Chapter 20

p-Block Elements

BORON FAMILY (GROUP-13 ELEMENTS)

Atomic and Physical Properties

Electropositive Nature : Less electropositive as compared to alkali metals and alkaline earth metals.

The electropositive character increases from B to Al and then decreases upto TI. It is due to ineffective shielding caused by *d* and *f* electrons which results in the stronger nuclear pull on the electrons of outermost shell.

Compounds of Boron

1. Orthoboric Acid : H₃BO₃

Preparation :

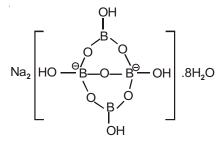
(a) From Borax

 $Na_2B_4O_7 + 2HCI + 5H_2O \rightarrow 2NaCI + 4H_3BO_3$

(b) By hydrolysis of boron compounds

 $BN + 3H_2O \longrightarrow H_3BO_3 + NH_3$

Properties :


- (a) Boric acid has layer type structure in which planar BO_3^3 units are linked to one another through Hydrogen bonds.
- (b) Boric acid is a weak monobasic acid. It does not act as proton donor but acts as a lewis acid by accepting electrons from hydroxyl ion.

$$H_2O + H_3BO_3 \longrightarrow H^+ + [B(OH_4)]^-$$

- (c) H_3BO_3 + NaOH \rightarrow NaBO₂ + 2H₂O
- (d) Effect of heat

$$\begin{array}{ccc} H_{3}BO_{3} & \overset{100}{\longrightarrow} \underbrace{HBO_{2} + H_{2}O}_{metaboric \ acid} & \overset{160}{\longrightarrow} \underbrace{H_{2}B_{4}O_{7} + H_{2}O}_{tetraboric \ acid} & \overset{Red \ heat}{\longrightarrow} \underbrace{2B_{2}O_{3} + H_{2}O}_{2} \end{array}$$

2. Borax : $Na_2B_4O_7 \cdot 10H_2O$ or $Na_2[B_4O_5(OH)_4] \cdot 8H_2O$

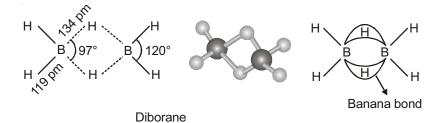
Preparation

 $4H_3BO_3 + Na_2CO_3 \rightarrow Na_2B_4O_7 + 6H_2O + CO_2$

Properties

- (a) It hydrolyses in water to form alkaline solution.
- (b) Borax bead Test (Test for Transition Elements)

Glassy bead + metal oxide \rightarrow metal metaborate (coloured)


3. Diborane: B_2H_6

Structure of B₂H₆ (Diborane)

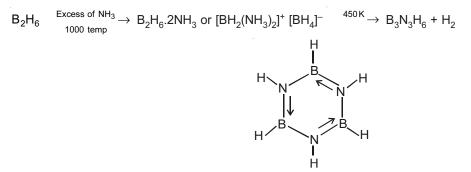
Boron in B_2H_6 is sp^3 hybridised.

Two bridging B – H > Terminal B – H bond

Boron is dimerised by Banana bond known as 3-centred-2electron (3c - 2e) bond.

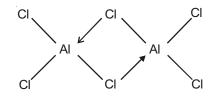
Preparation :

(a) $3\text{LiAlH}_4 + 4\text{BCI}_3 \rightarrow 3\text{LiCl} + 3\text{AlCI}_3 + 2\text{B}_2\text{H}_6$


(b)
$$2BCI_3 + 6H_2 \xrightarrow{\text{Silent Electric}} B_2H_6 + 6HCI$$

Properties :

- (a) Stable at low temperature only, colourless and highly toxic.
- (b) $B_2H_6 + 6H_2O \rightarrow 2H_3BO_3 + 6H_2$
- (c) $B_2H_6 + 6CI_2$ 25 C_{\rightarrow} 2BCI₃ + 6HCI
- (d) $B_2H_6 + 2NH_3 \rightarrow B_2H_6$.2NH₃ (white solid)
- (e) $2B_2H_6 + 6NH_3 \xrightarrow{450 \text{ K}} 2B_3N_3H_6 + 12H_2$
- (f) $B_2H_6 + 6CH_3OH \rightarrow 2B(OCH_3)_3 + 6H_2$


4. **B**₃**N**₃**H**₆ : Borazole also known as Borazine or Inorganic Benzene.

Preparation

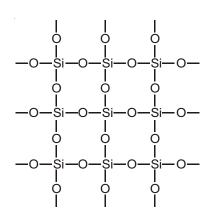
5. Alums : General formula, M₂SO₄ . M'₂(SO₄)₃ 24H₂O where M is a monovalent ion like Na⁺, K⁺, NH₄⁺ while M' is a trivalent ion like Fe³⁺, Cr³⁺, Al³⁺, K₂SO₄. Al₂(SO₄)₃. 24H₂O-Potash alum; (NH₄)₂SO₄. Fe₂(SO₄)₃. 24H₂O-Ferric alum; K₂SO₄.Cr₂(SO₄)₃. 24H₂O-Chrome alum. Out of all these potash alum is very common. When the crystals of potash alum are heated it swells and loses water. Anhydrous alum thus obtained is called burnt alum.

AICI₃ Aluminium chloride exists as a dimer where two AICI₃ units are joined together with the formation of two dative bonds (co-ordinate bonds) because AICI₃ is electron-deficient (Lewis acid).

In AICl₃ dimer, four bond length are larger while bond length of four bonds are small.

AICl₃ is used as catalyst in Friedel Craft's reaction, where it is a Lewis acid.

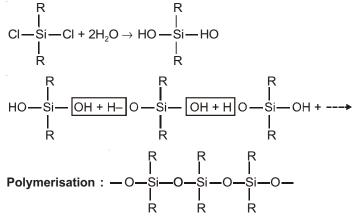
CARBON FAMILY (GROUP-14 ELEMENTS)


Element	Symbol	Atomic No.
Carbon	С	6
Silicon	Si	14
Germanium	Ge	32
Tin	Sn	50
Lead	Pb	82

Compounds of Silicon

1. Silicon dioxide (SiO₂):

 ${\rm SiO}_2$ is solid at room temperature and has a three dimensional network structure as shown below


- (a) In this structure, silicon atom is bonded to four oxygen atom which are tetrahedrally arranged around it.
- (b) Since Si—O bonds are very strong, silica is relatively inert and has a very high melting point.

2. Silicones :

Silicones are synthetic organosilicon compounds containing repeated unit of R₂SiO held by Si–O–Si linkages.

Preparation : The silicones are prepared by the hydrolysis of dialkyl dichloro silane (R₂SiCl₂)

The hydrolysis of RSiCl₃, gives cross linked silicones.

Properties :

- (a) Silicones are chemically inert towards oxidation, thermal decomposition or attack by organic reagents.
- (b) They are water repellant and heat resistant.
- **3.** Silicates : Silicates are the compounds in which the anions present are either discrete SiO₄⁴⁻ tetrahedra or a number of such units joined together through corners.

Types of Silicates : Silicates are classified into different types depending upon the number of corners of SiO_4^{4-} tetrahedron shared with other tetrahedron.

		Formula
1.	Orthosilicate Ex. Zircon. (ZrSiO ₄)	SiO ₄ ⁴⁻
2.	Pyrosilicates Ex. Thortveitite Sc ₂ (Si ₂ O ₇)	Si ₂ O ₇ ⁶⁻
3.	Cyclic silicates Ex. Beryl : Be ₃ Al ₂ Si ₆ O ₁₈	(SiO ₃) ²ⁿ⁻ _n
4.	Chain Silicates Ex. Spodumene; LiAl(SiO ₃) ₂	$(SiO_3^{2-})_n$ (Pyroxene)
5.	Sheet silicates Ex. Clay	(Si ₂ O ₅) ²⁻
6.	Three dimensional silicates Ex. Quartz	All the four corners are shared with other tetrahedra (SiO_2)

Note : Chain silicates are of two types

(i) Pyroxene

(ii) Amphibole

NITROGEN FAMILY (GROUP-15 ELEMENTS)

Element	Symbol	Atomic No.
Nitrogen	Ν	7
Phosphorous	Р	15
Arsenic	As	33
Antimony	Sb	51
Bismuth	Bi	83

Characteristics of Hydrides

- (a) Basic Strength : All these hydrides act as Lewis bases. They can donate an electron pair to electron deficient species. (Lewis acids). As we go down the group, the basic character of these hydrides decreases.
- (b) **Thermal Stability :** Thermal stability of the hydrides of group 15 elements decreases as we go down the group.

NH₃ PH₃ AsH₃ SbH₃ BiH₃

(c) Reducing Character : The reducing character of the hydrides of group 15 elements increases from NH₃ to BiH₃. Thus, increasing order of reducing character is as follows :

NH₃ PH₃ AsH₃ SbH₃ BiH₃

(d) Boiling Points : Ammonia (240 K) has a higher boiling point than phosphine (190 K) and then the boiling point increases down the group because of increase in size.

Thus boiling point order is $\underbrace{BiH_3 > SbH_3}_{Mol. Mass} > \underbrace{NH_3 > AsH_3 > PH_3}_{H-bonding} Mol. Mass$

Nitric Acid (HNO₃) :

Preparation : Nitric acid is mostly prepared by

(a) Birkeland - Eyde Process

$$\begin{split} & \mathsf{N}_2 + \mathsf{O}_2 \quad \stackrel{\mathsf{Electric arc}}{3000 \ \mathsf{C}} \to 2\mathsf{NO} \\ & 2\mathsf{NO} + \mathsf{O}_2 \to 2\mathsf{NO}_2 \\ & 3\mathsf{NO}_2 + \mathsf{H}_2\mathsf{O} \to 2\mathsf{HNO}_3 + \mathsf{NO} \end{split}$$

(b) Ostwald's Process

$$4NH_{3} + 5O_{2} \xrightarrow{Pt}{800 \text{ c}} 4NO + 6H_{2}O$$
$$2NO + O_{2} \rightarrow 2NO_{2}$$
$$3NO_{2} + H_{2}O \rightarrow 2HNO_{3} + NO$$

The important reaction of Nitric acid are given below :

Properties :

- (a) Reaction with Metals
 - (i) Mg + 2HNO₃ (dil) \rightarrow Mg(NO₃)₂ + H₂
 - (ii) Mn + 2HNO₃ (dil) \rightarrow Mn(NO₃)₂ + H₂
 - (iii) $3Cu + 8HNO_3$ (hot and dilute) $\rightarrow 3Cu(NO_3)_2 + 4H_2O + 2NO_3$
 - (iv) Cu + 4HNO₃ (hot and Conc.) \rightarrow Cu(NO₃)₂ + 2H₂O + 2NO₂ [Ag, Pb and Bi also react as Cu]

(b) Reaction with non-metals and compounds

- (i) C + $4HNO_3 \rightarrow CO_2 + 4NO_2 + 2H_2O$
- (ii) $6FeSO_4 + 3H_2SO_4 + 2HNO_3 \rightarrow 3Fe_2(SO_4)_3 + 2NO + 4H_2O_3 + 2HO_3 + 2$

OXYGEN FAMILY-(GROUP-16 ELEMENTS)

Element	Symbol	Atomic No.
Oxygen	0	8
Sulphur	S	16
Selenium	Se	34
Tellurium	Те	52
Polonium	Po	84

OXYGEN

Preparation : Oxygen is mostly prepared by the following methods :

1. In laboratory it is prepared by heating KMnO₄ or KClO₃ in presence of MnO₂.

 $2\text{KCIO}_3 (s) \xrightarrow{\text{Heat}} 2\text{KCI} + 3\text{O}_2$

2. It can also be prepared by reaction of H_2O on Na_2O_2 $2Na_2O_2 + 2H_2O$ (I) \rightarrow 4NaOH + O_2

Chemical properties : Oxygen reacts with metals and non-metals to form different oxides

Ozone (O_3)

Preparation : Ozone is prepared by subjecting pure oxygen to silent electric discharge

 $3O_2 \rightarrow 2O_3$; H = + 284.5 kJ mole⁻¹.

Properties :

It is pale blue gas having a strong characteristic smell. It is neutral to litmus. It condenses to blue liquid (b. pt 161. 2K). It condenses to a violet- black solid (melting point 80.6 K).

The important reactions are given below:

1.
$$O_3 \xrightarrow{250 \text{ C}} O_2 + O_2$$

- 2. $H_2S + O \rightarrow H_2O + S$
- 3. $2Ag + O \rightarrow Ag_2O$
- 4. 2Hg + [O] \rightarrow Hg₂O (Tailing of Mercury)
- 5. $I_2 + H_2O + 5[O] \rightarrow 2HIO_3$
- 6. It is better oxidising agent as compared to H_2O_2 . $H_2O_2 + O_3 \rightarrow H_2O + 2O_2$

Sulphuric Acid : (H₂SO₄)

Preparation :

- It is manufactured by Contact process. Reaction of the process is as under :
- (a) S + O₂ \longrightarrow SO₂ or 4FeS₂ + 11O₂ \longrightarrow 2Fe₂O₃ + 8SO₂

(b)
$$2SO_2 + O_2 \xrightarrow{723K - 823K 2 - 3 \text{ atmosphere}}{V_2O_5 \text{ or Pt Catalyst}} 2SO_3$$

(c)
$$SO_3 + H_2SO_4 \longrightarrow H_2S_2O_7$$
 (oleum)

(d)
$$H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4$$

Properties : The important properties are

1. It is a strong dibasic acid

 $H_2SO_4 \longrightarrow H^+ + HSO_4^- \longrightarrow 2H^+ + SO_4^{2-}$

2. On heating it liberates oxygen and thus it acts as a strong oxidising agent

 $\begin{array}{c} Cu + 2H_2SO_4 \\ (\text{Conc.}) \end{array} \longrightarrow CuSO_4 + SO_2 + 2H_2O \end{array}$

Oxidation of non-metals

$$C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$$

It liberates iodine from KI

$$2KI + 2H_2SO_4 \rightarrow K_2SO_4 + SO_2 + I_2 + 2H_2O$$

3. H₂SO₄ is a powerful dehydrating agent

HALOGEN FAMILY-(GROUP-17 ELEMENTS)

Element	Symbol	Atomic No.
Fluorine	F	9
Chlorine	CI	17
Bromine	Br	35
lodine	I	53
Astatine	At	85

Atomic and Physical Properties:

- 1. Atomic and Ionic Radii: The halogens have the smallest atomic radii in their respective periods due to maximum effective nuclear charge.
- 2. Ionization Energies: The ionization energies of halogens are very high. It decreases from fluorine to iodine
- 3. Melting and Boiling Points : The melting and boiling points of halogens increases with increase in atomic number as we go down the group.
- 4. Electron Affinity
 - (a) All these have maximum electron affinities in their respective periods.
 - (b) In general, electron affinity decreases from top to bottom in a group.
 - (c) Fluorine has unexpectedly low electron affinity than chlorine. Therefore, **chlorine has the highest** electron affinity in this group.

Thus, electron affinity among halogens varies as : F < Cl > Br > I

5. Colour : All the halogens are coloured.

Fluorine – Pale yellow, Chlorine – Greenish yellow, Bromine – Reddish brown liquid, Iodine – Greyish black solid (Deep violet in vapour state).

6. Oxidation States

- (a) They all show an oxidation state of -1.
- (b) Since fluorine is the most electronegative element, it always show an oxidation state of -1. It does not show any positive oxidation state.
- (c) The other elements also show positive oxidation state of +1, +3, +5 and +7. The higher oxidation state of chlorine, bromine and iodine are due to the presence of vacant d-orbitals in their valency shells.

7. Low Dissociation Energies

All the halogen have very low dissociation energies. As a result, they can readily dissociate into atoms and react with other substance.

Molecule F_2 Cl_2 Br_2 l_2 Dissociation energies159243193151 X_2 2X (kJ mol⁻¹)

8. Oxidising Power

(a) Halogens have high electron affinity values and therefore they have strong tendency to take up the electron :

$$\frac{1}{2} X_2 + e^- \qquad \rightarrow X$$

- (b) As a result, they act as powerful oxidising agents.
- (c) The decreasing oxidising power of the halogen as we go down the group is shown by their decreasing reduction potentials.

X ₂	F ₂	Cl ₂	Br ₂	l ₂
E _{RP} (volts)	2.87	1.40	1.09	0.62

OXYACIDS OF CHLORINE

Different oxyacids of chlorine are

Formula	Name	Corresponding salt
HOCI	Hypochlorous acid	Hypochlorites
HCIO ₂	Chlorous acid	Chlorites
HCIO ₃	Chloric acid	Chlorates
HCIO ₄	Perchloric acid	Perchlorates

Acidic Character : Acidic Character of the same halogen increases with the increase in oxidation number of the halogen.

 $HCIO_4 > HCIO_3 > HCIO_2 > HOCI$

Reason : It is because the release of H⁺ ion in each case would result in the formation of CIO_4^- , CIO_3^- , CIO_2^- , CIO^- ions. More is the stability of resulting ion, greater will be the ease with which the ion is formed. Therefore, the ease of formation of ions would be.

 $CIO_4^- > CIO_3^- > CIO_2^- > CIO^-$

Interhalogen Compounds

The halogens on account of the difference in their electronegativities combine with each other and form binary covalent compounds of AB_n type which are called interhalogen compounds. A is always bigger atom and B is a smaller atom. n may have value 1, 3, 5 and 7 corresponding to oxidation state of halogens.

AB type	CIF, BrF, BrCI, ICI, IBr	$\rightarrow s \rho^3$ hybridization, Linear shape
AB ₃ type	CIF ₃ , BrF ₃ , ICI ₃	$\rightarrow sp^3 d$ hybridization, T-shape
AB ₅ type	BrF ₅ , IF ₅	$ ightarrow {\it sp}^3 {\it d}^2$ hybridization, distorted square pyramidal shape
AB7 type	IF ₇	$ ightarrow {\it sp}^3 {\it d}^3$ hybridization, pentagonal bipyramidal shape

Element	Symbol	Atomic Number
Helium	He	2
Neon	Ne	10
Argon	Ar	18
Argon Krypton	Kr	36
Xenon	Xe	54
Radon	Rn	86

NOBLE GASES - (GROUP-18 ELEMENTS)

Atomic & Physical Properties :

In general, noble gases are not very reactive. Their inertness to chemical reactivity is due to

- 1. The noble gases have completely filled ns^2np^6 electronic configurations in their valence shells.
- 2. The noble gases have very high ionisation energies.

Chemical Properties :

Among group 18 members only Xenon and Krypton show chemical reactivity. The important compounds of Xe are given below :

1. Fluorides : The common fluorides of xenon such as XeF₂, XeF₄ and XeF₆ can be prepared by the direct combination of xenon and fluorine under different conditions :

```
\begin{array}{cccc} Xe + F_2 & \stackrel{\text{Ni vessel}}{673 \text{ K}} \rightarrow & XeF_2 \\ Xe + 2F_2 & \stackrel{\text{Ni vessel}}{673 \text{ K}, 5 \text{ 6 atm}} \rightarrow & XeF_4 \\ (1:5) & \stackrel{\text{Ni vessel}}{773 \text{ K}, 50 \text{ 60 atm}} \rightarrow & XeF_6 \end{array}
```

2. Oxides : XeO₃ is the most common oxide and it is prepared by the hydrolysis of XeF₄ or XeF₆.

 $\begin{array}{ll} 2 \operatorname{XeF}_4 + 3\operatorname{H}_2 O & \longrightarrow \operatorname{Xe} + \operatorname{XeO}_3 + 6\operatorname{HF} + \operatorname{O}_2 \\ \\ & \operatorname{XeF}_6 + 3\operatorname{H}_2 O & \longrightarrow \operatorname{XeO}_3 + 6\operatorname{HF} \end{array}$

3. Oxyfluorides: The oxyfluorides of xenon are prepared by the partial hydrolysis of XeF₄ or XeF₆.

 $XeF_4 + H_2O$ $\xrightarrow{800 C} \rightarrow XeOF_2 + 2HF$ Xenon oxydifluoride

$$\begin{array}{ccc} XeF_6 + H_2O & \longrightarrow & XeOF_4 + 2HF \\ & & \text{Xenon oxytetrafluoride} \end{array}$$