CHAPTER 3

THEORY OF EQUATION

Exercise 3.1

KEY POINTS

- 1. Polynomial equation $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$
- 2. Quadratic equations $ax^2 + bx + c = 0$ where $a \neq 0$
- Two roots of quadratic equation $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

where $b^2 - 4ac$ is called discriminant and denoted by Δ .

• If $\Delta = 0$ roots are equal

If $\Delta > 0$ roots are real and distinct

If $\Delta < 0$ roots are unreal (has no real roots)

- 3. Vieta's formula for quadratic equations
- Let α and β are the roots of the quadratic equation $ax^2 + bx + c = 0, a \neq 0$ then
- sum of roots $(\alpha + \beta) = \frac{-b}{a}$
- product of roots $(\alpha \beta) = \frac{c}{a}$
- quadratic equation x^2 (sum of roots) x + product of roots = 0

4. Vieta's formula for polynomial equation degree 3.
Let ax³ + bx² + cx + d = 0, a ≠ 0
Let α, β, and γ be the roots, then

- $\alpha + \beta + \gamma = \frac{-b}{a}$
- $\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$

• $\alpha \beta \gamma = \frac{-d}{a}$

• equation:
$$x^3 - (\alpha + \beta + \gamma) x^2 + (\alpha \beta + \beta \gamma + \gamma \alpha) x - \alpha \beta \gamma = 0$$

- 5. Vieta's formula for polynomial equation of degree n > 3.
- Let α , β , γ and δ be the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$ Then,

$$\Sigma_{1} = \alpha + \beta + \gamma + \delta = \frac{-b}{a}$$

$$\Sigma_{2} = \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \frac{c}{a}$$

$$\Sigma_{3} = \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = \frac{-d}{a}$$

$$\Sigma_{4} = \alpha \beta \gamma \delta = \frac{e}{a}$$

Note:

- (i) $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$ be a polynomial equation. Here a_n is called the **leading co-efficient** and the term $a_n x^n$ is called the **leading term** a_n may be any number, real or complex but $a_n \neq 0$
- (ii) A polynomial with the leading co-efficient 1 is called a monic polynomial
- (iii) Remark
- Polynomial functions are defined for all values of x.
- Every non-zero constant is a polynomial of degree 0.
- The constant 0 is also a polynomial called the **zero polynomial**. It s degree is not defined.
- The degree of a polynomial is a non-negative integer.
- The zero polynomial is the only polynomial with leading co-efficient 0.
- Polynomials of degree two are called Quadratic polynomials.

- Polynomials of degree three are called cubic polynomials.
- Polynomial of degree four are called Quadratic polynomials.
- (iv) $\sin^2 x + \cos^2 x = 1$ is an identity on *R* while $\sin x + \cos x = 1$ and $\sin^3 x + \cos^3 x = 1$ are equations.

(v) The Fundamental theorem of Algebra

Every polynomial equation of degree $n \ge 1$ has at least one root in C

(vi) $\Sigma \alpha_1 = \Sigma \alpha = \alpha + \beta + \gamma + \delta$

 $\Sigma \alpha_1 \alpha_2 = \Sigma \alpha \beta = \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta$

$$\Sigma \alpha_1 \alpha_2 \alpha_3 = \Sigma \alpha \beta \gamma = \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta$$

$$\Sigma_n = \Sigma \beta \gamma \delta = \alpha \beta + \delta$$

(vii) $(a+b+c+d)^2 = a^2 + b^2 + c^2 + d^2 + 2 (ab+ac+ad+bc+bd+cd)$

Type I: [Quadratic equation (deg = 2) based sums] Example 3.1, 3.2, 3.7, Q.No.9,10.

Example 3.1

If α and β are the roots of the quadratic equation $17x^2 + 43x - 73 = 0$, construct a quadratic equation whose roots are $\alpha + 2$ and $\beta + 2$

$$17x^{2} + 43x - 73 = 0$$

 $a = 17; b = 43; c = -73$

Given roots: α + 2 and β + 2

Sum

$$\alpha + 2 + \beta + 2$$

 $= \alpha + \beta + 4$
 $= \frac{-43}{17} + 4$
 $= \frac{-43 + 68}{17}$
 $= \frac{25}{17}$
Product
 $(\alpha + 2) (\beta + 2)$
 $\alpha \beta + 2 \alpha + 2 \beta + 4$
 $= \alpha \beta + 2 (\alpha + \beta) + 4$
 $= \frac{-73}{17} + 2 \left(\frac{-43}{17}\right) + 4$
 $= \frac{-73 - 86}{17} + 4$
 $= \frac{-159 + 68}{17}$
 $= \frac{-91}{17}$

: equation:

$$x^{2}$$
 - (sum) x + product = 0
 $x^{2}\frac{-15}{17}x\frac{-91}{17} = 0$
i.e $17x^{2} - 25x - 91 = 0$

Example 3.2

If α and β are the roots of the quadratic equation $2x^2 - 7X + 13 = 0$ construct a quadratic equation whose roots are α^2 and β^2

$$2x^{2} - 7x + 13 = 0$$

a = 2; b = -7; c = 13

sum of roots $(\alpha + \beta) = \frac{-b}{a}$ product of roots $= \frac{c}{a}$ $\alpha + \beta = \frac{7}{2}$ $\alpha \beta = \frac{13}{2}$ Given roots: α^2 and β^2

Sum

$$\alpha^{2} + \beta^{2}$$

$$= (\alpha + \beta)^{2} - 2 \alpha \beta$$

$$= \left(\frac{7}{2}\right)^{2} - 2\left(\frac{13}{2}\right)$$

$$= \frac{49}{4} - 13$$

$$= \frac{49 - 52}{4}$$

$$= \frac{-3}{4}$$
Product

$$\alpha^{2} \beta^{2}$$

$$= (\alpha \beta)^{2}$$

$$= \left(\frac{13}{2}\right)^{2}$$

$$= \frac{169}{4}$$

∴ equation

 x^2 - (sum) x + product = 0

$$x^{2} + \frac{3x}{4} + \frac{169}{4} = 0$$
$$4x^{2} + 3x + 169 = 0$$

Example 3.7

If p is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$ in terms of p.

$$4x^{2} + 4px + P + 2 = 0$$

$$a = 4$$

$$b = 4p$$

$$c = p + 2$$

$$\Delta = b^{2} - 4ac$$

$$= (4p)^{2} - 4 (4) (p + 2)$$

$$= 16p^{2} - 16p - 32$$

$$= 16 (p^{2} - p - 2)$$

$$= 16 (p + 1) (p - 2)$$

$$= 16 (p + 1) (p - 2)$$

 $\therefore \Delta < 0 \text{ if } -1 < p < 2$ $\Delta = 0 \text{ if } p = -1 \text{ (or) } p = 2$ $\Delta = 0 \text{ if } -\infty$ $<math display="block">\therefore \text{ Imaginary roots if } -1$ equal real roots if <math>p = -1 or p = 2distinct real roots if $-\infty or <math>2$

9. If p and q are the roots of the equation $lx^2 + nx + n = 0$, show that

$$\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0.$$

$$lx^{2} + nx + n = 0 \text{ Given roots are } p \text{ and } q$$

$$a = l \text{ ; } b = n \text{ ; } c = n$$

sum of roots
$$= \frac{-b}{a}$$

$$p + q = \frac{-n}{l}$$

Product of roots
$$= \frac{c}{a}$$

$$pq = \frac{n}{l}$$

Now,

$$\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}}$$
$$= \frac{\sqrt{p}}{\sqrt{q}} + \frac{\sqrt{q}}{\sqrt{p}}$$
$$= \frac{p+q}{\sqrt{pq}}$$
$$= \frac{\frac{-n}{l}}{\sqrt{\frac{n}{l}}}$$

$$\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} = -\sqrt{\frac{n}{l}}$$
$$\therefore \sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0 \text{ proved.}$$

10. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it be equal to $\frac{pq^1 - p^1q}{q - q^1}$ or $\frac{q - q^1}{p^1 - p}$

$$x^{2} + px + q = 0$$
Let roots α and β_{1}

$$\alpha + \beta_{1} = -p$$

$$(1) \Rightarrow \alpha = -p - \beta_{1}$$

$$(2) \Rightarrow \alpha = \frac{q}{\beta_{1}}$$

$$x^{2} + p^{1}x + q^{1} = 0$$
Let roots α and β_{2}

$$\alpha + \beta_{2} = -p^{1}$$

$$(1) \Rightarrow \alpha = -p^{1} - \beta_{1}$$

$$(1) \Rightarrow \alpha = -p' - \beta_{2}$$

$$(2) \Rightarrow \alpha = \frac{q}{\beta_{1}}$$

$$(2) \Rightarrow \alpha = \frac{q'}{\beta_{2}}$$

From (1)

$$-p - \beta_1 = -p^1 - \beta_2$$

 $p^1 - p = \beta_1 - \beta_2$...(3)

From (2)

$$\frac{q}{\beta_1} = \frac{q^1}{\beta_2}$$

$$q \beta_2 = q^1 \beta_1$$

$$\beta_1 q^1 - \beta_2 q = 0 \qquad \dots (4)$$

$$\beta_1 - \beta_2 = p^1 - p$$

$$p_1 q' - \beta_2 q = 0$$

$$\begin{bmatrix} 1 & -1 \\ q^1 & -q \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} p^1 - p \\ 0 \end{bmatrix}$$

$$\Delta = \begin{vmatrix} 1 & -1 \\ q^{1} & -q \end{vmatrix}$$
$$= -q + q^{1}$$
$$\Delta \beta_{1} = \begin{vmatrix} p^{1} - p & -1 \\ 0 & -q \end{vmatrix} \qquad \Delta \beta_{2} = \begin{vmatrix} 1 & p^{1} - p \\ q^{1} & 0 \end{vmatrix}$$
$$= pq - pq^{1} \qquad \qquad \beta_{1} = \frac{\Delta \beta_{1}}{\Delta} \qquad \qquad pq^{1} - q_{1}p^{1}$$
$$\Rightarrow \beta_{1} = \frac{pq - p^{1}q}{q^{1} - q} \qquad \qquad \therefore \beta_{2} = \frac{\Delta \beta_{2}}{\Delta}$$
$$= \frac{pq^{1} - q_{1}p^{1}}{q^{1} - q}$$

Put $\beta_1 \beta_2$ values in (2)

$$\alpha = \frac{q}{\beta_{1}}$$

$$= q \left(\frac{q^{1} - q}{pq - p^{1}q} \right)$$

$$= q \left(\frac{q^{1} - q}{q(p - p^{1})} \right)$$

$$\alpha = \frac{q^{1} - q}{p - p^{1}}$$

$$\alpha = \frac{q - q^{1}}{p - p^{1}} \text{ proved}$$

$$\alpha = -p - \beta_{1}$$

$$= -p - \left(\frac{pq - p^{1}q}{q^{1} - q} \right)$$

$$= \frac{-pq^{1} + pq - pq + p^{1}q}{q^{1} - q}$$

$$= \frac{p^{1}q - pq^{1}}{q^{1} - q}$$

$$= \frac{pq^{1} - p^{1}q}{q^{1} - q} \text{ proved}$$

(Similarly we can put β_2 value also)

Type II:	[cub	ic p	oly	nom	ial	ba	ase	ed	sur	ns				
Q.No.	1, 2,	(i)	(ii)	(iii),	3,	4,	6,	7,	11,	12.	example	3,3,	3.5,	3.6.

1. If the sides of a cubic box are increased by 1,2, 3 units respectively to form a cuboid, then the volume is increased by 52 cubic units, Find the volume of the cuboid.

Let 'x' be the side of the cube given sides are increased by 1, 2, 3 units i.e., x + 1, x + 2 and x + 3

∴ given data
(x + 1) (x + 2) (x + 3) = x³ + 52
(x + 1) (x² + 5x + 6) = x³ + 52
x³ + 5x² + 6x + x² + 5x + 6 = x³ + 52
6x² + 11x + 6 - 52 = 0
6x² + 11x - 46 = 0

$$\left(x + \frac{23}{6}\right)(x - 2) = 0$$

 $x + \frac{23}{6} = 0$
 $x = \frac{-23}{6}$
not possible

 \therefore side of the given cube is 2 units volume of cube $= 2^3 = 8$ cubic units

volume of cuboid =
$$(x + 1) (x + 2)(x + 3)$$

= $(2 + 1)(2 + 2) (2 + 3)$
= $3 \times 4 \times 5$
= 60 Cubic units

2. Construct a cubic equation with roots (i) 1, 2 and 3 $\alpha = 1, \, \beta = 2, \, \gamma = 3$

Equation

$$x^{3} - (\alpha + \beta + \gamma) x^{2} + (\alpha \beta + \beta \gamma + \gamma \alpha) x - \alpha \beta \gamma = 0$$

$$x^{3} - (1 + 2 + 3) x^{2} + (2 + 6 + 3) x - (1) (2) (3) = 0$$

$$x^{3} - 6x^{2} + 11x - 6 = 0$$

(ii) 1, 1 and -2

$$\alpha = 1, \beta = 1, \gamma = -2$$

Equation

$$x^{3} - (\alpha + \beta + \gamma) x^{2} + (\alpha \beta + \beta \gamma + \gamma \alpha) x - \alpha \beta \gamma = 0$$

$$x^{3} - (1 + 1 - 2) x^{2} + (1 - 2 - 2) x - (1) (1) (-2) = 0$$

$$x^{3} - 3x + 2 = 0$$

(iii) 2, -2 and 4

$$\alpha = 2, \beta = -2, \gamma = 4$$

Equation

$$x^{3} - (\alpha + \beta + \gamma) x^{2} + (\alpha \beta + \beta \gamma + \gamma \alpha) x - \alpha \beta \gamma = 0$$

$$x^{3} - (2 - 2 + 4) x^{2} + (-4 - 8 + 8) x - (2) (-2) (4) = 0$$

$$x^{3} - 4x^{2} - 4x + 16 = 0$$

- 3. If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are (i) 2α , 2β , 2γ (ii) $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ (iii) $-\alpha - \beta - \gamma$ $x^3 + 2x^2 + 3x + 4 = 0$ a = 1; b = 2; c = 3; d = 4• $\alpha + \beta + \gamma = \frac{-b}{a}$ $\alpha + \beta + \gamma = -2$ • $\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$ $\alpha \beta + \beta \gamma + \gamma \alpha = 3$ • $\alpha \beta \gamma = -4$
- (i) 2 α, 2 β, 2γ

$$2 \alpha + 2 \beta + 2 \gamma$$

$$= 2 (\alpha + \beta + \gamma)$$

$$= 2 (-2)$$

$$= -4$$

$$(2 \alpha) (2 \beta) + (2 \beta) (2 \gamma) + (2 \gamma) (2 \alpha)$$

$$= 4 \alpha \beta + 4 \beta \gamma + 4 \gamma \alpha$$

$$= 4 (\alpha \beta + \beta \gamma + \gamma \alpha)$$

$$= 4 (3)$$

$$= 12$$

• $(2 \alpha) (2 \beta) (2 \gamma) = 8 \alpha \beta \gamma$

$$= 8 (-4)$$

= - 32

: Equation

$$x^{3} - (2 \alpha + 2 \beta + 2 \gamma) x^{2} + [(2 \alpha) (2 \beta) + (2\beta) (2 \gamma) + (2\gamma) (2 \alpha)] x$$
$$- (2 \alpha) (2 \beta) (2 \gamma) = 0$$
$$x^{3} - (-4) x^{2} + 12x - (-32) = 0$$
$$x^{3} + 4x^{2} + 12x + 32 = 0$$

(ii)
$$\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$$

• $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \gamma + \alpha \gamma + \alpha \beta}{\alpha \beta \gamma}$
 $= \frac{3}{-4}$
• $\left(\frac{1}{\alpha}\right)\left(\frac{1}{\beta}\right) + \left(\frac{1}{\beta}\right)\left(\frac{1}{\gamma}\right) + \left(\frac{1}{\gamma}\right)\left(\frac{1}{\alpha}\right)$
 $= \frac{1}{\alpha \beta} + \frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha}$
 $= \frac{\gamma + \alpha + \beta}{\alpha \beta \gamma}$
 $= \frac{-2}{-4}$
 $= \frac{1}{2}$
• $\left(\frac{1}{\alpha}\right)\left(\frac{1}{\beta}\right)\left(\frac{1}{\gamma}\right) = \frac{1}{\alpha \beta \gamma}$
 $= \frac{-1}{-4}$

: equation

$$x^{3} - \left(\frac{-3}{4}\right)x^{2} + \left(\frac{1}{2}\right)x - \left(\frac{-1}{4}\right) = 0$$
$$x^{3} + \frac{3x^{2}}{4} + \frac{x}{2} + \frac{1}{4} = 0$$
$$4x^{3} + 3x^{2} + 2x + 1 = 0$$

3. Zero sum of all co-efficients

The sum of the co-efficients of the polynomial is 0, then 1 is a root of p(x)

4. Equal sums of co-efficients of odd and even powers

The sum of the co-efficients of the odd and even powers are equal, then -1 is a root of p(x)

5. Roots in progressions

Sometimes the roots are in "arithmetic progression" and the roots are in geometric progression.

Type I:	[s	olv	e the	equation]	
Q.No.	1,	6,	(i),(ii),	Example	3.17,	3.18, 4.

1. Solve the cubic equation $2x^3 - x^2 - 18x + 9 = 0$ if sum of its roots vanishes.

Let α , β and γ are the roots of $2x^3 - x^2 - 18x + 9 = 0$

Given: $\alpha + \beta = 0$

Now

$$\alpha + \beta + \gamma = \frac{-b}{a}$$
$$0 + \gamma = \frac{1}{2}$$
$$\gamma = \frac{1}{2}$$

using synthetic division

$$\therefore$$
 roots are 3, -3 and $\frac{1}{2}$

6. Solve the cubic equations: (i) $2x^3 - 9x^2 + 10x = 3$ (ii) $8x^3 - 2x^2 - 7x + 3 = 0$

 $x^2 = 9$

 $x = \pm 3$

(i)
$$2x^3 - 9x^2 + 10x - 3 = 0$$

Here sum of co-efficients is '0'

$$(2 - 9 + 10 - 3 = 12 - 12 = 0)$$

 \therefore 1 is a root

$$1 \begin{vmatrix} 2 & -9 & 10 & -3 \\ 0 & 2 & -7 & 3 \\ \hline 2 & -7 & 3 & 0 \end{vmatrix}$$

$$2x^2 - 7x + 3 = 0$$

$$(x - 3) (x - \frac{1}{2}) = 0$$

$$x - 3 = 0 \qquad x - \frac{1}{2} = 0$$

$$\boxed{x = 3 \qquad x = \frac{1}{2}}$$

∴ roots are 1, 3 and $\frac{1}{2}$

(ii) $8x^3 - 2x^2 - 7x + 3 = 0$

Here sum of alternate terms are equal (i.e) 8 - 7 = -2 + 3 = 1] $\therefore -1$ is a root

$$\therefore 8x^{2} - 10x + 3 = 0$$

$$(x - 3/4) (x - \frac{1}{2}) = 0$$

$$\therefore x = \frac{3}{4}, x = \frac{1}{2}$$

$$\therefore \text{ roots are } -1, \frac{3}{4} \text{ and } \frac{1}{2}$$

Example 3.17

Solve the equation $x^3 - 3x^2 - 33x + 35 = 0$

Here sum of co-efficients are zero.

(1 - 3 - 33 + 35 = 36 - 36 = 0)

 \therefore 1 is a root

$$1 \begin{vmatrix} 1 & -3 & -33 & 35 \\ 0 & 1 & -2 & -35 \\ \hline 1 & -2 & -35 \\ \hline 0 & x^2 - 2x - 35 = 0 \\ (x - 7) (x + 5) = 0 \\ x - 7 = 0 \\ x = 7 \end{vmatrix} \begin{array}{c} x + 5 = 0 \\ x = -5 \\ x = -5 \\ \hline x = -5 \\ x = -5$$

 \therefore roots are 1, 7 and -5

Example 3.18

Solve the equation $2x^3 + 11x^2 - 9x - 18 = 0$.

Here sum of alternate terms are equal [i.e 2 - 9 = 11 - 18 = -7] $\therefore -1$ is a root.

 \therefore Roots are -1, -6 and $\frac{3}{2}$

4. Determine k and solve the equation $2x^3 - 6x^2 + 3x + k = 0$ if one of its roots is twice the sum of the other two roots.

Let α,β and γ are the roots of

$$2x^3 - 6x^2 + 3x + k = 0$$

Given: $\alpha = 2 (\beta + \gamma)$

$$\frac{\alpha}{2} = \beta + \gamma$$

Now

$$\alpha + \beta + \gamma = \frac{-b}{a}$$
$$\alpha + \frac{\alpha}{2} = \frac{6}{2}$$
$$\frac{3 \alpha}{2} = \frac{6}{2}$$
$$3 \alpha = 6$$
$$\alpha = \frac{6}{3}$$
$$\alpha = 2 \text{ one root}$$

Now,

Here k - 2 = 0

$$k = 2$$

Also

$$2x^{2} - 2x - 1 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{2 \pm \sqrt{4 - 4(2)(-1)}}{2(2)}$$

$$=\frac{2\pm\sqrt{4+8}}{4}$$
$$=\frac{2\pm\sqrt{12}}{4}$$
$$=\frac{2\pm2\sqrt{3}}{4}$$
$$=\frac{2(1\pm\sqrt{3})}{4}$$
$$=\frac{1\pm\sqrt{3}}{2}$$
∴ roots are 2, $\frac{1+\sqrt{3}}{2}$ and $\frac{1-\sqrt{3}}{2}$

Type II: [Solve even powers polynomial] Q.No.7, Example 3.16.

7. Solve the equation:
$$x^4 - 14x^2 + 45 = 0$$

 $x^4 - 14x^2 + 45 = 0$

$$y = x^{2} \text{ then we get}$$

$$y^{2} - 14y + 45 = 0$$

$$(y - 5) (y - 9) = 0$$

$$y = 5 = 0$$

$$y = 5$$

$$y = 9$$

$$y = y^{2}$$

$$x^{2} = 5$$

$$x = \pm \sqrt{5}$$

$$y = 9$$

$$y = y^{2}$$

$$x^{2} = 9$$

$$x = \pm 3$$

 \therefore roots are 3; -3, $\sqrt{5}$ and $-\sqrt{5}$

Example 3.16

Let

Solve the equation $x^4 - 9x^2 + 20 = 0$ $x^4 - 9x^2 + 20 = 0$

Put $y = x^2$ then we get

$$y^{2} - 9y + 20 = 0$$

(y - 4) (y - 5) = 0

y - 4 = 0
y = 4
put y = x²
x² = 4
x = ± 2

∴ roots are 2, -2, $\sqrt{5}$ and $-\sqrt{5}$

Type II: [Find all zeros of the given polynomial] Q.No.5 Example 3.15

5. Find all zeros of the polynomial $x^6 - 3x^5 - 5x^4 + 22x^3 - 39x^2 - 39x + 135$, if it is known that 1 + 2i and $\sqrt{3}$ are two of its zeros.

 $x^{6} - 3x^{5} - 5x^{4} + 22x^{3} - 39x^{2} - 39x + 135$

Co-efficient of the equations are all rational numbers.

Given: 1 + 2i is a root

1-2i also another root

sum of roots = (1 + 2i) + (1 - 2i) = 2product of roots = (1 + 2i) (1 - 2i) $= 1^2 + 2^2$ = 5

: equation

 x^{2} - (sum) x + product = 0 $x^{2} - 2x + 5 = 0$

Also

Given: $\sqrt{3}$ as root another root is $-\sqrt{3}$

sum of roots $=\sqrt{3} - \sqrt{3} = 0$

product of roots $=(\sqrt{3})(-\sqrt{3})=-3$

: equation

$$x^{2}$$
 - (sum) x + product = 0
 $x^{2} - 0x - 3 = 0$
 $x^{2} - 3 = 0$

: $(x^2 - 2x + 5)(x^2 - 3)$ is a factor of the given polynomial divided the polynomial by this factor

$$(x^{2} - 2x + 5) (x^{2} - 3) = x^{4} - 3x^{2} - 2x^{3} + 6x + 5x^{2} - 15$$

$$= x^{4} - 2x^{3} + 3x^{2} + 6x - 15$$

$$1 - 2 - 2 - 6 - 15$$

$$(-) (+) (-) (-) (+) (+)$$

$$1 - 2 - 2 - 6 - 15$$

$$(-) (+) (-) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (-)$$

$$(-) (+) (+) (+) (+)$$

$$(-) (+) (+) (+) (+)$$

$$(-) (+) (+) (+) (+)$$

$$(-) (+) (+) (+) (+)$$

$$(-) (+) (+) (+) (+)$$

$$(-) (+) (+) (+) (+)$$

$$(-) (+) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+) (+)$$

$$(-) (+)$$

$$=\frac{1\pm\sqrt{37}}{2}$$

 \therefore Roots are

$$1 + 2i, 1 - 2i, \sqrt{3}, -\sqrt{3}, \frac{1 + \sqrt{37}}{2}$$
 and $\frac{1 - \sqrt{37}}{2}$

Example 3.15

If 2+i and $3-\sqrt{2}$ are roots of the equation $x^{6}-13x^{5}+62x^{4}-126x^{3}+65x^{2}+127x-140=0$

Since the co-efficient of the equations are all rational numbers, and 2 + i and $3 - \sqrt{2}$ are roots, we get 2 - i and $3 + \sqrt{2}$ are also roots of the give equations.

Thus their product

$$= [x - (2 + i)] [x - (2 - i)] [x - (3 - \sqrt{2})] [x - (3 + \sqrt{2})]$$

$$= [(x - 2) - i] [(x - 2) + i] [(x - 3 + \sqrt{2})] [(x - 3) - \sqrt{2}]$$

$$= [(x - 2)^{2} + 1^{2}] [(x - 3)^{2} - (\sqrt{2})^{2}]$$

$$= (x^{2} - 4x + 4 + 1) (x^{2} - 6x + 9 - 2)$$

$$= (x^{2} - 4x + 5) (x^{2} - 6x + 7) \text{ is a factor}$$

Divide the Given polynomial by this factor.

i.e
$$(x^2 - 4x + 5) (x^2 - 6x + 7)$$

= $x^4 - 6x^3 + 7x^2 - 4x^3 + 24x^2 - 28x + 5x^2 - 30x + 35$
= $x^4 - 10x^3 + 36x^2 - 58x + 35$
1 - 3 - 4

						•				
1 – 10	36	- 58	35	1	- 13	62	- 126	65	127	- 140
				(-)	(+)	(-)	(+)	(-)		
				1	- 10	36	- 58	35		
					- 3	26	- 68	30	127	
					(+)	(-)	(+)	(-)	(+)	
					- 3	30	- 108	174	- 105	
						-4	40	- 144	232	- 140
						(+)	(-)	(+)	(-)	(+)
						-4	40	- 144	232	- 140
						-		0		

 $x^{2} - 3x - 4$ is another factor. $x^{2} - 3x - 4 = 0$ (x - 4) (x + 1) = 0

$$\begin{array}{c|c|c} x - 4 = 0 \\ x = 4 \end{array} \begin{vmatrix} x + 1 = 0 \\ x = -1 \end{vmatrix}$$

:. Roots are

$$2 + i, 2 - i, 3 + \sqrt{2}, 3 - \sqrt{2}, -1$$
 and 4.

Type IV: [Roots in progressions A.P,G.P and H.P) Q.No. 2,3, Example 3.19, 3.20, 3.21 Example 3.22]

2. Solve the equation $9x^3 - 36x^2 + 44x - 16 = 0$ if the roots form an arithmetic progressive

 $9x^3 - 36x^2 + 44x - 16 = 0$

There are 3 roots which are in A.P.

 $\therefore \alpha = a - d$ $\beta = a$ $\gamma = a + d$

Now

$$\alpha + \beta + \gamma = \frac{-b}{a}$$

$$a - d + a + a + d = \frac{36}{9}$$

$$3a = 4$$

$$\boxed{a = \frac{4}{3}}$$

$$\alpha \beta \gamma = \frac{-d}{a}$$

$$(a - d) (a) (a + d) = \frac{16}{9}$$

$$(a^2 - d^2) a = \frac{16}{9}$$

$$\left(\frac{16}{9} - d^2\right) \frac{4}{3} = \frac{16}{9}$$

$$\frac{16}{9} - d^2 = \frac{16}{9} \times \frac{3}{4}$$

$$\frac{16}{9} - d^2 = \frac{12}{9}$$
$$\frac{16}{9} - \frac{12}{9} = d^2$$
$$\frac{4}{9} = d^2$$
$$\boxed{\pm \frac{2}{3} = d}$$
$$\therefore \text{ roots are} \left(\text{Let } a = \frac{4}{3}, d = \frac{2}{3} \right)$$
$$a - d = \frac{4}{3} - \frac{2}{3} = \frac{2}{3}$$
$$a = \frac{4}{3}$$
$$a + d = \frac{4}{3} + \frac{2}{3} = \frac{6}{3} = 2$$

$$a + d = \frac{4}{3} + \frac{2}{3} = \frac{6}{3} = 2$$

$$\therefore \frac{2}{3}, \frac{4}{3}, 2 \text{ are the roots of the given equation.}$$

3. Solve the equation $3x^3 - 26x^2 - 52x - 24 = 0$ if its roots form a geometric progression.

$$3x^3 - 26x^2 + 52x - 24 = 0$$

Given: roots are in G.P

$$\therefore \alpha = \frac{a}{r}$$
$$\beta = a$$
$$\gamma = ar$$

Now

$$\alpha + \beta + \gamma = \frac{-b}{a}$$
$$\frac{a}{r} + a + ar = \frac{26}{3}$$
$$a\left(\frac{1}{r} + 1 + r\right) = \frac{26}{3} \qquad \dots(1)$$

$$\alpha \beta \gamma = \frac{-d}{a}$$

$$\frac{d}{r} \times a \times ar = \frac{24}{3}$$

$$a^{3} = 8$$

$$\boxed{a=2}$$

$$(1) \Rightarrow 2\left(\frac{1}{r}+1+r\right) = \frac{26}{3}$$

$$\frac{1+r+r^{2}}{r} = \frac{26}{3 \times 2}$$

$$\frac{1+r+r^{2}}{r} = \frac{13}{3}$$

$$3+3r+3r^{2} = 13r$$

$$3r^{2}+3r-13r+3 = 0$$

$$3r^{2}-10r+3 = 0$$

$$(r-3)(r-1/3) = 0$$

$$r-3 = 0$$

$$r-3 = 0$$

$$r=3$$

$$r=\frac{1}{3}$$

$$a=2 \text{ and } r=3$$

$$r=\frac{a}{r} = \frac{2}{3}$$

$$\beta = a = 2$$

$$\gamma = ar = 2 \times 3 = 6$$

$$\therefore \text{ roots are } 2,6 \text{ and } \frac{2}{3}$$

Example 3.19

Obtain the condition that the roots of $x^3 + px^2 + qx + 8 = 0$ are in A.P. Let roots are a - d, a, a + d

Now

$$\alpha + \beta + \gamma = \frac{-b}{a}$$
$$a - d + a + a + d = -p$$
$$3a = -p$$
$$\boxed{a = \frac{-p}{3}}$$

a is a root of the given equation.

$$x^{3} + px^{2} + qx + r = 0$$

$$\left(\frac{-p}{3}\right)^{3} + p\left(\frac{-p}{3}\right)^{2} + q\left(\frac{-p}{3}\right) + r = 0$$

$$\frac{-p^{3}}{27} + \frac{p^{3}}{9} - \frac{pq}{3} + r = 0$$

$$\frac{-p^{3} + 3p^{3} - 9pq + 27r}{27} = 0$$

$$2p^{3} - 9pq + 27r = 0$$

$$9pq = 2p^{3} + 27r \text{ is the required condition.}$$

Example 3.20

Find the condition that the roots of $ax^3 + bx^2 + cx + d = 0$ are in G.P. Assume $a, b, c, d \neq 0$

Let the roots be in G.P.

$$\alpha = \frac{\alpha}{r}; \beta = \alpha; \gamma = \alpha \gamma$$

Now,

•
$$\alpha + \beta + \gamma = \frac{-b}{a}$$

$$\frac{\alpha}{r} + \alpha + \alpha \gamma = \frac{-b}{a}$$
$$\alpha \left(\frac{1}{r} + 1 + r\right) = \frac{-b}{a} \qquad \dots (1)$$
$$\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$$

•
$$\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$$

$$\left(\frac{\alpha}{r}\alpha\right) + (\alpha)(\alpha r) + (\alpha r)\left(\frac{\alpha}{r}\right) = \frac{c}{a}$$
$$\alpha^{2}\left(\frac{1}{r} + r + 1\right) = \frac{c}{a} \qquad \dots(2)$$

$$\alpha \beta \gamma = -\frac{a}{a}$$

$$\frac{\alpha}{r} \alpha \alpha r = -\frac{d}{a}$$

$$\alpha^{3} = -\frac{d}{a} \qquad \dots(3)$$

Dividing (2) by (1)

$$\alpha = -\frac{c}{b}$$

put in (3)

$$\left(-\frac{c}{b}\right)^3 = -\frac{d}{a}$$
$$-\frac{c^3}{b^3} = -\frac{d}{a}$$

 $ac^3 = db^3$ is the required condition

Example 3.21

If the roots of $x^3 + px^2 + qx + r = 0$ are in H.P. Prove that 9 $pqr = 27r^2 + 2p$

∠ Solution:

Let the roots be in H.P then their reciprocals are in A.P and roots of the equation

$$\left(\frac{1}{x}\right)^3 + p\left(\frac{1}{x}\right)^2 + q\left(\frac{1}{x}\right) + r = 0$$

$$\frac{1}{x^3} + \frac{p}{x^2} + \frac{q}{x} + r = 0$$

$$\frac{1 + px + qx^2 + rx^3}{x^3} = 0$$

i.e $rx^3 + qx^2 + px + 1 = 0$...(1)

Given: roots are in A.P

$$\therefore \alpha - d, \alpha, \alpha + d$$

Now,

$$\alpha + \beta + \gamma = \frac{-b}{a}$$
$$(\alpha - d) + (d) + (\alpha + d) = \frac{-q}{r}$$
$$3\alpha = \frac{-q}{r}$$
$$\alpha = \frac{-q}{3r}$$

 $\boldsymbol{\alpha}$ is one of the root of equation (1) so we get

$$r\left(\frac{-q}{3r}\right)^{3} + q\left(\frac{-q}{3r}\right)^{2} + p\left(\frac{-q}{3r}\right) + 1 = 0$$

$$r\left(\frac{-q^{3}}{26r^{3}}\right) + q\left(\frac{q^{2}}{9r^{2}}\right) - \frac{pq}{3r} + 1 = 0$$

$$\frac{-q^{3}}{27r^{2}} + \frac{q^{3}}{9r^{2}} - \frac{pq}{3r} + 1 = 0$$

$$\frac{-q^{3} + 3q^{3} - 9pqr + 27r^{2}}{27r^{2}} = 0$$

$$2q^{3} - 9pqr + 27r^{2} = 0$$

$$9pqr = 2q^{3} + 27r^{2}$$

is the required condition.

Exercise 3.4

KEY POINTS

Partly Factored Polynomials

Quadric polynomial equations of the form

 $(ax + b) (cx + d) (px + q) (rx + s) + k = 0, k \neq 0$ which can be rewritten in the form $(\alpha x^2 + \beta x + \lambda) (\alpha x^2 + \beta x + \mu) + k = 0$

Type I: [Solve]

Q.No. 1 (i), (ii), 2, Example 3.23, 3.24 1. Solve: (i) (x-5)(x-7)(x+6)(x+4) = 504. (x-5)(x-7)(x+6)(x+4) = 504Rewriting the equation as (x-5)(x+4)(x-7)(x+6) = 504 $(x^{2} - x - 20) (x^{2} - x - 42) = 504$ Let $y = x^2 - x$, then we get (y-20)(y-42) = 504336 $y^2 - 62y + 840 - 504 = 0$ -6 - 56 $v^2 - 62v + 336 = 0$ (y-6)(y-56) = 0y-6=0y-56=0put $y = x^2 - x$ put $y = x^2 - x$ $x^2 - x - 6 = 0$ $x^2 - x - 56 = 0$ (x-3) (x+2) = 0(x-8) (x+7) = 0x-3=0x+2=0x=3x=-2x=8x=-7(ii) (x-4)(x-7)(x-2)(x+1) = 16(x-4)(x-7)(x-2)(x+1) = 16Rewriting the equation as (x-4)(x-2)(x-7)(x+1) = 16

$$[(x-4) (x-2)] [(x-7) (x+1)] = 16$$
$$(x^2 - 6x + 8) (x^2 - 6x - 7) = 16$$

Put $y = x^2 - 6x$, we get

$$(y+8) (y-7) = 16$$

$$y^{2} + y - 56 - 16 = 0$$

$$y^{2} + y - 72 = 0$$

$$(y+9) (y-8) = 0$$

$$y + 9 = 0$$

$$y + 9 = 0$$

$$y - 8 = 0$$

$$x^{2} - 6x + 9 = 0$$

$$x^{2} - 6x + 9 = 0$$

$$x^{2} - 6x - 8 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{6 \pm \sqrt{36 - 4(-8)}}{2}$$

$$= \frac{6 \pm \sqrt{36 + 32}}{2}$$

$$= \frac{6 \pm \sqrt{58}}{2}$$

$$= \frac{6 \pm 2\sqrt{17}}{2}$$

$$x = 3 + \sqrt{17}$$

 \therefore roots are 3,3, $3 + \sqrt{17}$ and $3 - \sqrt{17}$

2. Solve; (2x - 1)(x + 3)(x - 2)(2x + 3) + 20 = 0

(2x-1)(x+3)(x-2)(2x+3)+20=0

Rewriting the equation as

$$(2x-1)(2x+3)(x+3)(x-2)+20=0$$

$$\left[2\left(x-\frac{1}{2}\right)2\left(x+\frac{3}{2}\right)\right][(x+3)(x-2)]+20=0$$

$$4\left[x^{2}+x-\frac{3}{4}\right][x^{2}+x-6]+20=0$$
Put $y=x^{2}+x$

$$4\left(y-\frac{3}{4}\right)(y-6)+20=0$$
 $(4y-3)(y-6)+20=0$
 $4y^{2}-24y-3y+18+20=0$
 $4y^{2}-27y+38=0$
 $(y-2)\left(y-\frac{19}{4}\right)=0$
* $y-\frac{19}{4}=0$
 $y-\frac{19}{4}=0$
 $(y-2)\left(x+1\right)=0$
 $x+2=0 x-1=0$
 $x=-2 \quad x=1$
* $y-\frac{19}{4}=0$
 $4x^{2}+4x-19=0$
 $x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$
 $=\frac{-4\pm\sqrt{16}-4(4)(-19)}{2(4)}$
 $=\frac{-4\pm\sqrt{16}+304}{8}$
 $=\frac{-4\pm\sqrt{320}}{8}$
 $=\frac{-4\pm\sqrt{5}}{8}$
 $x=\frac{-1\pm2\sqrt{5}}{2}$
 \therefore roots are $1, -2, \frac{-1+2\sqrt{5}}{2}$ and $\frac{-1-2\sqrt{5}}{2}$

Example 3.23

Solve the equation (x-2)(x-7)(x-3)(x+2) + 19 = 0Rewriting the equation as,

$$(x-2) (x-3) (x-7) (x+2) + 19 = 0$$

[(x-2) (x-3)] [(x-7) (x+2)] + 19 = 0
(x²-5x+6) (x²-5x-14) + 19 = 0

Put $y = x^2 - 5x$

$$(y+6) (y-14) + 19 = 0$$

$$y^{2} - 8y - 84 + 19 = 0$$

$$y^{2} - 8y - 65 = 0$$

$$(y+5) (y-13) = 0$$

* $y+5 = 0$
put $y = x^{2} - 5x$
 $x^{2} - 5x + 5 = 0$
 $x = -b \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$
 $= \frac{5 \pm \sqrt{25 - 34}(5)}{2}$
 $= \frac{5 \pm \sqrt{25 - 20}}{2}$
 $= \frac{5 \pm \sqrt{5}}{2}$
 $= \frac{5 \pm \sqrt{5}}{2}$
 $= \frac{5 \pm \sqrt{77}}{2}$

 $\therefore \text{ Roots are } \frac{5+\sqrt{5}}{2}, \frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{77}}{2} \text{ and } \frac{5-\sqrt{77}}{2}$

Example 3.4

Solve the equation (2x-3)(6x-1)(3x-12)(x-12)-7=0. Rewriting the equation as (2x-3)(6x-1)(3x-2)(x-12)-7=0[(2x-3)(3x-2)][(6x-1)(x-12)] - 7 = 0 $(6x^2 - 4x - 9x + 6)(6x^2 - 12x - x + 12) - 7 = 0$ $(6x^2 - 13x + 6)(6x^2 - 13x + 12) - 7 = 0$ Put $y = 6x^2 - 13x$ (y+6)(y+12) - 7 = 0 $v^2 + 18v + 72 - 7 = 0$ $v^2 + 18v + 65 = 0$ (y+5)(y+13) = 0* y + 5 = 0put $y = 6x^2 - 13x$ $6x^2 - 13x + 5 = 0$ $\left(x - \frac{1}{2}\right)\left(x - \frac{5}{3}\right) = 0$ $x - \frac{1}{2} = 0$ $x = \frac{1}{2} \begin{vmatrix} x - \frac{5}{3} = 0 \\ x = \frac{5}{3} \end{vmatrix}$ * y + 13 = 0put $y = 6x^2 - 13x$ $6x^2 - 13x + 13 = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{13 \pm \sqrt{169 - 4} (6) (13)}{2 (6)}$ $= \frac{13 \pm \sqrt{169 - 312}}{12}$ $= \frac{13 \pm \sqrt{-143}}{12}$

$$\begin{array}{r} 30 \\ -3 & -10 \\ -3 \\ -3 \\ 6 \\ -1 \\ 2 \\ -\frac{-5}{3} \end{array}$$

: Solution

$$\frac{1}{2}, \frac{5}{3}, \frac{13+i\sqrt{143}}{12}$$
 and $\frac{13-i\sqrt{143}}{12}$