DPP-03

Wave Optics

- 1. Two coherent point sources s_1 and s_2 vibrating in phase emit light of wavelength λ . The separation between the sources is 2λ . The smallest distance from s_2 on a line passing through s_2 and perpendicular to s_1s_2 , where a minimum of intensity occurs is
 - (1)

- 2. In the interference pattern, energy is
 - (1) Created at the position of maxima
 - (2) Destroyed at the position of minima
 - (3) Conserved but is redistributed
 - (4) None of the above
- 3. In YDSE how many maxima can be obtained on the screen if wavelength of light used is 200 nm and d = 700 nm
 - (1) 12
- (2) 7
- (3) 18
- (4) None of these
- 4. In Young's double slit experiment, the minimum amplitude is obtained when the phase difference of super-imposing waves is (where n = 1, 2, 3, ...)
 - (1) zero
- (2) $(2n-1)\pi$
- (3) $n\pi$
- (4) $(n+1) \pi$
- 5. In Young's double-slit experiment, an interference pattern is obtained on a screen by a light of wavelength 6000 Å, coming from the coherent sources S_1 and S_2 . At certain point P on the screen third dark fringe is formed. Then the path difference $S_1P - S_2P$ in microns is
 - (1) 0.75
- (2) 1.5
- (3) 3.0
- (4) 4.5
- In Young double slit experiment, when two light 6. waves form third minimum, they have
 - (1) Phase difference of 3π
 - (2) Phase difference of $\frac{5\pi}{2}$
 - (3) Path difference of 3λ
 - (4) Path difference of $\frac{5\lambda}{2}$

- 7. Two slits separated by a distance of 1mm are illuminated with red light of wavelength 6.5×10^{-7} m. The interference fringes are observed on a screen placed 1m from the slits. The distance between third dark fringe & the fifth bright fringe is equal to.
 - (1) .65 mm
- (2) 1.63 mm
- (3) 3.25 *mm*
- (4) 4.87 mm.
- 8. In a Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are observed one metre away. If it produces the second dark fringe at a distance of 1mm from the central fringe, the wavelength of monochromatic light used would

 - (1) $60 \times 10^{-4} cm$ (2) $10 \times 10^{-4} cm$
 - (3) $10 \times 10^{-5} cm$
- (4) $6 \times 10^{-5} cm$
- 9. The young's double slits experiment is performed with blue and with green light of wavelength 4360 Å and 5460 Å respectively. It x is the distance of the 4th maxima from the central one, then
 - (1) $x_{\text{blue}} = x_{\text{green}}$
 - (2) $x_{\text{blue}} > x_{\text{green}}$
 - (3) $x_{\text{blue}} < x_{\text{green}}$
 - (4) $x_{\text{blue}}/x_{\text{green}} = 5460/4300$
- 10. The figure shows a double slit experiment P and Q are the slits. The path lengths PX and QX are $n\lambda$ and $(n + 2)\lambda$ respectively, where n is a whole number and λ is the wavelength. Taking the central fringe as zero, what is formed at X

- (1) First bright
- (2) First dark
- (3) Second bright
- (4) Second dark

Answer Key

1. **(1)**

2. **(3)**

3. **(2)**

4. **(2)**

5. **(2)**

(4) 6.

7. (2) 8. (4) 9. (3)

(3) 10.