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Learning Objectives

• To know how the computer interprets 
and stores data in the memory.

• To learn various data representations 
and binary arithmetic.

• To learn conversion between various 
Number Systems.

2.1 Introduction

 The term data comes from the 
word datum, which means a raw fact. The 
data is a fact about people, places or some 
objects.
Example:
 Let ‘Name’, ‘Age’, ‘Class’, ‘Marks’ 
and ‘Subject’  be some defined variables. 
Now, let us assign a value to each of these 
variables.

Name   = Rajesh
Age  = 16
Class  = XI
Mark  = 65
Subject = Computer Science

Figure  2.1 Example for  Data

 In the above example, the values 
assigned to the five different variables 
are called data.  When the above data is 
processed, we get an information “Rajesh 
is 16 years old, studying in Class XI, has 
scored 65 marks in Computer Science 
subject”.

2.2  Data Representations

 Computer handles data in the form 
of ‘0’(Zero) and ‘1’ (One). Any kind of data 
like number, alphabet,  special character 
should be converted to ‘0’ or ‘1’ which can 
be understood by the Computer. ‘0’ and 
‘1’ that the Computer can understand is 
called Machine language.  ‘0’ or ‘1’ are 
called ‘Binary Digits’(BIT). Therefore, 
the study of data  representation  in the 
computer is important.
•  A bit is the short form of  Binary digit 

which can be ‘0’ or ‘1’. It is the basic 
unit of data in computers.

• A nibble is a collection of 4 bits (Binary 
digits). 

•  A collection of 8 bits is called Byte. 
A byte is considered as the basic unit 
of measuring the memory size in the 
computer.

•  Word length refers to the number of 
bits processed by a Computer’s CPU. 
For example, a word length can have 8 
bits, 16 bits, 32 bits and 64 bits (Present 
day Computers use 32 bits or 64 bits)

TeraByte (1024 GB)

GigaByte (1024 MB)

MegaByte (1024 KB)

KiloByte (1024 bytes)

Byte (8 bits)

Nibble (4 bits)

Bit
(0 or 1)

 Figure  2.2 Data Representation
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Table  2.1 Memory Size (Read 2^10 as 2 power 10)

Name Abbr. Size
Kilo K 2^10 = 1,024

Mega M 2^20 = 1,048,576
Giga G 2^30 = 1,073,741,824
Tera T 2^40 = 1,099,511,627,776
Peta P 2^50 = 1,125,899,906,842,624
Exa E 2^60 = 1,152,921,504,606,846,976

Zetta Z 2^70 = 1,180,591,620,717,411,303,424
Yotta Y 2^80 = 1,208,925,819,614,629,174,706,173

 Bytes are used to represent characters in a text. Different types of coding schemes 
are used to represent the character set and numbers. The most commonly used coding 
scheme is the American Standard Code for Information Interchange (ASCII). Each 
binary value between 0 and 127 is used to represent a specific character. The ASCII value 
for (blank space) is 32 and the ASCII value of numeric 0 is 48. The range of ASCII values 
for lower case alphabets is from 97 to 122 and the range of ASCII values for the upper case 
alphabets is 65  to 90.

The speed of a computer depends on the number of bits it can process at once. For 
example, a 64- bit computer can process 64-bit numbers in one operation, while a 
32-bit computer  break 64-bit numbers down into smaller pieces, making it slower.

2.3 Different Types of  Number Systems

Number Systems

Decimal Binary Octal Hexadecimal

Base value
10

(0,1,2,3,4,5,6,7,8,9)

Base value
2

(0,1)

Base value
8

(0,1,2,3,4,5,6,7)

Base value
16

(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Figure  2.3. Number Systems

 Computer memory (Main Memory 
and Secondary Storage)is normally 
represented in terms of KiloByte (KB) or 
MegaByte (MB). In decimal system, 1 Kilo 

represents 1000, that is , 103. In binary 
system, 1 KiloByte represents 1024 bytes 
that is 210. The following table represents 
the various memory sizes:
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 A numbering system is a way 
of representing numbers. The most 
commonly used numbering system in 
real life is Decimal number system. 
Other number systems are Binary, Octal, 
Hexadecimal number system. Each 
number system is uniquely identified by 
its base value or radix. Radix or base is the 
count of number of digits in each number 
system. Radix or base is the general idea 
behind positional numbering system.
2.3.1 Decimal Number System
 It consists of 0,1,2,3,4,5,6,7,8,9(10 
digits). It is the oldest and most popular 
number system used in our day to day life.  
In the positional number system, each 
decimal digit is weighed relative to its 
position in the number. This means that 
each digit in the number is multiplied by 
10 raised to a power corresponding to that 
digit’s position. 
Example

(123)10 = 1x102  +  2x101  +  3x100  
  = 100 + 20 + 3 
  = (123)10

2.3.2 Binary Number System
 There are only two digits in the 
Binary system, namely, 0 and 1.  The 
numbers in the binary system are 
represented to the base 2 and the positional 
multipliers are the powers of 2.  The left 
most bit in the binary number is called as 
the Most Significant Bit (MSB) and it has 
the largest positional weight.  The right 
most bit is the Least Significant Bit (LSB) 
and has the smallest positional weight.

1 1 0 1

MSB LSB

Example

 The binary sequence (1101)2 has 
the decimal equivalent:

(1101)2 = 1 × 23  +  1 × 22 + 0 × 21 + 1 × 20

  = 8 + 4 + 0 + 1
  = (13)10

2.3.3 Octal Number System

 Octal number system uses digits 
0,1,2,3,4,5,6 and 7 (8 digits). Each octal 
digit has its own positional value or weight 
as a power of 8.

Example

 The Octal sequence (547)8 has the 
decimal equivalent:

(547)8 = 5×82 + 4×81 + 7×80

  = 5×64 + 4×8 + 7×1
  = 320 + 32 + 7
  = (359)10

2.3.4 Hexadecimal Number System

 A hexadecimal number is 
represented using base 16.  Hexadecimal 
or Hex numbers are used as a shorthand 
form of binary sequence.  This system is 
used to represent data in a more compact 
manner. Since 16 symbols are used, 0 to 
F, the notation is called hexadecimal.  The 
first 10 symbols are the same as in the 
decimal system, 0 to 9 and the remaining 
6 symbols are taken from the first 6 letters 
of the alphabet sequence, A to F, where A 
represents 10, B is 11, C is 12, D is 13, E is 
14 and F is 15.  
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Table 2.2  Binary, Octal, Hexadecimal 
equivalent of Decimal Numbers 
Decimal Binary Octal Hexadecimal

0 0000 000 0000
1 0001 001 0001
2 0010 002 0002
3 0011 003 0003
4 0100 004 0004
5 0101 005 0005
6 0110 006 0006
7 0111 007 0007
8 1000 010 0008
9 1001 011 0009

10 1010 012 A
11 1011 013 B
12 1100 014 C
13 1101 015 D
14 1110 016 E
15 1111 017 F

Example 
 The hexadecimal sequence (25)16 
has the decimal equivalent:

(25)16 = 2×161 + 5×160

  = 32+5 
  = (37)10

Workshop
1. Identify the number system for the 
following numbers
S. No. Number Number system

1 (1010)10 Decimal Number 
system

2 (1010)2

3 (989)16

4 (750)8

5 (926)10

2. State whether the following numbers are valid or not. If invalid, give reason.

S.No. Statement Yes / No Reason (If invalid)

1. 786 is an Octal number

2. 101 is a Binary number

3. Radix  of Octal number is 7

2.4 Number System Conversions
2.4.1 Decimal to Binary Conversion
Generally two methods followed.
Method 1: To convert Decimal to Binary 
“Repeated Division by 2” method can be 
used.  Any Decimal number divided by 2 
will leave a remainder of 0 or 1.  Repeated 
division by 2 will leave a sequence of 0s 
and 1s that become the binary equivalent 
of the decimal number.  Suppose it is 
required to convert the decimal number N 
into binary form, dividing N by 2 in the 

decimal system, we will obtain a quotient 
N1 and a remainder R1, where R1 can 
have a value of either 0 or 1.  The process 
is repeated until the quotient becomes 0 
or 1.  When the quotient is ‘0’ or ‘1’,  it 
is the final remainder value.  Write the 
final answer starting from final remainder 
value obtained to the first remainder value 
obtained.
Example 
 Convert (65)10 into its equivalent 
binary number
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1

1

2 65
2 32 -
2 16 - 0
2   8 - 0

2   4 - 0
2   2 - 0

    - 0

LSB

MSB

Note : 
65/2 = 32 + 1
32/2   = 16 + 0
16/2   = 8 + 0
8/2   = 4 + 0
4/2   = 2 + 0
2/2   = 1 + 0

Remainder

(65)10 = (1 0 0 0 0 0 1)2

Method 2 : Sum of Powers of 2. 
 A decimal number can be converted 
into a binary number by adding up the 
powers of 2 and then adding bits as needed 
to obtain the total value of the number.
a)  Find the largest power of  2 that is 

smaller than or equal to 65.
6510 > 6410

b)  Set the 64’s bit to 1 and subtract 64 
from the original number 

65-64=1
c)  32 is greater than the remaining total. 

Therefore, set the 32’s bit to 0.
d)  16 is greater than the remaining total. 

Therefore, set the 16’s bit to 0.
e)  8 is greater than the remaining total. 

Therefore, set the 8’s bit to 0.
f )  4 is greater than the remaining total. 

Therefore, set the 4’s bit to 0.
g)  2 is greater than the remaining total. 

Therefore, set the 2’s bit to 0.
h)  As the remaining value is equivalent to 

1’s bit, set it to 1.
1-1=0

Conversion is complete 6510 = (1000001)2

Example
The conversion steps can be given as 
follows:

Given Number : 65
Equivalent or value less than power of 2  
is : 64
(1) 65 - 64 = 1
(2) 1 - 1= 0

Power’s of 2 64 32 16 8 4 2 1
Binary 
Number

1 0 0 0 0 0 1

6510 = (1000001)2

2.4.2 Decimal to Octal Conversion
 To convert Decimal to Octal,  
“Repeated Division by 8”  method can be 
used.   The method is the same we have 
learnt in 2.4.1,  but in this method,  we 
have to divide the given number by 8.
Example 
 Convert (65)10 into its equivalent 
Octal number

8 65
8 8 - 1

1 - 0

LSB

MSB

(65)10   = (1 0 1)8

2.4.3 Decimal to Hexadecimal  
Conversion
 To convert Decimal to Hexadecimal, 
“Repeated division by 16” method can be 
used.  The method is the same as we have 
learnt in 2.4.1, but in this method, we have 
to divide the given number by 16.
Example
 Convert (31)10   into its equivalent 
hexadecimal number.

16    31
1 - 15

LSB

MSB

(16)10 = (1F)16(Refer Table 2.2  F=15)
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2.4.4 Conversion of fractional Decimal 
to Binary 
 The method of repeated 
multiplication by 2 has to be used to 
convert such kind of decimal fractions.
 The steps involved in the method of 
repeated multiplication by 2:
Step 1:  Multiply the decimal fraction by 

2 and note the integer part.  The 
integer part is either 0 or 1.

Step 2:  Discard the integer part of the 
previous product.  Multiply the 
fractional part of the previous 
product by 2.  Repeat Step 1 
until the same fraction repeats 
or terminates (0).

Step 3:  The resulting integer part forms 
a sequence of 0s and 1s that 
become the binary equivalent of 
decimal fraction.  

Step 4:  The final answer is to be written 
from first integer part obtained 
till the last integer part obtained.

Integer part

0.2 × 2 = 0.4 0 (first integer part obtained)

0.4 × 2 = 0.8 0

0.8 × 2 = 1.6 1

0.6 × 2 = 1.2 1

0.2  × 2 = 0.4 0 (last integer part obtained)

Note: Fraction repeats, the product is the 
same as in the first step.
 Write the integer parts from 
top to bottom to obtain the equivalent 
fractional binary number. Hence 
(0.2)10=(0.00110011…)2  = (0.00110011)2

Workshop

3. Convert the following Decimal 
numbers  to its equivalent Binary, Octal, 
Hexadecimal.

1) 1920 2) 255  3)126

2.4.5 Binary to Decimal Conversion
 To convert Binary to Decimal we 
can use positional notation method.
Step 1:  Write down the Binary digits and 

list the powers of 2 from right to 
left(Positional Notation)

Step 2: For each positional notation 
written for the digit, now write 
the equivalent weight.

Step 3: Multiply each digit with its 
corresponding weight

Step 4:  Add all the values.
Table 2.3 Positional Notation and Weight
Positional 
Notation

Weight Positional 
Notation

Weight

20 1 26 64
21 2 27 128
22 4 28 256
23 8 29 512
24 16 210 1024
25 32

Example

 Convert (111011)2 into its 
equivalent decimal number.

Weight 32 16 8 4 2 1
Positional
Notation

25 24 23 22 21 20

Given 
number

1 1 1 0 1 1
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32+16+8+0+2+1  = (59)10

 (111011)2  = (59)10

2.4.6 Binary to Octal Conversion
Step 1: Group the given  binary number 

into 3 bits from right to left.
Step 2:  You can add preceding 0 to make 

a group of 3 bits if the left most 
group has less than 3 bits. 

Step 3: Convert equivalent octal value 
using "2's power positional weight 
method" 

Table 2.4  Octal numbers and their Binary 
equivalent

Octal
Binary 

Equivalent
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Example 
 Convert (11010110)2 into octal 
equivalent number
Step 1:  Group the given number into 3 

bits from right to left.
011 010 110

Note:  The left most groups have less 
than 3 bits, so 0 is added to its left 
to make a group of 3 bits.

Step-2: Find Octal equivalent of each 
group

011        010      110

(11010110)2   = (326)8

  3          2        6

{ { {

2.4.7. Binary to Hexadecimal Conversion
Step 1:  Group the given number into 4 

bits from right to left.
Step 2:  You can add preceding 0’s to make 

a group of 4 bits if the left most 
group has less than 4 bits.

Step 3: Convert equivalent Hexadecimal 
value using "2's power positional 
weight method"

Example
 Convert (1111010110)2 into 
Hexadecimal number
Step 1:  Group the given number into 4 

bits from right to left.
0011     1101     0110

Note:   0’s are added to the left most group 
to make it a group of 4 bits

0011        1101      0110

(1111010110)2   = (3D6)16

  3          D        6

{ { {
2.4.8 Conversion of fractional Binary to 
Decimal equivalent
 Follow the steps to convert 
fractional Binary number to its Decimal 
equivalent.
Step 1: Convert integral part of Binary 

to Decimal equivalent using 
positional notation method 
(Procedure is same as discussed in 
2.4.5)

Step 2: To convert the fractional part of 
binary to its decimal equivalent.

 Step 2.1: Write down the Binary 
digits in the fractional part

 Step 2.2: For all the digits write 
powers of 2 from left to right 
starting from 2-1, 2-2, 2-3...... 2-n,

 now write the equivalent weight.
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 Step 2.3: Multiply each digit with 
its corresponding weight 

 Step 2.4: Add all the values which 
you obtained in Step 2.3

Table 2.5  Positional notation and weight
Positional 
notation

Weight

2-1  (1/2) 0.5
2-2   (1/4) 0.25
2-3   (1/8) 0.125
2-4  (1/16) 0.0625 
2-5   (1/32) 0.03125
2-6  (1/64) 0.015625
2-7   (1/128) 0.0078125

Step 3: To get final answer write the 
integral part (after conversion), 
followed by a decimal point(.) and 
the answer arrived at Step 2.4 

Example 
 Convert the given Binary number 
(11.011)2 into its decimal equivalent 
Integer part (11)2 = 3 (Refer table 2.2)

21 20  2-1 2-2 2-3

1 1 . 0 1 1

3 + . (0×0.5 + 1×0.25 + 1×0.125) 
  = 3. 375
(11.011)2 = (3.375)10

Workshop

4. Convert the given Binary number 
into its equivalent Decimal, Octal and 
Hexadecimal number.
1) 101110101 2) 1011010 3) 101011111

2.4.9. Octal to Decimal Conversion
 To convert Octal to Decimal, we 
can use positional notation method.
1. Write down the Octal digits and list the 

powers of 8 from right to left(Positional 
Notation)

2. For each positional notation of the 
digit write the equivalent weight.

3. Multiply each digit with its 
corresponding weight

4. Add all the values
Example
 Convert (1265)8 to equivalent 
Decimal number

Weight 512 64 8 1

Positional
Notation

83 82 81 80

Given 
number

1 2 6 5

(1265)8 = 512 ×1 + 64×2 + 8×6 +1×5
 = 512 + 128 + 48 + 5
(1265)8  = (693)10

2.4.10 Octal to Binary Conversion
 For each Octal digit in the given 
number write its 3 digits binary equivalent 
using positional notation.
Example
 Convert (6213)8 to equivalent 
Binary number

6 2 1 3

110 010 001 011

(6213)8=(110010001011)2

Workshop

5. Convert the following Octal numbers 
into Binary numbers.
(A) 472   (B) 145 (C) 347
(D) 6247 (E) 645
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2.4.11  Hexadecimal to Decimal 
Conversion

 To convert Hexadecimal to Decimal 
we can use positional notation method.
1. Write down the Hexadecimal digits 

and list the powers of 16 from right to 
left(Positional Notation)

2. For each positional notation written 
for the digit, now write the equivalent 
weight.

3. Multiply each digit with its 
corresponding weight

4. Add all the values to get one final 
value.

Example
 Convert (25F)16 into its equivalent 
Decimal number.

Weight 256 16 1

Positional
Notation

162 161 160

Given 
number

2 5 F(15)

(25F)16 = 2×256  +  5×16  + 15×1
= 512 + 80 +15  
  (25F)16 = (607)10

2.4.12 Hexadecimal to Binary Conversion
 Write 4 bits Binary equivalent 
for each Hexadecimal digit for the given 
number using positional notation method.
Example
 Convert (8BC)16 into equivalent 
Binary number

8 B C

1000 1011 1100

(8BC)16 = (100010111100)2

Workshop

6. Convert the following Hexadecimal 
numbers to Binary numbers
(A) A6  (B) BE   
(C) 9BC8 (D) BC9

2.5 Binary Representation for Signed 
Numbers
 Computers can handle both positive 
(unsigned) and negative (signed) numbers.  
The simplest method to represent 
negative binary numbers is called Signed 
Magnitude. In signed magnitude method, 
the left most bit is Most Significant Bit 
(MSB), is called sign bit or parity bit.  
 The numbers are represented in 
computers in different ways:
• Signed Magnitude representation
• 1’s Complement
• 2’s Complement

2.5.1 Signed Magnitude representation 
 The value of the whole numbers can 
be determined by the sign used before it. If 
the number has ‘+’ sign or no sign it will be 
considered as positive. If the number has 
‘–’ sign it will be considered as negative.
Example:

 +43 or 43 is a positive number

 –43  is a negative number

 In signed binary representation, 
the left most bit is considered as sign bit. 
If this bit is 0, it is a positive number and 
if it 1, it is a negative number. Therefore 
a signed binary number has 8 bits, only 7 
bits used for storing values (magnitude) 
and the 1 bit is used for sign.
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+43 is represented in memory as follows:

0 0 1 0 1 0 1 1

Sign bit Magnitude (Value)

Most Significant Bit (MSB )
(‘0’ represent that the number is positive)

Least Significant Bit (LSB)

-43 can be represented in memory as 
follows.

1 1 0 1 0 1 0 1

Sign bit Magnitude (Value)

Most Significant Bit (MSB )
(‘1’ represent that the number is negative)

Least Significant Bit (LSB)

2.5.2 1’s Complement representation

 This is an easier approach to 
represent signed numbers.  This is for 
negative numbers only i.e. the number 
whose MSB is 1.

 The steps to be followed to find 1’s 
complement of a number:

Step 1: Convert given Decimal number 
into Binary

Step 2: Check if the binary number 
contains 8 bits , if less add 0 at the 
left most bit, to make it as 8 bits.

Step 3:  Invert all bits (i.e. Change 1 as 0 
and 0 as 1)

Example 
 Find 1’s complement for (–24)10

Given 
Number

Binary 
Number

1’s  Compliment

(-24)10 00011000 11100111

2.5.3 2’s Complement representation
 The 2’s-complement method for 
negative number is as follows:

a. Invert all the bits in the binary 
sequence (i.e., change every 0 to1 and 
every 1 to 0 ie.,1’s   complement)

b.  Add 1 to the result to the Least 
Significant Bit (LSB).

Example

 2’s Complement represent of (-24)10

Binary equivalent of +24: 11000
8bit format: 00011000
1’s complement: 11100111
Add 1 to LSB: +1
2’s complement of -24: 11101000

Workshop

7. Write the 1’s complement number and 
2’s complement number for the following 
decimal numbers:
(A) 22   (B) -13   (C) -65  (D) -46   

2.6 Binary Arithmetic

 As decimal numbers, the binary 
numbers also permit computations like 
addition, subtraction, multiplication and 
division. The following session deals only 
with binary addition and subtraction.

2.6.1 Binary Addition

 The following table is useful when 
adding two binary numbers.

A B SUM (A + B) Carry
0 0 0 -
0 1 1 -
1 0 1 -
1 1 0 1

 In 1 + 1 = 10, is considered as sum 
0 and the 1 as carry bit. This carry bit is 
added with the previous position of the bit 
pattern.
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Example Add: 10112 + 10012

(Carry Bit)→  1 1

 1 0 1 1

+ 1 0 0 1

1 0 1 0 0

} 1 0

 10112 + 10012 = 101002

Example Perform Binary addition for the 
following: 2310 + 1210

Step 1: Convert 23 and 12 into binary form
2310   

2’s power 16 8 4 2 1
Binary Number 1 0 1 1 1

2310 = 000101112

1210   

2’s power 8 4 2 1
Binary Number 1 1 0 0

1210 = 000011002

Step 2: Binary addition of 23 and 12:
Carry Bit → 1 1 1

2310 = 0   0 0 1 0 1 1 1
1210  = 0   0 0 0 1 1 0 0
3510 = 0   0 1 0 0 0 1 1

2.6.2 Binary Substraction
 The table for Binary Substraction is 
as follows:

A B Difference 
(A-B)

Borrow

0  0 0 0
1  0 1 0
1  1 0 0
0  1 1 1

 When substracting 1 from 0, borrow 
1 from the next Most Significant Bit, when 
borrowing from the next Most Significant 
Bit, if it is 1, replace it with 0.  If the next Most 

Significant Bit is 0, you must borrow from a 
more significant bit that contains 1 and replace 
it with 0 and 0s upto that point become 1s.
Example Subtract 10010102 – 101002

0 1 10 0 10

1 0 0 1 0 1 0

(-) 1 0 1 0 0

1 1 0 1 1 0

Example Perform binary addition for the 
following: (–21)10 + (5)10

Step 1: Change -21 and 5 into binary form
2110   

2’s power 16 8 4 2 1
Binary Number 1 0 1 0 1

2110 = 000101012

510 

2’s power 4 2 1
Binary Number 1 0 1

510 = 000001012

Step 2:
 2110 0 0 0 1 0 1 0 1
1’s Compliment 1 1 1 0 1 0 1 0
2’s Compliment 1 1 1 0 1 0 1 1

Step 3: 
Binary Addition of –21 and 5 :
Carry bit 1 1 1 1
-2110 1 1 1 0 1 0 1 1
   510 0 0 0 0 0 1 0 1
-1610 (Result) 1 1 1 1 0 0 0 0

Workshop

8. Perform the following binary 
computations:
(A) 1010 + 1510 (B) –1210 + 510 

(C) 1410 – 1210 (D) (–210) – (–610)
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2.7 Representing Characters in Memory

 As represented in introduction, 
all the input data given to the computer 
should be in understandable format.  In 
general, 26 uppercase letters, 26 lowercase 
letters, 0 to 9 digits and special characters 
are used in a computer, which is called 
character set. All these character set 
are denoted through numbers only. All 
Characters in the character set needs 
a common encoding system. There 
are several encoding systems used for 
computer. They are
• BCD – Binary Coded Decimal
• EBCDIC – Extended Binary Coded 

Decimal Interchange Code
• ASCII – American Standard Code for 

Information Interchange
• Unicode 
• ISCII - Indian Standard Code for 

Information Interchange
2.7.1 Binary Coded Decimal (BCD)
 This encoding system is not in the 
practice right now. This is 26 bit encoding 
system. This can handle 26 = 64  characters 
only.
2.7.2 American Standard Code for 
Information Interchange (ASCII)
 This is the most popular encoding 
system recognized by United States. 
Most of the computers use this system. 
Remember this encoding system can 
handle English characters only. This can 
handle 27 bit which means 128 characters.
 In this system, each character has 
individual number (Refer Appendix).  
 The new edition (version) ASCII -8, 
has 28 bits and can handle 256 characters are 
represented from 0 to 255 unique numbers.

 The ASCII code equivalent to 
the uppercase letter ‘A’ is 65. The binary 
representation of ASCII (7 bit) value is 
1000001. Also 01000001 in ASCII-8 bit.
2.7.3  Extended Binary Coded Decimal 

Interchange Code (EBCDIC)
 This is similar to ASCII Code with 
8 bit representation. This coding system 
is formulated by International Business 
Machine(IBM). The coding system can 
handle 256 characters. The input code 
in ASCII can be converted to EBCDIC 
system and vice - versa. 
2.7.4  Indian Standard Code for 

Information Interchange (ISCII)
 ISCII is the system of handling 
the character of Indian local languages. 
This as a 8-bit coding system. Therefore 
it can handle 256 (28) characters. This 
system is formulated by the department 
of Electronics in India in the year 1986-
88 and recognized by Bureau of Indian 
Standards (BIS). Now this coding system 
is integrated with Unicode. 
2.7.5 Unicode
 This coding system is used in most of 
the modern computers. The popular coding 
scheme after ASCII is Unicode. ASCII can 
represent only 256 characters. Therefore 
English and European Languages alone can 
be handled by ASCII. Particularly there was 
a situation, when the languages like Tamil, 
Malayalam, Kannada and Telugu could 
not be represented by ASCII. Hence, the 
Unicode was generated to handle all the 
coding system of Universal languages. This is 
16 bit code and can handle 65536 characters.
 Unicode scheme is denoted by 
hexadecimal numbers. The Unicode table 
of Tamil, Malayalam, Telugu and Kannada 
is shown in Table 2.6
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Table 2.6

Unicode Table of Tamil Unicode Table of Malayalam

0B8 0B9 0BA 0BB 0BC 0BD 0BE 0BF

$ஂ

ஃ

அ

ஆ

இ

ஈ

உ

ஊ

எ

ஏ

ஐ

ஒ

ஓ

ஔ

க

ங

ச

ஜ

ஞ

ட

ண

த

ந

ன

ப

ம

ய

ர

ற

ல

ள

ழ

வ

ஶ

ஷ

ஸ

ஹ

$ா

$ி

$ ீ

$ு

$ூ

$ெ

$ே

$ை

$ொ

$ோ

$ௌ

$்

ௐ

$ௗ

௦

௧

௨

௩

௪

௫

௬

௭

௮

௯

௰

௱

௲

௳

௴

௵

௶

௷

௸

௹

௺

0B82

0B83

0B85

0B86

0B87

0B88

0B89

0B8A

0B8E

0B8F

0B90

0B92

0B93

0B94

0B95

0B99

0B9A

0B9C

0B9E

0B9F

0BA3

0BA4

0BA8

0BA9

0BAA

0BAE

0BAF

0BB0

0BB1

0BB2

0BB3

0BB4

0BB5

0BB6

0BB7

0BB8

0BB9

0BBE

0BBF

0BC0

0BC1

0BC2

0BC6

0BC7

0BC8

0BCA

0BCB

0BCC

0BCD

0BD0

0BD7

0BE6

0BE7

0BE8

0BE9

0BEA

0BEB

0BEC

0BED

0BEE

0BEF

0BF0

0BF1

0BF2

0BF3

0BF4

0BF5

0BF6

0BF7

0BF8

0BF9

0BFA

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0D0 0D1 0D2 0D3 0D4 0D5 0D6 0D7

$ഀ

$ഁ

$ം

$ഃ

അ

ആ

ഇ

ഈ

ഉ

ഊ

ഋ

ഌ

എ

ഏ

ഐ

ഒ

ഓ

ഔ

ക

ഖ

ഗ

ഘ

ങ

ച

ഛ

ജ

ഝ

ഞ

ട

ഠ

ഡ

ഢ

ണ

ത

ഥ

ദ

ധ

ന

ഩ

പ

ഫ

ബ

ഭ

മ

യ

ര

റ

ല

ള

ഴ

വ

ശ

ഷ

സ

ഹ

ഺ

$഻

$഼

ഽ

$ാ

$ി

$ീ

$ു

$ൂ

$ൃ

$ൄ

$ െ

$ േ

$ ൈ

$ൊ

$ോ

$ൌ

$്

ൎ

൥

ൔ

ൕ

ൖ

$ൗ

൘

൙

൚

൛

൜

൝

൞

ൟ

ൠ

ൡ

$ ൢ

$ ൣ

൦

൧

൨

൩

൪

൫

൬

൭

൮

൯

൰

൱

൲

൳

൴

൵

൶

൷

൸

൹

ൺ

ൻ

ർ

ൽ

ൾ

ൿ

0D00

0D01

0D02

0D03

0D05

0D06

0D07

0D08

0D09

0D0A

0D0B

0D0C

0D0E

0D0F

0D10

0D12

0D13

0D14

0D15

0D16

0D17

0D18

0D19

0D1A

0D1B

0D1C

0D1D

0D1E

0D1F

0D20

0D21

0D22

0D23

0D24

0D25

0D26

0D27

0D28

0D29

0D2A

0D2B

0D2C

0D2D

0D2E

0D2F

0D30

0D31

0D32

0D33

0D34

0D35

0D36

0D37

0D38

0D39

0D3A

0D3B

0D3C

0D3D

0D3E

0D3F

0D40

0D41

0D42

0D43

0D44

0D46

0D47

0D48

0D4A

0D4B

0D4C

0D4D

0D4E

0D4F

0D54

0D55

0D56

0D57

0D58

0D59

0D5A

0D5B

0D5C

0D5D

0D5E

0D5F

0D60

0D61

0D62

0D63

0D66

0D67

0D68

0D69

0D6A

0D6B

0D6C

0D6D

0D6E

0D6F

0D70

0D71

0D72

0D73

0D74

0D75

0D76

0D77

0D78

0D79

0D7A

0D7B

0D7C

0D7D

0D7E

0D7F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F
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Table 2.6

Unicode Table of Telugu Unicode Table of Kannada

0C0 0C1 0C2 0C3 0C4 0C5 0C6 0C7

$ ఀ

$ఁ

$ం

$ః

అ

ఆ

ఇ

ఈ

ఉ

ఊ

ఋ

ఌ

ఎ

ఏ

ఐ

ఒ

ఓ

ఔ

క

ఖ

గ

ఘ

ఙ

చ

ఛ

జ

ఝ

ఞ

ట

ఠ

డ

ఢ

ణ

త

థ

ద

ధ

న

ప

ఫ

బ

భ

మ

య

ర

ఱ

ల

ళ



వ

శ

ష

స

హ

ఽ

$ా

$ ి

$ ీ

$ు

$ూ

$ృ

$ౄ

$ ె

$ే

$ ై

$ొ

$ో

$ౌ

$ ్

$ౕ

$ౖ

ౘ

ౙ

ౚ

ౠ

ౡ
$ ౢ

$ ౣ

౦

౧

౨

౩

౪

౫

౬

౭

౮

౯

౸

౹

౺

౻

౼

౽

౾

౿

0C00

0C01

0C02

0C03

0C05

0C06

0C07

0C08

0C09

0C0A

0C0B

0C0C

0C0E

0C0F

0C10

0C12

0C13

0C14

0C15

0C16

0C17

0C18

0C19

0C1A

0C1B

0C1C

0C1D

0C1E

0C1F

0C20

0C21

0C22

0C23

0C24

0C25

0C26

0C27

0C28

0C2A

0C2B

0C2C

0C2D

0C2E

0C2F

0C30

0C31

0C32

0C33

0C34

0C35

0C36

0C37

0C38

0C39

0C3D

0C3E

0C3F

0C40

0C41

0C42

0C43

0C44

0C46

0C47

0C48

0C4A

0C4B

0C4C

0C4D

0C55

0C56

0C58

0C59

0C5A

0C60

0C61

0C62

0C63

0C66

0C67

0C68

0C69

0C6A

0C6B

0C6C

0C6D

0C6E

0C6F

0C78

0C79

0C7A

0C7B

0C7C

0C7D

0C7E

0C7F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0C8 0C9 0CA 0CB 0CC 0CD 0CE 0CF

ಀ

$ಁ

$ಂ

$ಃ

ಅ

ಆ

ಇ

ಈ

ಉ

ಊ

ಋ

ಌ

ಎ

ಏ

ಐ

ಒ

ಓ

ಔ

ಕ

ಖ

ಗ

ಘ

ಙ

ಚ

ಛ

ಜ

ಝ

ಞ

ಟ

ಠ

ಡ

ಢ

ಣ

ತ

ಥ

ದ

ಧ

ನ

ಪ

ಫ

ಬ

ಭ

ಮ

ಯ

ರ

ಱ

ಲ

ಳ

ವ

ಶ

ಷ

ಸ

ಹ

$ ಼

ಽ

$ಾ

$ಿ

$ೀ

$ು

$ೂ

$ೃ

$ೄ

$ೆ

$ೇ

$ೈ

$ೊ

$ೋ

$ೌ

$್

$ೕ

$ೖ

ೞ

ೠ

ೡ

$ೢ

$ೣ

೦

೧

೨

೩

೪

೫

೬

೭

೮

೯

ೱ

ೲ

0C80

0C81

0C82

0C83

0C85

0C86

0C87

0C88

0C89

0C8A

0C8B

0C8C

0C8E

0C8F

0C90

0C92

0C93

0C94

0C95

0C96

0C97

0C98

0C99

0C9A

0C9B

0C9C

0C9D

0C9E

0C9F

0CA0

0CA1

0CA2

0CA3

0CA4

0CA5

0CA6

0CA7

0CA8

0CAA

0CAB

0CAC

0CAD

0CAE

0CAF

0CB0

0CB1

0CB2

0CB3

0CB5

0CB6

0CB7

0CB8

0CB9

0CBC

0CBD

0CBE

0CBF

0CC0

0CC1

0CC2

0CC3

0CC4

0CC6

0CC7

0CC8

0CCA

0CCB

0CCC

0CCD

0CD5

0CD6

0CDE

0CE0

0CE1

0CE2

0CE3

0CE6

0CE7

0CE8

0CE9

0CEA

0CEB

0CEC

0CED

0CEE

0CEF

0CF1

0CF2

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F
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Appendix
American Standard Code for Information Interchange (ASCII)

(Few specific characters only)
Alphabets

Alphabets
Decimal 
number

Binary number
(8 bit)

Octal 
number

Hexadecimal 
number

A 65 01000001 101 41
B 66 01000010 102 42
C 67 01000011 103 43
D 68 01000100 104 44
E 69 01000101 105 45
F 70 01000110 106 46
G 71 01000111 107 47
H 72 01001000 110 48
I 73 01001001 111 49
J 74 01001010 112 4A
K 75 01001011 113 4B
L 76 01001100 114 4C
M 77 01001101 115 4D
N 78 01001110 116 4E
O 79 01001111 117 4F
P 80 01010000 120 50
Q 81 01010001 121 51
R 82 01010010 122 52
S 83 01010011 123 53
T 84 01010100 124 54
U 85 01010101 125 55
V 86 01010110 126 56
W 87 01010111 127 57
X 88 01011000 130 58
Y 89 01011001 131 59
Z 90 01011010 132 5A
a 97 01100001 141 61
b 98 01100010 142 62
c 99 01100011 143 63
d 100 01100100 144 64
e 101 01100101 145 65
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f 102 01100110 146 66
g 103 01100111 147 67
h 104 01101000 150 68
i 105 01101001 151 69
j 106 01101010 152 6A
k 107 01101011 153 6B
l 108 01101100 154 6C

m 109 01101101 155 6D
n 110 01101110 156 6E
o 111 01101111 157 6F
p 112 01110000 160 70
q 113 01110001 161 71
r 114 01110010 162 72
s 115 01110011 163 73
t 116 01110100 164 74
u 117 01110101 165 75
v 118 01110110 166 76
w 119 01110111 167 77
x 120 01111000 170 78
y 121 01111001 171 79
z 122 01111010 172 7A

Numerals

Alphabets
Decimal 
number

Binary number
(8 bit)

Octal 
number

Hexadecimal 
number

0 48 00110000 60 30
1 49 00110001 61 31
2 50 00110010 62 32
3 51 00110011 63 33
4 52 00110100 64 34
5 53 00110101 65 35
6 54 00110110 66 36
7 55 00110111 67 37
8 56 00111000 70 38
9 57 00111001 71 39
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Special Characters

Special 
symbols

Decimal 
number

Binary number
(8 bit)

Octal 
number

Hexadecimal 
number

Blank 32 00100000 40 20
! 33 00100001 41 21
" 34 00100010 42 22
# 35 00100011 43 23
$ 36 00100100 44 24
% 37 00100101 45 25
& 38 00100110 46 26
' 39 00100111 47 27
( 40 00101000 50 28
) 41 00101001 51 29
* 42 00101010 52 2A
+ 43 00101011 53 2B
, 44 00101100 54 2C
- 45 00101101 55 2D
. 46 00101110 56 2E
/ 47 00101111 57 2F
: 58 00111010 72 3A
; 59 00111011 73 3B
< 60 00111100 74 3C
= 61 00111101 75 3D
> 62 00111110 76 3E
? 63 00111111 77 3F
@ 64 01000000 100 40
[ 91 01011011 133 5B
\ 92 01011100 134 5C
] 93 01011101 135 5D
^ 94 01011110 136 5E
_ 95 01011111 137 5F
` 96 01100000 140 60
{ 123 01111011 173 7B
| 124 01111100 174 7C
} 125 01111101 175 7D
~ 126 01111110 176 7E
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Evaluation

SECTION – A
Choose the correct answer:
1. Which refers to the number of bits processed by a computer’s CPU?
 A) Byte  B) Nibble  C) Word length D) Bit
2. How many bytes does 1 KiloByte contain?
 A) 1000  B) 8   C) 4   D) 1024
3. Expansion for ASCII 
 A) American School Code for Information Interchange
 B) American Standard Code for Information Interchange
 C) All Standard Code for Information Interchange 
 D) American Society Code for Information Interchange
4.  2^50 is referred as
 A) Kilo  B) Tera  C) Peta  D) Zetta
5. How many characters can be handled in Binary Coded Decimal System?
 A) 64   B) 255   C) 256   D) 128
6. For 11012 the equalent Hexadecimal equivalent is?
 A) F   B) E   C) D   D) B
7. What is the 1’s complement of 00100110?
 A) 00100110  B) 11011001  C) 11010001  D) 00101001
8. Which amongst this is not an Octal number?
 A) 645   B) 234   C) 876   D) 123

SECTION-B 
Very Short Answers
1. What is data?
2. Write the 1’s complement procedure.
3. Convert (46)10 into Binary number
4. We cannot find 1’s complement for (28)10. State reason.
5. List the encoding systems that represents characters in memory.

SECTION-C
Short Answers
1. What is radix of a number system? Give example
2. Write note on binary number system.
3. Convert (150)10 into Binary, then convert that Binary number to Octal
4. Write short note on ISCII
5. Add  a) -2210+1510   b) 2010+2510

SECTION - D
Explain in detail
1.  a) Write the procedure to convert fractional Decimal to Binary
 b) Convert (98.46)10 to Binary
2.  Find 1’s Complement and 2’s Complement for the following Decimal number
 a) -98  b) -135
3.  a) Add  11010102+1011012   b) Subtract 11010112 - 1110102
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2.8   Introduction

 Boolean algebra is a mathematical 
discipline that is used for designing digital 
circuits in a digital computer. It describes 
the relation between inputs and outputs 
of a digital circuit. The name Boolean 
algebra has been given in honor of an 
English mathematician George Boole who 
proposed the basic principles of this algebra. 

 George Boole (1815-1864) 
was born 
to a low 
c l a s s 

family and only 
received an 
elementary school 
education. Despite that, he taught himself 
highly advanced mathematics and 
different languages as a teenager without 
any assistance. He started teaching at 
age sixteen, and started his own school 
at age nineteen. By his mid-twenties, 
he had mastered most of the important 
mathematical principles in his day.

2.8.1 Binary valued quantities:

 Every day we have to make logical 
decisions: 

1.  Should I carry Computer Science 
book every day?  Yes / No

2.  8-10 = 10 is this answer correct? Yes / 
No 

3.  Chennai is capital of India?  Yes / No

4.  What did I say yesterday?

 The first three questions thrown 
above, the answer may be True (Yes) 
or False (No). But the fourth one, we 
cannot be answer as True or False. Thus, 
sentences which can be determined 
to be True or False are called “Logical 
Statement” or “Truth Functions”. The 
results True or False are called “Truth 
Values”. The truth values depicted by 
logical constant 1 and 0; 1 means True 
and 0 means False. The variable which can 
store these truth values are called “Logical 
variable” or “Binary valued variables” or 
“Boolean Variables” as these can store 
one of the two values of True or False.

2.8.2 Logical Operations:

 Boolean algebra makes use of 
variables and operations (functions). The 
basic logical operations are AND, OR and 
NOT, which are symbolically represented 
by dot ( . ), plus ( + ), and by over bar / single 
apostrophe respectively. These symbols 
are also called as “Logical Operators”. 

2.8.3 Truth Table:

 A truth table represents all the 
possible values of logical variable or 
statements along with all the possible 
results  of given combination of truth values.

2.8.4   AND operator

The AND operator is defined in Boolean 
algebra by the use of the dot (.) operator. It is 
similar to multiplication in ordinary algebra. 
The AND operator combines two or more 
input variables so that the output is true only 
if all the inputs are true. The truth table for a 
2-input AND operator is shown as follows:

Part - II - Boolean Algebra
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 The NOT operator is represented 
algebraically by the Boolean expression:  
Y = A

Example:

 Consider the Boolean equation: 

 D = A + ( B . C )

 D is equal to 1 (true) if A is 1 or if          
( B . C ) is 1, that is, B = 0 and C = 1. 

 Otherwise D is equal to 0 (false). 

 The basic logic functions AND, OR, 
and NOT can also be combined to make 
other logic operators such as NAND and 
NOR

2.8.7   NAND operator

 The NAND is the combination of 
NOT and AND. The NAND is generated by 
inverting the output of an AND operator. 
The algebraic expression of the NAND 
function is:

 Y = A . B

 The NAND function truth table is 
shown below:

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A NAND B = NOT (A AND B)

2.8.8   NOR operator

 The NOR is the combination of 
NOT and OR. The NOR is generated by 
inverting the output of an OR operator. 
The algebraic expression of the NOR 
function is:

 Y = A . B

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

 The above 2-input AND operation is 
expressed as: Y = A . B

2.8.5   OR operator

 The plus sign is 
used to indicate the OR 
operator. The OR operator 
combines two or more 
input variables so that the 
output is true if at least 
one input is true. The truth table for a 
2-input OR operator is shown as follows:

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

 The above 2-input OR operation is 
expressed as: Y = A + B

2.8.6   NOT operator

 The NOT operator has one input and 
one output. The input is either true or false, 
and the output is always the opposite, that is, 
the NOT operator inverts the input. The truth 
table for a NOT operator where A is the input 
variable and Y is the output is shown below:

A Y
0 1
1 0
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The NOR function truth table is shown 
below:

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A NOR B = NOT (A OR B)
2.9   Basic Logic Gates:
 A gate is a basic electronic circuit 
which operates on one or more signals to 
produce an output signal. There are three 
fundamental gates namely AND, OR and 
NOT. The other logic gates like NAND, 
NOR, XOR and XNOR are derived gates 
which are derived from the fundamental 
gates. NAND and NOR gates are called 
Universal gates, because the fundamental 
logic gates can be realized through them.
2.9.1   AND Gate
 The AND gate can have two or 
more input signals and produce an output 
signal. 
 The output is "true" only when both 
inputs are "true", otherwise, the output is 
"false". In other words the output will be 1 
if and only if both inputs are 1; otherwise 
the output is 0. The output of the AND gate 
is represented by avariable say C, where A 
and B are two boolean variables. In boolean 
algebra, a variable can take either of the 
values '0' or '1'. The logical symobl of the 
AND gate is

A
C=AB

B

Fig. 2.4 Logic symbol of AND Gate

 One way to symbolize the action 
of an AND gate is by writing the boolean 
function.

C = A AND B
 In boolean algebra the multiplication 
sign stands for the AND operation. 
Therefore, the output of the AND gate is 
  C = A . B or
simply  C = AB 
 Read this as "C equals A AND B". 
Since there are two input variables here, the 
truth table has four entries, because there 
are four possible inputs : 00, 01, 10 and 11.
For instance if both inputs are 0,
 C  =  A  .  B
      =  0  .  0
      =  0
The truth table for AND Gate is

Input Output
A B C
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.7 Truth Table for AND Gate
2.9.2   OR Gate
 The OR gate gets its name from its 
behaviour like the logical inclusive "OR". 
The output is "true" if either or both of the 
inputs are "true". If both inputs are "false" 
then the output is "false". In otherwords the 
output will be 1 if and only if one or both 
inputs are 1; otherwise, the output is 0. The 
logical symbol of the OR gate is

A

B
C=A+B

Fig. 2.5 Logic symbol of OR Gate
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The OR gate output is 

 C  =  A  OR  B

We use the + sign to denote the OR function. 
Therefore,

 C  =  A  +  B

Read this as "C equals A OR B".

For instance, if both the inputs are 1

 C  =  A  +  B  =  1  +  1  =  1

The truth table for OR gate is 

Input Output
A B C
0 0 0
0 1 1
1 0 1
1 1 1

Table 2.8 Truth Table for OR Gate

2.9.3   NOT Gate

 The NOT gate, called a logical 
inverter, has only one input. It reverses the 
logical state. In other words the output C 
is always the complement of the input. The 
logical symbol of the NOT gate is 

A C = A

Fig. 2.6 Logic symbol of NOT Gate

The boolean function of NOT gate is

 C  =  NOT  A

In boolean algerbra, the overbar stands for 
NOT operation. Therefore,

 C  =  A

Read this as "C equals NOT A" or "C equals 
the complement of A".

 If A is 0,

 C  =   0   =  1

 On the otherhand, if A is 1,

 C  =   1   =  0

The truth table for NOT gate is

Input Output
A C
1 0
0 1

Table 2.9 Truth Table for NOT Gate
2.9.4   NOR Gate
 The NOR gate circuit is an OR 
gate followed by an inverter. Its output is 
"true" if both inputs are "false" Otherwise, 
the output is "false". In other words, the 
only way to get '1' as output is to have 
both inputs '0'. Otherwise the output is 0. 
The logic circuit of the NOR gateis 

A
B

A+B C=A+B

Fig. 2.7 Logic Circuit of NOR Gate

A
B

C

Fig. 2.8  Logic symbol of NOR Gate
The output of NOR gate is 

 C  = ( A  +  B)  

 Read this as "C equals NOT of A OR 
B" or "C equals the complement of A OR B".
For example if both the inputs are 0, 

 C  = ( 0  +  0)  =  0  =  1  

The truth table for NOR gate is

Input Output
A B C
0 0 1
0 1 0
1 0 0
1 1 0

Table 2.10 Truth Table for NOR Gate
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2.9.5   Bubbled AND Gate

 The Logic Circuit of Bubbled AND 
Gate

A

B

A

C=A.B

B

Fig. 2.9 Logic circuit of Bubbled AND Gate

 In the above circuit, invertors on the 
input lines of the AND gate gives the output 
as

 C  = ( A  .  B)  

 This circuit can be redrawn as the 
bubbles on the inputs, where the bubbles 
represent inversion.

A

B
C

Fig. 2.10 Logic Symbol of Bubbled AND 
Gate

 We refer this as bubbled AND gate. 
Let us analyse this logic circuit for all input 
possiblities.

If A = 0 and B = 0 C=(0.0)    = 1.1 = 1

If  A = 0 and B = 1 C=(0.1)    = 1.0 = 0

If A = 1 and B = 0 C=(1.0)    = 0.1 = 0

If A = 1 and B = 1 C=(1.1)    = 0.0 = 0

Here the truth table is

Input Output
A B C
0 0 1
0 1 0

1 0 0
1 1 0

You can see that, a bubbled AND gate 
produces the same output as a NOR gate. So, 
You can replace each NOR gate by a bubbled 
AND gate. In other words the circuits are 
interchangeable.

Therefore
(A + B) = A . B

Which establishes the De Morgan's first 
theorem.

2.9.6   NAND Gate

 The NAND gate operates an AND 
gate followed by a NOT gate. It acts in the 
manner of the logical operation "AND" 
followed by inversion. The output is "false" 
if both inputs are "true", otherwise, the 
output is "true". In otherwords the output 
of the NAND gate is 0 if and only if both 
the inputs are 1, otherwise the output is 1. 
The logic circuit of NAND gate is

 
A

A.B C=A.B
B

Fig. 2.11 Logic Circuit of NAND Gate

The logical symbol of NAND gate is
A

B
C

Fig. 2.12 Logic Symbol of NAND Gate 
 

 The output of the NAND gate is

C = (A . B)

 Read this as "C" equals NOT of A 
AND B" or "C" equals the complement of A 
AND B".

For example if both the inputs are 1
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C = (1 . 1)= 1 = 0

The truth table for NAND gate is

Input Output
A B C
0 0 1
0 1 1
1 0 1
1 1 0

Table 2.11 Truth Table for NAND Gate

2.9.7   Bubbled OR Gate

 The logic circuit of bubbled OR gate 
is

 

A A

B B

C=A + B

Fig. 2.13 Logic Circuit of Bubbled OR Gate

 The output of this circuit can be 
written as C = A  +  B

 The above circuit can be redrawn as 
the bubbles on the input, where the bubbles 
represents the inversion.

A

B
C

Fig. 2.14 Logic Symbol of Bubbled OR Gate

We refer this as bubbled OR gate. The truth 
table for the bubbled OR is

Input Output
A B C
0 0 1
0 1 1
1 0 1
1 1 0

Table 2.12 Truth Table for Bubbled OR Gate

 If we compare the truth tables of the 
bubbled OR gate with NAND gate, they are 
identical. So the circuits are interchangeable.

Therefore,
(A . B) = A  + B

Which establishes the De Morgan's second 
theorem.

2.9.8   XOR Gate

 The XOR (exclusive - OR) gate acts 
in the same way as the logical "either/or." 
The output is "true" if either, but not both, 
of the inputs are "true". The output is "false" 
if both inputs are "false" or if both inputs are 
"true." Another way of looking at this circuit 
is to observe that the output is 1 if the inputs 
are different, but 0 if the inputs are the same. 
The logic circuit of XOR gate is
A

B

A

C = A.B+ A.B

A A.B

B A.BB

Fig. 2.15 Logic Circuit of  XOR Gate

 The output of the XOR gate is

 The truth table for XOR gate is

Input Output
A B C
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.13 Truth Table for XOR Gate

In boolean algebra. exclusive - OR operator  
⊕ or "encircled plus".

Hence  C = A ⊕B

 The logical symbol of XOR gate is
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A

B
C

Fig. 2.16 Logic Symbol of  XOR Gate

2.9.9   XNOR Gate
 The XNOR (exclusive - NOR) gate 
is a combination XOR gate followed by an 
inverter. Its output is "true" if the inputs 
are the same, and "false" if the inputs are 
different. In simple words, the output is 1 if 
the input are the same, otherwise the output 
is 0. The logic circuit of XNOR gate is
A A ≈ B
B

C = A ≈ B

Fig. 2.17 Logic Circuit of  XNOR Gate
 The output of the XNOR is NOT of 
XOR

C = A ⊕ B

    = A . B + A . B 

    = AB + A  B

(Using De Morgan's Theorem)
In boolean algebra, ⊙ or "included dot" 
stands for the XNOR.
Therefore,  C = A ⊙ B
The logical symbol is

A C=A ⊙ B
B

Fig. 2.18 Logic Symbol of  XNOR Gate
The truth table for XNOR Gate is

Input Output
A B C
0 0 1
0 1 0
1 0 0
1 1 1

Table 2.14 Truth Table for XNOR Gate
 Using combination of logic gates, 
complex operations can be performed. In 
theory, there is no limit to the number of 
gates that can be arranged together in a single 
device. But in practice, there is a limit to the 
number of gates that can be packed into a 
given physical space. Arrays of logic gates 
are found in digital integrated circuits. 

Identity    
 A + 0 = A       
 A . 1 = A
Complement    
 A + A  = 1
 A . A = 0
Commutative
 A + B = B + A    
 A . B = B . A
Associative  
 A + (B + C) = (A + B) + C   
 A . (B . C) = (A . B) . C
Distributive
 A . (B + C) = A . B + A . C   
 A + (B . C) = (A + B) . (A + C)
Null Element
 A + 1 = 1   
 A . 0 = 0

Theorems of 
Boolean Algebra

Involution

 (A) = A  
Idempotence
 A + A = A   
 A . A = A
Absorption   
 A + (A . B) = A   
 A . (A + B) = A

3rd Distributive   
 A + A . B = A + B 

De Morgan’s   
 A + B = A . B   
 (A . B) = A + B
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Logical Gates Symbol Truth Table

AND

A B AB
0 0 0
0 1 0
1 0 0
1 1 1

OR

A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

NOT
A A
0 1
1 0

NAND

A B A B
0 0 1
0 1 1
1 0 1
1 1 0

NOR

A B A + B
0 0 1
0 1 0
1 0 0
1 1 0

XOR

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

XNOR

A B A⊕B
0 0 1
0 1 0
1 0 0
1 1 1

Table 2. 15 
Logic Gates and their corresponding Truth Tables
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)Evaluation

SECTION – A
Choose the correct answer
1. Which is a basic electronic circuit which operates on one or more signals?
 (A) Boolean algebra   (B) Gate 
 (C)  Fundamental gates  (D) Derived gates
2. Which gate is called as the logical inverter?
 (A) AND      (B) OR 
 ( C) NOT    (D) XNOR
3. A + A = ?
 (A) A    (B) O
 (C ) 1     (D) A
4.  NOR is a combination of ?
 (A) NOT(OR)   (B)NOT(AND)
 (C ) NOT(NOT)   (D) NOT(NOR)
5. NAND is called as …… Gate
 (A) Fundamental Gate  (B) Derived Gate
 (C ) Logical Gate   (D) Universal gate

SECTION-B 

Very Short Answers

1. What is Boolean Algebra?
2. Write a short note on NAND Gate.
3. Draw the truth table for XOR gate.
4. Write the associative laws?
5. What are derived gates?

SECTION-C
Short Answers

1. Write the truth table of fundamental gates.
2. Write a short note on XNOR gate.
3. Reason out why the NAND  an NOR are called universal gates?
4. Give the truth table of XOR gate.
5. Write the De Morgan’s law.

SECTION - D

Explain in detail

1. Explain the fundamental gates with expression and truth table.
2. How AND and OR can be realized using NAND and NOR gate.
3. Explain the Derived gates with expression and truth table. 
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