

0

45 T
55 T

 −
  − 

 

⇒ 0

0

55 T
70 T

−

−
 -1 = 0

0

45 T
55 T

−

−
 - 1

⇒ 
0

15
70 T
−
−

 = 
0

10
55 T
−
−

 

⇒ T0 = 25° C 

Exercise 2

Single Correct Choice Type

Sol 1: (A) dQ
dt

 = - kA
L

 DT

The greater the value of A
L

, more the heat will be 
conducted.

(A) A
L

= 
2(2)

0.5
π  = 8π 

(B) A
L

= 2π 

(C) A
L

= 
2
π

(D) A
L

= π 

Therefore (A) will conduct more heat. 

Sol 2: (C) 
acr oss A

dQ
dt

 
 
 

 = 
acrossB

dQ
dt

 
 
 

⇒ (2k) A− ×


 DTA = (k) A− ×


 × 36

⇒ DTA = 18°C

A B

2k k

� �

Sol 3: (B) P = Area of foil× Intensity (Afoil)

Area A

T
d

Intensity = Power emitted
Area of sphere

 = 
4

2

eA T
4 d
σ

π
 

∴ P = Afoil × 
4

2

eA T
4 d
σ

π
 

When temperature and distance are double

∴ P’ = Afoil × 
4

2

eA (2T)
4 (2d)
σ

π
 = 4P 

Sol 4: (A) At T = 273°C = (273 + 273) K

E = eAσ (273 + 273)4 = 16eAσ (273)4 

At T = 273 K; E’ = eAσ (273)4 = E
16

 

∴ E’ = E
16

 

Sol 5: (D) lm T = const. = 2.93 × 10-3 mK

P = eA σ T4 

Given: l0 T= const. = c (say)

When lm = 3
4

l0 then 3
4

l0 × T’ = c 

⇒ T’ = 4
3

 T
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∴ P’ = eAσ
4

4 T
3

 
 
 

⇒ P’ = 256
81

 P 

Sol 6: (A) By Wien’s displacement law:-

lm T = constant = C

∴ lm1 T1 =lm2 T2 

⇒ 420 T1 = 560 T2 

⇒ 1

2

T
T

 = 560
420

 = 4
3

 

Sol 7: (C) rθ = 3rp 

P = eAσ T4 

⇒ mc dT
dt

 = eAsT4 

(c: specific heat, m: mass of sphere)

⇒ dT
dt

 = 
4eA T

mc
− σ  = 

4eA T
( V)c
− σ
ρ

 = 
2 4

3

e4 r T
4 r c
3

− π σ

π

(V: volume of sphere)

⇒ dT
dt

 = 1
r

 × 
43e T

c

 − σ
 
  

 

[Quantity in parenthesis is Constant for both spheres]

∴ P

Q

dT
dt

dT
dt

 
 
 
 
 
 

 = P

Q

1
r
1
r

 = 3 = x 

Sol 8: (B) By Newton’s law of cooling:-

(T – Ta) = (T0 – Ta) e-kt 

Ta : Surrounding temperature

T0 : Initial temperature

When T0 = 60° C, T = 50° C, t = 4 min

∴ (50 – Ta) = (60- Ta) e-4k � ....(i)

When T0 = 40, T = 30 then t = 8 min

∴ (30 – Ta) = (40 – Ta) e-8k � ......(ii)

Dividing (ii)/(i) gives

a

a

30 T
50 T

−

−
 = a

a

40 T
60 T

−

−
 e-4k�  ......(iii)

On substituting value of e-4k from (i) into (iii) we get: 

a

a

30 T
50 T

−

−
 = a

a

40 T
60 T

−

−
 × a

a

50 T
60 T

 −
  − 

 

⇒ (30 – Ta) (60 – Ta)2 = (40 – Ta) (50 – Ta)2 

⇒ (Ta - 60) (Ta – 60) (Ta – 30)

		  = (Ta – 50) (Ta – 50) (Ta – 40)

⇒ Ta
3 – [60 + 60 + 30] Ta

2 + [60 × 60 + 60 × 30 + 60 × 

30] Ta - 60× 60× 30 = Ta
3 – [50 + 50 +40] Ta

2+ [50 × 50 

+ 50 × 40 + 50 × 40]Ta –50 × 50 × 40 

⇒ – 10T a
2+700 Ta – 8000 = 0

⇒ Ta
2 – 70 Ta + 800 = 0 

⇒ Ta = 55.61 or 14.38 

Sol 9: (D) 1 0
dQ dP S k( )
dt dt

θ
= = × = θ − θ

o

10W10W k(50 20) k
30 C

= − =

0
dS k( )
dt
θ

× = θ − θ

0
35.1 34.9S k( ) 35

t 2
∆θ +

⇒ = θ − θ θ = =
∆

0.2 10S (35 20)
60 sec 30

 
= − 

 

oS 1500 J / C=

Previous Years’ Questions

Sol 1: Let R1 and R2 be the thermal resistances of inner 
and outer portions. Since, temperature difference at 
both ends is same, the resistances are in parallel. Hence,
1
R

 = 
1

1
R

 + 
2

1
R

∵ 
2K(4 R )π



 = 
2

1K ( R )π


 + 
2

2K (3 R )π


∴ K = 2 13K K
4
+

R 2R
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Sol 2: The rate at which energy radiates from the object is 

Q
t

∆
∆

 = eσAT4

Since, DQ = mcDT, we get 

T
t

∆
∆

 = 
4e AT

mc
σ

Also, since m = 4
3

pr3ρ for a sphere, we get 

A = 4pr2 = 4π
2/3

3m
4

 
 πρ 

Hence, T
t

∆
∆

 = 
4e T

mc
σ

2/3
3m4
4

   π πρ   
= K

1/3
1
m
 
 
 

For the given two bodies 

1

2

( T / t)
( T / t)
∆ ∆
∆ ∆

 = 
1/3

2

1

m
m

 
  
 

 = 
1/3

1
3

 
 
 

Sol 3: From Wien’s displacement law 

	l mT = constant 

or	 T = 
m

1
λ

∴ sun

northstar

T
T

= m north star

m sun

( )

( )

λ

λ
= 350

510
 ≈ 0.69

Sol 4: Power radiated ∝ (surface area)(T)4. The radius 

is halved, hence, surface area will become 1
4

 times. 

Temperature is doubled, therefore, T4 becomes 16 
times. 

New power = (450) 1
4

 
 
 

(16) = 1800 W.

Sol 5: Wien’s displacement law is 

	l mT = b	 (b = Wien’s constant)

∴ lm = b
T

 = 
62.88 10 nm – K

2880 K
×

∴ λ = 1000 nm

Energy distribution with wavelength will be as follows: 

E�

4
9
9

5
0
0

9
9
9

1
0
0
0

1
4
9
9

1
5
0
0

U1 U2 U3 �(nm)

�m=1000

From the graph it is clear that 

U2 > U1 (In fact U2 is maximum)

Sol 6: q = dm 1
dt Thermal Resistance

∝

In the first case rods are in parallel and thermal 

resistance is R
2

 while in second case rods are in series 

and thermal resistance is 2R.

1

2

q
q

 = 2R
R / 2

 = 4
1

Sol 7: Q ∝ AT4 and lmT = constant.

Hence, Q ∝ 
4

m

A
( )λ

 or Q ∝ 
2

4
m

r
( )λ

QA: QB: QC = 
2

4

(2)
(3)

: 
2

4

(4)
(4)

: 
2

4

(6)
(5)

	  = 4
81

 : 1
16

: 36
625

 

	  = 0.05 : 0.0625 : 0.0576

i.e., QB is maximum.

So 8: (B) We know that 
dQ dkA
dt dx

θ
=

In steady state flow of heat
dQ 1d . dx
dt kA

θ =

⇒ θH - θ = k x ′ ⇒ θ = θH - k x ′

Equation θ = θH - k′ x represents a straight line.

Sol 9: (A) ΔQ = ΔU+ ΔW (ignoring expansion)

ΔU = msΔT = 0.1× 4.184× 20 = 8.368kJ
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Sol 10: (A) According to Newtons law of cooling.

0
d ( )
dx
θ
∝ θ − θ

0

0

0

d k( )
dt

d kdt

ln( ) kt c

θ
⇒ = − θ − θ

θ
= −

θ − θ

⇒ θ − θ = − +

∫ ∫
0

0

0

d k( )
dt

d kdt

ln( ) kt c

θ
⇒ = − θ − θ

θ
= −

θ − θ

⇒ θ − θ = − +

∫ ∫
0

0

0

d k( )
dt

d kdt

ln( ) kt c

θ
⇒ = − θ − θ

θ
= −

θ − θ

⇒ θ − θ = − +

∫ ∫

Hence the plot of ln(θ – θ0) vs t should be a straight line 
with negative slope.

Sol 11: (C) According to Newtons cooling law, option C 
is the correct option.

JEE Advanced/Boards

Exercise 1

Sol 1: Continuously 1 kW of heat is being dissipated 
from 25°C tank.

∴ dQ
dt

 = 103 = KA[25 T]− −


 

⇒ dQ
dt

 = 103 = 
2

0.2 5 [25 T]
4 10−

− × × −

×
 

⇒ 25 – T = –40 ; ⇒ T = 65°C 

Sol 2: For 1st layer

dQ
dt

 = KA T− ∆


 = KA(10 20)− −


 = KA 10+ ×


 

For 2nd layer

dQ
dt

 = (2k)A( 10)− θ −


 = 2AK−


 [θ–10]

Rate for both layers must be equal 

∴ kA 10×


 = 2kA−


 (θ – 10) ; ⇒ θ = 5°C 

Sol 3: If 
AB

dQ
dt

 
 
 

= 0

Then rate of heat flow from D to B must be equal to rate 
of heat flow from B to C.

i.e. 
DB

dQ
dt

 
 
 

 = 
BC

dQ
dt

 
 
 

 

⇒ – B D

DB

kA(T T )−


 = C B

BC

kA(T T )− −



 

⇒ 
DB

(20 90)−


 = 
BC

(0 20)−


 ; ⇒ BD

BC





 = 70
20
−
−

 = 3.5 

Sol 4:

T2

T1

B

A D

C

T1 T2
CA

B

2L

2L

∴ 
AC

dQ
dt

 
 
 

 = 
ABC

dQ
dt

 
 
 

 + 
ADC

dQ
dt

 
 
 

 

⇒	 W = 2 1kA(T T )
2L

− −
 + 2 1kA(T T )

2L
− −

⇒	 W = 2 1kA(T T )
L

− −

B

A D

C

T2T1

T2

D

B C

A L
T1

3L

 ∴ 
AD

dQ
dt

 
 
 

 = 2 1kA(T T )
3L

− −
 + 2 1kA(T T )

L
− −

 		  = 2 14kA(T T )
L

− −
 = 4

3
W

Sol 5:

T =0 C
1

o

I II

T =200 C
2

o

T=100 C
o

x 1.5x

1.5m

Mass of ice melting per second = mass of steam 
produced per sec

⇒ 

kA(0 200)
x

80

− −

 =

kA(100 200)
1.5 x

540

− −
−  
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⇒ 1.5 x
x
−  = 

1
2

 × 
80

540
 

⇒ x = 27 1.5
29
×  _



 1.3966 m

∴ 1.5 – x = 0.1034 m = 10.34 cm 

Sol 6: Mass of whistle = 100 gm = 0.1 kg

∴ Weight of whistle = 1 N

To just lift the whistle, pressure in pressure cooker must 
be equal to = Atmospheric pressure + Pressure due to 
weight of whistle

= 105 + 
4 2

1N

0.1 10 m−×
= 2 × 105 Pa

Free-body diagram of whistle Patm A

Weight

of

whistle

Pcooker xA

By Force-balance

Patm × A + weight of whistle = Pcooker×A 

⇒ Pcooker = Patm + weight of whistle
A

 

Initially, it is given P = 105 Pa, V = 10 L, T = 300K

∴ P.V. = n RT ; ⇒ nR = 
510 10

300
×  Pa.L/K � ….(i)

Finally, we require P = 2 × 105 Pa, V = 10 L ,T =?

∴ By gas equation:- PV = nRT

⇒ 2×105×10=
510 10

300
×  × T [using (i)]

⇒ T = 600 K = 327 °C

Exercise 2

Multiple Correct Choice Type

Sol 1: (A, C) ρ = m
V

 

⇒ ρ × 4
3

 pr3 = m ; ⇒ r ∝ (m)1/3 

and Area of sphere (A) ∝ r2 

	 ∴ A ∝ (m)2/3 

∴ A

B

A
A

 = (4)2/3 = (2)4/3 

∴ Ratio of heat loss = 
4

A 0
4

B 0

eA (T T )

eA (T T )

σ −

σ −
  = A

B

A
A

 = (2)4/3

By Newton’s law of cooling:

dQ
dt

 = ms dT
dt

 = -k (T – T0)

⇒ dT
dt

 = k
ms
−  (T – T0)

where k = 4e A σ T0
3 

∴ dT A
dt m

∝

∴ A

B

dT
dt

dT
dt

 
 
 
 
 
 

 = 

A

A

B

B

A
m
A
m

 = 
4/3(2)
4

 = 2-2/3 

Sol 2: (A, B) eA = 0.01 and eB = 0.81

	 AA = AB 

	 EA = EB 

⇒ eAσ AA TA
4 = eB σ AB TB

4 

⇒ 0.01 TA
4 = 0.81 TB

4 

⇒	 TB = 1
3

×TA 

⇒ TB = 1
3

 × 5802 = 1934 K

By Wien’s displacement law

lm T = const. = 2.93 × 10-3 mK

∴	 mA
λ  = 0.5 mm

Since, it is given in the question that

	 mB
λ  = 1 mm + mA

λ  

∴	  mB
λ  = 1.5 mm 

Comprehension Type

Paragraph 1

Sol 3: (A, B) Area under the curve gives the rate at 
which heat per unit surface is radiated by the body i.e. 
total rate of heat radiation = (Area under the curve) × 
(surface area of the body)
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Sol 4: (A, B, C, D)  lm T = const. [By Wien’s displacement 
law]

Area under graph = Eλ = e σ T4 ∝ T4 

T1

T2

T3

T1 T2 T3> >dE�
d�

x�m1
�m2

�m3

Paragraph 2

Sol 5: (A) AA = A	 ;	 AB = A

 A = l	 ;	  B = l

kA = 3k	 ;	 kB = k

∴ RA = A

A Ak A


 = 
3kA
 ;	 RB=

B

B Bk A


=
Ak
  

∴ A

B

R
R

 = 1
3

 

Sol 6: (B) Rate at which heat flows from A 

= Rate at which heat flows from B

⇒ 
A

dQ
dt

 
 
 

 = 
B

dQ
dt

 
 
 

 

⇒ A

A

T
R

 = B

B

T
R

 ⇒ A

B

T
T

 = A

B

R
R

 = 1
3

 

Sol 7: (B) GA = A A

A

T T
L L

=  and GB = B B

B

T T
L L

=

∴ 
B

G
G

 = A

B

T
T

 = 1
3

 

Paragraph 3

Sol 8: (B) 
initially

dQ
dt

 
 
 

 = KAv DT

finally

dQ
dt

 
 
 

=KA(4v) T
2

 ∆
 
 

 = 2 
initially

dQ
dt

 
 
 

 

Sol 9: (A) If all the parameters are kept constant then

dQ
dt

 = ms dT
dt

 = kA v DT

∴ dT
dt

 = kAv T
ms
∆  

Previous Years’ Questions

Sol 1: Net rate of heat radiation dQ
dt

 
 
 

 will be same in 

both the cases, as temperature and area are same.

Therefore, from equation

ms d–
dt

 θ
 
 

= dQ
dt

 or – d
dt
θ  ∝ 1

m
The hollow sphere will cool faster as its mass is less. 

Sol 2: Let R1, R2 and R3 be the thermal resistances of 
wood, cement and brick. All the resistances are in 
series. Hence, 

20 C
o R2R1 R3

-10 C
o

R = R1 + R2 + R3

= 
–22.5 10

0.125 137
×
×

 + 
–21.0 10

1.5 137
×
×

 + 
–225 10

1.0 137
×
×

= 0.33 × 10–2 °C/W	 as R
KA

 
= 

 



∴ Rate of heat transfer, 

dQ
dt

 = Temperature difference
thermal resistance

= 
–2

30
0.33 10×

	 ≈ 9091 W 

∴ Power of heater should be 9091 W.

Sol 3: Let at any time temperature of the disc be θ.

At this moment rate of heat flow,

dQ
dt

 = KA( )∆θ


 = KA


(q0 – θ)	�  ….. (i)

This heat is utilised in increasing the temperature of the 
disc.

Hence, dQ
dt

 = ms d
dt
θ � ….. (ii)
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Equating Eqs. (i) and (ii), we have 

ms d
dt
θ  = KA



(q0 – θ)

Therefore, 
0

d
–
θ

θ θ
 = KA

ms
dt

or 350K

300K
0

d
–
θ

θ θ∫  = KA
ms

 
t

0
dt∫

or 350K
0 300K

– ln( – ) θ θ   = KA
ms

t 

dt

dQ

� = 0.4m

�

∴ t = ms
KA


ln 0

0

– 300
– 350

 θ
  θ 

Substituting the values, we have 

T = (0.4)(600)(0.4)
(10)(0.04)

ln 400 – 300
400 – 350

 
 
 

T = 166.32 s 

Sol 4: Let q1 and q2 be the temperatures of the two 
interfaces as shown in figure. 

27 C
o �2�1

dt

dQ� �
1

dt

dQ� �
2

dt

dQ� �
3

R2
R1 R3

Room

0.01 m 0.05 m 0.01 m

Outdoor

atmosphere

Thermal resistance, R = 
KA


∴ R1 = R3 = (0.01)
(0.8)(1)

 = 0.0125 K/W or °C/W

and R2 = (0.05)
(0.08)(1)

 = 0.625 °C/W

Now the rate of heat flow 
dQ
dt

 
 
 

 will be equal from all 

the three sections and since rate of heat flow is given 
by 

dQ
dt

 = Temperature difference
Thermal resistance

and 
1

dQ
dt

 
 
 

 = 
2

dQ
dt

 
 
 

 = 
3

dQ
dt

 
 
 

Therefore, 127 –
0.0125

θ
 = 1 2–

0.625
θ θ

 = 2 –
0.0125
θ θ

Solving this equation, we get 

q1 = 26.48°C

and q2 = 0.52°C

and dQ
dt

 = 127 –
0.0125

θ

dQ
dt

 = (27 – 26.48)
0.0125

 = 41.6 W 

Sol 5: In the first part of the question (t ≤ t1)

At t = 0, TX = T0 = 400 K and at t = t1,

TX = T1 = 350 K

Temperature of atmosphere,

TA = 300 K (constant)

This cools down according to Newton’s law of cooling. 
Therefore,

rate of cooling ∝ temperature difference.

T = 300KA

X

∴ dT
dt

 
− 
 

 = k(T – TA) 

⇒ 
A

dT
T – T

 = – k dt 

⇒ 
T1

AT0

dT
T – T∫  = – k

t1

0

dt∫
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⇒ ln 1 A

0 A

T – T
T – T

 
  
 

 = – kt1 

⇒ kt1 = – ln 350 – 300
400 – 300

 
 
 

⇒ kt1 = ln (2)

In the second part (t > t1), body X cools by radiation 
(according to Newton’s law) as well as by conduction. 

TA

T = TA

Y
X

Therefore, rate of cooling 

= (cooling by radiation) + (cooling by conduction)

∴ dT–
dt

 
 
 

 = k(T – TA) + KA
CL

(T – TA)	�  …. (ii)

In conduction, dQ
dt

 = AKA(T – T )
L

 = C dT–
dt

 
 
 

∴
dT–
dt

 
 
 

 = KA
LC

(T– TA) 

where, C = heat capacity of body X 

dT–
dt

 
 
 

 = KAk
CL

 
+ 

 
(T – TA)� ….. (iii)

Let at t = 3t1 temperature of X becomes T2

Then from eq. (iii)
T2

AT1

dT
T – T∫  = – KAk

LC
 

+ 
 

3t1

tl

dt∫

ln 2 A

1 A

T – T
T – T

 
  
 

 = – KAk
LC

 
+ 

 
(2t1)

	  = – 1 1
2KA2kt t
LC

 
+ 

 

or ln 2T – 300
350 – 300

 
  
 

 = – 2ln(2) – 12KAt
LC

;

kt1 = ln (2) from Eq. (i)

This gives equation :- 

T2 = 
2KAt1–

CL300 12.5e
 
 +
 
 

K

Sol 6: (a) Rate of heat loss per unit area due to radiation 

	 I = eσ(T4 – 4
0T )

Here, T = 127 + 273 = 400 K 

and T0 = 27 + 273 = 300 K 

∴ I = 0.6 × 17
3

 × 10–8[(400)4 – (300)4]

= 595 W/m2

(b) Let θ be the temperature of the oil. Then, rate of 
heat flow through conduction = rate of heat loss due 
to radiation 

∴ temperature difference
thermal resistance

 = (595)A

	 ( – 127)

KA

θ
 
 
 



 = (595)A

Here, A = area of disc; K = Thermal conductivity and  
 = thickness (or length) of disc

∴ (θ – 127) K


 = 595

∴ θ = 595
K
 
 
 

  + 127

= 
–2595 10

0.167
×  + 127 = 162.6°C

Sol 7: Rate of heat conduction through rod  
= rate of the heat lost from right end of the rod. 

∴ 1 2KA(T – T )
L

 = eAσ( 4
2T  – 4

sT )	� …… (i)

Given that T2 = Ts + DT

\	 4
2T  = (Ts + DT)4 = 4

sT
4

s

T1
T

 ∆
+  

 

Using binomial expansion, we have 

4
2T  = 4

sT  
s

T1 4
T

 ∆
+  

 
 (as DT << Ts)

∴ 4
2T  – 4

sT  = 4(DT)( 3
sT )

Substituting in Eq. (i), we have 

1 sK(T – T – T)
L

∆
 = 4eσ 3

sT .DT

or 1 sK(T – T )
L

 = 3
s

K4e T
L

 
σ + 

 
DT
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\	 DT = l s
3
s

K(T – T )

(4e LT K)σ +

Comparing with the given relation,

proportionality constant = 
3
s

K
4e LT Kσ +

Sol 8: lm ∝ 1
T

∴ A

B

λ
λ

 = B

A

T
T

 = 500
1500

 = 1
3

	 E ∝ T4 A

(Where A = surface area = 4pR2)

\	 E ∝ T4R2 

A

B

E
E

 = 
4

A

B

T
T

 
  
 

2
A

B

R
R

 
  
 

 = (3)4

2
6

18
 
 
 

 = 9

∴ Answer is 9.

Sol 9: (A, C, D) or (A, B, C, D)

1

2

3

4

5

R1

R4

R5

R2

R3

Let width of each rod is d

1 2

3 4

5

1 1R ,R
8kd 3kd

1 1R ,R ,
2kd 5kd

1R
24kd

= =

= =

=

1 2

3 4

5

1 1R ,R
8kd 3kd

1 1R ,R ,
2kd 5kd

1R
24kd

= =

= =

=

1 2

3 4

5

1 1R ,R
8kd 3kd

1 1R ,R ,
2kd 5kd

1R
24kd

= =

= =

=

Sol 10: (C) 
4 4 4

4 4 4

4 4

4 4

1/4

A(2T) A(3T) 2A(T)

16T 81T 2(T')

97T 2(T')
97(T') T
2

97T' T
2

σ + σ = σ

+ =

=

=

 
∴ =  

 

Sol 11: (A) 1

2

2

1 2

1 2
1 2

2
2 1

1

L L 3LR
A 2 A 2 A

1 1 1 3 A
R LL L

A 2 A
LR

3 A
Q Q
T Tt t

R R
R

t t 2 sec
R

= + =
κ κ κ

κ
= + =
   
   κ κ   

=
κ

∆ = ∆

∆ ∆
=

⇒ = =

1

2

2

1 2

1 2
1 2

2
2 1

1

L L 3LR
A 2 A 2 A

1 1 1 3 A
R LL L

A 2 A
LR

3 A
Q Q
T Tt t

R R
R

t t 2 sec
R

= + =
κ κ κ

κ
= + =
   
   κ κ   

=
κ

∆ = ∆

∆ ∆
=

⇒ = =

1

2

2

1 2

1 2
1 2

2
2 1

1

L L 3LR
A 2 A 2 A

1 1 1 3 A
R LL L

A 2 A
LR

3 A
Q Q
T Tt t

R R
R

t t 2 sec
R

= + =
κ κ κ

κ
= + =
   
   κ κ   

=
κ

∆ = ∆

∆ ∆
=

⇒ = =

1

2

2

1 2

1 2
1 2

2
2 1

1

L L 3LR
A 2 A 2 A

1 1 1 3 A
R LL L

A 2 A
LR

3 A
Q Q
T Tt t

R R
R

t t 2 sec
R

= + =
κ κ κ

κ
= + =
   
   κ κ   

=
κ

∆ = ∆

∆ ∆
=

⇒ = =

1

2

2

1 2

1 2
1 2

2
2 1

1

L L 3LR
A 2 A 2 A

1 1 1 3 A
R LL L

A 2 A
LR

3 A
Q Q
T Tt t

R R
R

t t 2 sec
R

= + =
κ κ κ

κ
= + =
   
   κ κ   

=
κ

∆ = ∆

∆ ∆
=

⇒ = =

1

2

2

1 2

1 2
1 2

2
2 1

1

L L 3LR
A 2 A 2 A

1 1 1 3 A
R LL L

A 2 A
LR

3 A
Q Q
T Tt t

R R
R

t t 2 sec
R

= + =
κ κ κ

κ
= + =
   
   κ κ   

=
κ

∆ = ∆

∆ ∆
=

⇒ = =

Sol 12: (2) 
4

A B
2 4 4 2 4

A B

A B
A B

B A

dQ dQ10
dt dt

(400R) T 10 (R T )
T

So,2T T and 2
T

   
=   

   

=

λ
= = =

λ

4

A B
2 4 4 2 4

A B

A B
A B

B A

dQ dQ10
dt dt

(400R) T 10 (R T )
T

So,2T T and 2
T

   
=   

   

=

λ
= = =

λ

4

A B
2 4 4 2 4

A B

A B
A B

B A

dQ dQ10
dt dt

(400R) T 10 (R T )
T

So,2T T and 2
T

   
=   

   

=

λ
= = =

λ

Sol 13: (9) At (T1 = 487+ 273 = 760K) P1 ∝  (760)4

i.e. P1 = c(760)4 where c = constant

1 1
2 1 0 0

0

P P
log 1 P 2P P

P 2
= ⇒ = ⇒

at (T2 = 2767 + 273 = 3040)

P2 = c(3040)4

Reading of the sensor at 2
2 2

0

P
log

P
T

 
=   

 
4

1 82
2 2 2

0

P 3040log 2. log 2 log 2 .2 9
P 760

       = = = =            
∴ Reading of T2 = 9

2T 3T
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Sol 14: (D) n PQ C T∆ = ∆

f 32 R R T 2 R R 5
2 2
52 8.31 5 208 J
2

   
= + ∆ = + + ×   

   

= × × × =

Sol 15: (A) P. →  4 ; Q. →  3; R. →  2; S. →  1

Apply PV1+2/3 = constant for F to H.
5/3 5/3

0 0 0 H H 0(32P )V P V V 8V= ⇒ =

For path FG PV = constant

0 0 0 G G 0(32P )V P V V 32V⇒ = ⇒ =

Work done in GE = 31 P0V0

Work done in GH = 24 P0V0

32P0

Isothermal

Adiabatic

H GE

P

F

P0

V0 8V0 32V0 V

f = 3
n = 1

Work done in H H F F
0 0

P V P V
FH 36P V

( 2 / f)
−

= =
−

Work done in G
0 0

F

V
FG RTln 160P V ln2

V
 

= =  
 

Sol 16: (D) 13. Heat given by lower compartment 

32 R (700 T) ...(i)
2

= × × − � … (i)

Heat obtained by upper compartment 

72 R (T 400) ...(ii)
2

= × × − � … (ii)

equating (i) and (ii)

3 (700 – T) = 7 (T – 400)

2100 – 3T = 7 T – 2800

4900 = 10 T ⇒ T = 490 K

Sol 17: (D) Heat given by lower compartment 

52 R (700 T) ...(i)
2

= × × − � … (i)

Heat obtained by upper compartment 

72 R (T 400) ...(ii)
2

= × × − � … (ii)

By equating (i) and (ii)

5(700 - T) = 7(T - 400)

3000 – 5T = 7T– 2800

6300 = 12 T

T = 525K

∴ Work done by lower gas = nR∆T = – 350 R

Work done by upper gas = nR∆T = +250 R

Net work done - 100 R


