
14

Learning Objectives

• To know how the computer interprets
and stores data in the memory.

• To learn various data representations
and binary arithmetic.

• To learn conversion between various
Number Systems.

2.1 Introduction

 The term data comes from the
word datum, which means a raw fact. The
data is a fact about people, places or some
objects.
Example:
 Let ‘Name’, ‘Age’, ‘Class’, ‘Marks’
and ‘Subject’ be some defined variables.
Now, let us assign a value to each of these
variables.

Name = Rajesh
Age = 16
Class = XI
Mark = 65
Subject = Computer Science

Figure 2.1 Example for Data

 In the above example, the values
assigned to the five different variables
are called data. When the above data is
processed, we get an information “Rajesh
is 16 years old, studying in Class XI, has
scored 65 marks in Computer Science
subject”.

2.2 Data Representations

 Computer handles data in the form
of ‘0’(Zero) and ‘1’ (One). Any kind of data
like number, alphabet, special character
should be converted to ‘0’ or ‘1’ which can
be understood by the Computer. ‘0’ and
‘1’ that the Computer can understand is
called Machine language. ‘0’ or ‘1’ are
called ‘Binary Digits’(BIT). Therefore,
the study of data representation in the
computer is important.
• A bit is the short form of Binary digit

which can be ‘0’ or ‘1’. It is the basic
unit of data in computers.

• A nibble is a collection of 4 bits (Binary
digits).

• A collection of 8 bits is called Byte.
A byte is considered as the basic unit
of measuring the memory size in the
computer.

• Word length refers to the number of
bits processed by a Computer’s CPU.
For example, a word length can have 8
bits, 16 bits, 32 bits and 64 bits (Present
day Computers use 32 bits or 64 bits)

TeraByte (1024 GB)

GigaByte (1024 MB)

MegaByte (1024 KB)

KiloByte (1024 bytes)

Byte (8 bits)

Nibble (4 bits)

Bit
(0 or 1)

 Figure 2.2 Data Representation

CHAPTER 2Unit I Fundamentals of Computers

Number Systems

Chapter 2 Page 014-040.indd 14 3/24/2020 12:03:06 PM

15

Table 2.1 Memory Size (Read 2^10 as 2 power 10)

Name Abbr. Size
Kilo K 2^10 = 1,024

Mega M 2^20 = 1,048,576
Giga G 2^30 = 1,073,741,824
Tera T 2^40 = 1,099,511,627,776
Peta P 2^50 = 1,125,899,906,842,624
Exa E 2^60 = 1,152,921,504,606,846,976

Zetta Z 2^70 = 1,180,591,620,717,411,303,424
Yotta Y 2^80 = 1,208,925,819,614,629,174,706,173

 Bytes are used to represent characters in a text. Different types of coding schemes
are used to represent the character set and numbers. The most commonly used coding
scheme is the American Standard Code for Information Interchange (ASCII). Each
binary value between 0 and 127 is used to represent a specific character. The ASCII value
for (blank space) is 32 and the ASCII value of numeric 0 is 48. The range of ASCII values
for lower case alphabets is from 97 to 122 and the range of ASCII values for the upper case
alphabets is 65 to 90.

The speed of a computer depends on the number of bits it can process at once. For
example, a 64- bit computer can process 64-bit numbers in one operation, while a
32-bit computer break 64-bit numbers down into smaller pieces, making it slower.

2.3 Different Types of Number Systems

Number Systems

Decimal Binary Octal Hexadecimal

Base value
10

(0,1,2,3,4,5,6,7,8,9)

Base value
2

(0,1)

Base value
8

(0,1,2,3,4,5,6,7)

Base value
16

(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Figure 2.3. Number Systems

 Computer memory (Main Memory
and Secondary Storage)is normally
represented in terms of KiloByte (KB) or
MegaByte (MB). In decimal system, 1 Kilo

represents 1000, that is , 103. In binary
system, 1 KiloByte represents 1024 bytes
that is 210. The following table represents
the various memory sizes:

Chapter 2 Page 014-040.indd 15 3/24/2020 12:03:06 PM

16

 A numbering system is a way
of representing numbers. The most
commonly used numbering system in
real life is Decimal number system.
Other number systems are Binary, Octal,
Hexadecimal number system. Each
number system is uniquely identified by
its base value or radix. Radix or base is the
count of number of digits in each number
system. Radix or base is the general idea
behind positional numbering system.
2.3.1 Decimal Number System
 It consists of 0,1,2,3,4,5,6,7,8,9(10
digits). It is the oldest and most popular
number system used in our day to day life.
In the positional number system, each
decimal digit is weighed relative to its
position in the number. This means that
each digit in the number is multiplied by
10 raised to a power corresponding to that
digit’s position.
Example

(123)10 = 1x102 + 2x101 + 3x100
 = 100 + 20 + 3
 = (123)10

2.3.2 Binary Number System
 There are only two digits in the
Binary system, namely, 0 and 1. The
numbers in the binary system are
represented to the base 2 and the positional
multipliers are the powers of 2. The left
most bit in the binary number is called as
the Most Significant Bit (MSB) and it has
the largest positional weight. The right
most bit is the Least Significant Bit (LSB)
and has the smallest positional weight.

1 1 0 1

MSB LSB

Example

 The binary sequence (1101)2 has
the decimal equivalent:

(1101)2 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20

 = 8 + 4 + 0 + 1
 = (13)10

2.3.3 Octal Number System

 Octal number system uses digits
0,1,2,3,4,5,6 and 7 (8 digits). Each octal
digit has its own positional value or weight
as a power of 8.

Example

 The Octal sequence (547)8 has the
decimal equivalent:

(547)8 = 5×82 + 4×81 + 7×80

 = 5×64 + 4×8 + 7×1
 = 320 + 32 + 7
 = (359)10

2.3.4 Hexadecimal Number System

 A hexadecimal number is
represented using base 16. Hexadecimal
or Hex numbers are used as a shorthand
form of binary sequence. This system is
used to represent data in a more compact
manner. Since 16 symbols are used, 0 to
F, the notation is called hexadecimal. The
first 10 symbols are the same as in the
decimal system, 0 to 9 and the remaining
6 symbols are taken from the first 6 letters
of the alphabet sequence, A to F, where A
represents 10, B is 11, C is 12, D is 13, E is
14 and F is 15.

Chapter 2 Page 014-040.indd 16 3/24/2020 12:03:06 PM

17

Table 2.2 Binary, Octal, Hexadecimal
equivalent of Decimal Numbers
Decimal Binary Octal Hexadecimal

0 0000 000 0000
1 0001 001 0001
2 0010 002 0002
3 0011 003 0003
4 0100 004 0004
5 0101 005 0005
6 0110 006 0006
7 0111 007 0007
8 1000 010 0008
9 1001 011 0009

10 1010 012 A
11 1011 013 B
12 1100 014 C
13 1101 015 D
14 1110 016 E
15 1111 017 F

Example
 The hexadecimal sequence (25)16
has the decimal equivalent:

(25)16 = 2×161 + 5×160

 = 32+5
 = (37)10

Workshop
1. Identify the number system for the
following numbers
S. No. Number Number system

1 (1010)10 Decimal Number
system

2 (1010)2

3 (989)16

4 (750)8

5 (926)10

2. State whether the following numbers are valid or not. If invalid, give reason.

S.No. Statement Yes / No Reason (If invalid)

1. 786 is an Octal number

2. 101 is a Binary number

3. Radix of Octal number is 7

2.4 Number System Conversions
2.4.1 Decimal to Binary Conversion
Generally two methods followed.
Method 1: To convert Decimal to Binary
“Repeated Division by 2” method can be
used. Any Decimal number divided by 2
will leave a remainder of 0 or 1. Repeated
division by 2 will leave a sequence of 0s
and 1s that become the binary equivalent
of the decimal number. Suppose it is
required to convert the decimal number N
into binary form, dividing N by 2 in the

decimal system, we will obtain a quotient
N1 and a remainder R1, where R1 can
have a value of either 0 or 1. The process
is repeated until the quotient becomes 0
or 1. When the quotient is ‘0’ or ‘1’, it
is the final remainder value. Write the
final answer starting from final remainder
value obtained to the first remainder value
obtained.
Example
 Convert (65)10 into its equivalent
binary number

Chapter 2 Page 014-040.indd 17 3/24/2020 12:03:06 PM

18

1

1

2 65
2 32 -
2 16 - 0
2 8 - 0

2 4 - 0
2 2 - 0

 - 0

LSB

MSB

Note :
65/2 = 32 + 1
32/2 = 16 + 0
16/2 = 8 + 0
8/2 = 4 + 0
4/2 = 2 + 0
2/2 = 1 + 0

Remainder

(65)10 = (1 0 0 0 0 0 1)2

Method 2 : Sum of Powers of 2.
 A decimal number can be converted
into a binary number by adding up the
powers of 2 and then adding bits as needed
to obtain the total value of the number.
a) Find the largest power of 2 that is

smaller than or equal to 65.
6510 > 6410

b) Set the 64’s bit to 1 and subtract 64
from the original number

65-64=1
c) 32 is greater than the remaining total.

Therefore, set the 32’s bit to 0.
d) 16 is greater than the remaining total.

Therefore, set the 16’s bit to 0.
e) 8 is greater than the remaining total.

Therefore, set the 8’s bit to 0.
f) 4 is greater than the remaining total.

Therefore, set the 4’s bit to 0.
g) 2 is greater than the remaining total.

Therefore, set the 2’s bit to 0.
h) As the remaining value is equivalent to

1’s bit, set it to 1.
1-1=0

Conversion is complete 6510 = (1000001)2

Example
The conversion steps can be given as
follows:

Given Number : 65
Equivalent or value less than power of 2
is : 64
(1) 65 - 64 = 1
(2) 1 - 1= 0

Power’s of 2 64 32 16 8 4 2 1
Binary
Number

1 0 0 0 0 0 1

6510 = (1000001)2

2.4.2 Decimal to Octal Conversion
 To convert Decimal to Octal,
“Repeated Division by 8” method can be
used. The method is the same we have
learnt in 2.4.1, but in this method, we
have to divide the given number by 8.
Example
 Convert (65)10 into its equivalent
Octal number

8 65
8 8 - 1

1 - 0

LSB

MSB

(65)10 = (1 0 1)8

2.4.3 Decimal to Hexadecimal
Conversion
 To convert Decimal to Hexadecimal,
“Repeated division by 16” method can be
used. The method is the same as we have
learnt in 2.4.1, but in this method, we have
to divide the given number by 16.
Example
 Convert (31)10 into its equivalent
hexadecimal number.

16 31
1 - 15

LSB

MSB

(16)10 = (1F)16(Refer Table 2.2 F=15)

Chapter 2 Page 014-040.indd 18 3/24/2020 12:03:06 PM

19

2.4.4 Conversion of fractional Decimal
to Binary
 The method of repeated
multiplication by 2 has to be used to
convert such kind of decimal fractions.
 The steps involved in the method of
repeated multiplication by 2:
Step 1: Multiply the decimal fraction by

2 and note the integer part. The
integer part is either 0 or 1.

Step 2: Discard the integer part of the
previous product. Multiply the
fractional part of the previous
product by 2. Repeat Step 1
until the same fraction repeats
or terminates (0).

Step 3: The resulting integer part forms
a sequence of 0s and 1s that
become the binary equivalent of
decimal fraction.

Step 4: The final answer is to be written
from first integer part obtained
till the last integer part obtained.

Integer part

0.2 × 2 = 0.4 0 (first integer part obtained)

0.4 × 2 = 0.8 0

0.8 × 2 = 1.6 1

0.6 × 2 = 1.2 1

0.2 × 2 = 0.4 0 (last integer part obtained)

Note: Fraction repeats, the product is the
same as in the first step.
 Write the integer parts from
top to bottom to obtain the equivalent
fractional binary number. Hence
(0.2)10=(0.00110011…)2 = (0.00110011)2

Workshop

3. Convert the following Decimal
numbers to its equivalent Binary, Octal,
Hexadecimal.

1) 1920 2) 255 3)126

2.4.5 Binary to Decimal Conversion
 To convert Binary to Decimal we
can use positional notation method.
Step 1: Write down the Binary digits and

list the powers of 2 from right to
left(Positional Notation)

Step 2: For each positional notation
written for the digit, now write
the equivalent weight.

Step 3: Multiply each digit with its
corresponding weight

Step 4: Add all the values.
Table 2.3 Positional Notation and Weight
Positional
Notation

Weight Positional
Notation

Weight

20 1 26 64
21 2 27 128
22 4 28 256
23 8 29 512
24 16 210 1024
25 32

Example

 Convert (111011)2 into its
equivalent decimal number.

Weight 32 16 8 4 2 1
Positional
Notation

25 24 23 22 21 20

Given
number

1 1 1 0 1 1

Chapter 2 Page 014-040.indd 19 3/24/2020 12:03:06 PM

20

32+16+8+0+2+1 = (59)10

 (111011)2 = (59)10

2.4.6 Binary to Octal Conversion
Step 1: Group the given binary number

into 3 bits from right to left.
Step 2: You can add preceding 0 to make

a group of 3 bits if the left most
group has less than 3 bits.

Step 3: Convert equivalent octal value
using "2's power positional weight
method"

Table 2.4 Octal numbers and their Binary
equivalent

Octal
Binary

Equivalent
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Example
 Convert (11010110)2 into octal
equivalent number
Step 1: Group the given number into 3

bits from right to left.
011 010 110

Note: The left most groups have less
than 3 bits, so 0 is added to its left
to make a group of 3 bits.

Step-2: Find Octal equivalent of each
group

011 010 110

(11010110)2 = (326)8

 3 2 6

{ { {

2.4.7. Binary to Hexadecimal Conversion
Step 1: Group the given number into 4

bits from right to left.
Step 2: You can add preceding 0’s to make

a group of 4 bits if the left most
group has less than 4 bits.

Step 3: Convert equivalent Hexadecimal
value using "2's power positional
weight method"

Example
 Convert (1111010110)2 into
Hexadecimal number
Step 1: Group the given number into 4

bits from right to left.
0011 1101 0110

Note: 0’s are added to the left most group
to make it a group of 4 bits

0011 1101 0110

(1111010110)2 = (3D6)16

 3 D 6

{ { {
2.4.8 Conversion of fractional Binary to
Decimal equivalent
 Follow the steps to convert
fractional Binary number to its Decimal
equivalent.
Step 1: Convert integral part of Binary

to Decimal equivalent using
positional notation method
(Procedure is same as discussed in
2.4.5)

Step 2: To convert the fractional part of
binary to its decimal equivalent.

 Step 2.1: Write down the Binary
digits in the fractional part

 Step 2.2: For all the digits write
powers of 2 from left to right
starting from 2-1, 2-2, 2-3...... 2-n,

 now write the equivalent weight.

Chapter 2 Page 014-040.indd 20 3/24/2020 12:03:06 PM

21

 Step 2.3: Multiply each digit with
its corresponding weight

 Step 2.4: Add all the values which
you obtained in Step 2.3

Table 2.5 Positional notation and weight
Positional
notation

Weight

2-1 (1/2) 0.5
2-2 (1/4) 0.25
2-3 (1/8) 0.125
2-4 (1/16) 0.0625
2-5 (1/32) 0.03125
2-6 (1/64) 0.015625
2-7 (1/128) 0.0078125

Step 3: To get final answer write the
integral part (after conversion),
followed by a decimal point(.) and
the answer arrived at Step 2.4

Example
 Convert the given Binary number
(11.011)2 into its decimal equivalent
Integer part (11)2 = 3 (Refer table 2.2)

21 20 2-1 2-2 2-3

1 1 . 0 1 1

3 + . (0×0.5 + 1×0.25 + 1×0.125)
 = 3. 375
(11.011)2 = (3.375)10

Workshop

4. Convert the given Binary number
into its equivalent Decimal, Octal and
Hexadecimal number.
1) 101110101 2) 1011010 3) 101011111

2.4.9. Octal to Decimal Conversion
 To convert Octal to Decimal, we
can use positional notation method.
1. Write down the Octal digits and list the

powers of 8 from right to left(Positional
Notation)

2. For each positional notation of the
digit write the equivalent weight.

3. Multiply each digit with its
corresponding weight

4. Add all the values
Example
 Convert (1265)8 to equivalent
Decimal number

Weight 512 64 8 1

Positional
Notation

83 82 81 80

Given
number

1 2 6 5

(1265)8 = 512 ×1 + 64×2 + 8×6 +1×5
 = 512 + 128 + 48 + 5
(1265)8 = (693)10

2.4.10 Octal to Binary Conversion
 For each Octal digit in the given
number write its 3 digits binary equivalent
using positional notation.
Example
 Convert (6213)8 to equivalent
Binary number

6 2 1 3

110 010 001 011

(6213)8=(110010001011)2

Workshop

5. Convert the following Octal numbers
into Binary numbers.
(A) 472 (B) 145 (C) 347
(D) 6247 (E) 645

Chapter 2 Page 014-040.indd 21 3/24/2020 12:03:06 PM

22

2.4.11 Hexadecimal to Decimal
Conversion

 To convert Hexadecimal to Decimal
we can use positional notation method.
1. Write down the Hexadecimal digits

and list the powers of 16 from right to
left(Positional Notation)

2. For each positional notation written
for the digit, now write the equivalent
weight.

3. Multiply each digit with its
corresponding weight

4. Add all the values to get one final
value.

Example
 Convert (25F)16 into its equivalent
Decimal number.

Weight 256 16 1

Positional
Notation

162 161 160

Given
number

2 5 F(15)

(25F)16 = 2×256 + 5×16 + 15×1
= 512 + 80 +15
 (25F)16 = (607)10

2.4.12 Hexadecimal to Binary Conversion
 Write 4 bits Binary equivalent
for each Hexadecimal digit for the given
number using positional notation method.
Example
 Convert (8BC)16 into equivalent
Binary number

8 B C

1000 1011 1100

(8BC)16 = (100010111100)2

Workshop

6. Convert the following Hexadecimal
numbers to Binary numbers
(A) A6 (B) BE
(C) 9BC8 (D) BC9

2.5 Binary Representation for Signed
Numbers
 Computers can handle both positive
(unsigned) and negative (signed) numbers.
The simplest method to represent
negative binary numbers is called Signed
Magnitude. In signed magnitude method,
the left most bit is Most Significant Bit
(MSB), is called sign bit or parity bit.
 The numbers are represented in
computers in different ways:
• Signed Magnitude representation
• 1’s Complement
• 2’s Complement

2.5.1 Signed Magnitude representation
 The value of the whole numbers can
be determined by the sign used before it. If
the number has ‘+’ sign or no sign it will be
considered as positive. If the number has
‘–’ sign it will be considered as negative.
Example:

 +43 or 43 is a positive number

 –43 is a negative number

 In signed binary representation,
the left most bit is considered as sign bit.
If this bit is 0, it is a positive number and
if it 1, it is a negative number. Therefore
a signed binary number has 8 bits, only 7
bits used for storing values (magnitude)
and the 1 bit is used for sign.

Chapter 2 Page 014-040.indd 22 3/24/2020 12:03:06 PM

23

+43 is represented in memory as follows:

0 0 1 0 1 0 1 1

Sign bit Magnitude (Value)

Most Significant Bit (MSB)
(‘0’ represent that the number is positive)

Least Significant Bit (LSB)

-43 can be represented in memory as
follows.

1 1 0 1 0 1 0 1

Sign bit Magnitude (Value)

Most Significant Bit (MSB)
(‘1’ represent that the number is negative)

Least Significant Bit (LSB)

2.5.2 1’s Complement representation

 This is an easier approach to
represent signed numbers. This is for
negative numbers only i.e. the number
whose MSB is 1.

 The steps to be followed to find 1’s
complement of a number:

Step 1: Convert given Decimal number
into Binary

Step 2: Check if the binary number
contains 8 bits , if less add 0 at the
left most bit, to make it as 8 bits.

Step 3: Invert all bits (i.e. Change 1 as 0
and 0 as 1)

Example
 Find 1’s complement for (–24)10

Given
Number

Binary
Number

1’s Compliment

(-24)10 00011000 11100111

2.5.3 2’s Complement representation
 The 2’s-complement method for
negative number is as follows:

a. Invert all the bits in the binary
sequence (i.e., change every 0 to1 and
every 1 to 0 ie.,1’s complement)

b. Add 1 to the result to the Least
Significant Bit (LSB).

Example

 2’s Complement represent of (-24)10

Binary equivalent of +24: 11000
8bit format: 00011000
1’s complement: 11100111
Add 1 to LSB: +1
2’s complement of -24: 11101000

Workshop

7. Write the 1’s complement number and
2’s complement number for the following
decimal numbers:
(A) 22 (B) -13 (C) -65 (D) -46

2.6 Binary Arithmetic

 As decimal numbers, the binary
numbers also permit computations like
addition, subtraction, multiplication and
division. The following session deals only
with binary addition and subtraction.

2.6.1 Binary Addition

 The following table is useful when
adding two binary numbers.

A B SUM (A + B) Carry
0 0 0 -
0 1 1 -
1 0 1 -
1 1 0 1

 In 1 + 1 = 10, is considered as sum
0 and the 1 as carry bit. This carry bit is
added with the previous position of the bit
pattern.

Chapter 2 Page 014-040.indd 23 3/24/2020 12:03:07 PM

24

Example Add: 10112 + 10012

(Carry Bit)→ 1 1

 1 0 1 1

+ 1 0 0 1

1 0 1 0 0

} 1 0

 10112 + 10012 = 101002

Example Perform Binary addition for the
following: 2310 + 1210

Step 1: Convert 23 and 12 into binary form
2310

2’s power 16 8 4 2 1
Binary Number 1 0 1 1 1

2310 = 000101112

1210

2’s power 8 4 2 1
Binary Number 1 1 0 0

1210 = 000011002

Step 2: Binary addition of 23 and 12:
Carry Bit → 1 1 1

2310 = 0 0 0 1 0 1 1 1
1210 = 0 0 0 0 1 1 0 0
3510 = 0 0 1 0 0 0 1 1

2.6.2 Binary Substraction
 The table for Binary Substraction is
as follows:

A B Difference
(A-B)

Borrow

0 0 0 0
1 0 1 0
1 1 0 0
0 1 1 1

 When substracting 1 from 0, borrow
1 from the next Most Significant Bit, when
borrowing from the next Most Significant
Bit, if it is 1, replace it with 0. If the next Most

Significant Bit is 0, you must borrow from a
more significant bit that contains 1 and replace
it with 0 and 0s upto that point become 1s.
Example Subtract 10010102 – 101002

0 1 10 0 10

1 0 0 1 0 1 0

(-) 1 0 1 0 0

1 1 0 1 1 0

Example Perform binary addition for the
following: (–21)10 + (5)10

Step 1: Change -21 and 5 into binary form
2110

2’s power 16 8 4 2 1
Binary Number 1 0 1 0 1

2110 = 000101012

510

2’s power 4 2 1
Binary Number 1 0 1

510 = 000001012

Step 2:
 2110 0 0 0 1 0 1 0 1
1’s Compliment 1 1 1 0 1 0 1 0
2’s Compliment 1 1 1 0 1 0 1 1

Step 3:
Binary Addition of –21 and 5 :
Carry bit 1 1 1 1
-2110 1 1 1 0 1 0 1 1
 510 0 0 0 0 0 1 0 1
-1610 (Result) 1 1 1 1 0 0 0 0

Workshop

8. Perform the following binary
computations:
(A) 1010 + 1510 (B) –1210 + 510

(C) 1410 – 1210 (D) (–210) – (–610)

Chapter 2 Page 014-040.indd 24 3/24/2020 12:03:07 PM

25

2.7 Representing Characters in Memory

 As represented in introduction,
all the input data given to the computer
should be in understandable format. In
general, 26 uppercase letters, 26 lowercase
letters, 0 to 9 digits and special characters
are used in a computer, which is called
character set. All these character set
are denoted through numbers only. All
Characters in the character set needs
a common encoding system. There
are several encoding systems used for
computer. They are
• BCD – Binary Coded Decimal
• EBCDIC – Extended Binary Coded

Decimal Interchange Code
• ASCII – American Standard Code for

Information Interchange
• Unicode
• ISCII - Indian Standard Code for

Information Interchange
2.7.1 Binary Coded Decimal (BCD)
 This encoding system is not in the
practice right now. This is 26 bit encoding
system. This can handle 26 = 64 characters
only.
2.7.2 American Standard Code for
Information Interchange (ASCII)
 This is the most popular encoding
system recognized by United States.
Most of the computers use this system.
Remember this encoding system can
handle English characters only. This can
handle 27 bit which means 128 characters.
 In this system, each character has
individual number (Refer Appendix).
 The new edition (version) ASCII -8,
has 28 bits and can handle 256 characters are
represented from 0 to 255 unique numbers.

 The ASCII code equivalent to
the uppercase letter ‘A’ is 65. The binary
representation of ASCII (7 bit) value is
1000001. Also 01000001 in ASCII-8 bit.
2.7.3 Extended Binary Coded Decimal

Interchange Code (EBCDIC)
 This is similar to ASCII Code with
8 bit representation. This coding system
is formulated by International Business
Machine(IBM). The coding system can
handle 256 characters. The input code
in ASCII can be converted to EBCDIC
system and vice - versa.
2.7.4 Indian Standard Code for

Information Interchange (ISCII)
 ISCII is the system of handling
the character of Indian local languages.
This as a 8-bit coding system. Therefore
it can handle 256 (28) characters. This
system is formulated by the department
of Electronics in India in the year 1986-
88 and recognized by Bureau of Indian
Standards (BIS). Now this coding system
is integrated with Unicode.
2.7.5 Unicode
 This coding system is used in most of
the modern computers. The popular coding
scheme after ASCII is Unicode. ASCII can
represent only 256 characters. Therefore
English and European Languages alone can
be handled by ASCII. Particularly there was
a situation, when the languages like Tamil,
Malayalam, Kannada and Telugu could
not be represented by ASCII. Hence, the
Unicode was generated to handle all the
coding system of Universal languages. This is
16 bit code and can handle 65536 characters.
 Unicode scheme is denoted by
hexadecimal numbers. The Unicode table
of Tamil, Malayalam, Telugu and Kannada
is shown in Table 2.6

Chapter 2 Page 014-040.indd 25 3/24/2020 12:03:07 PM

26

Table 2.6

Unicode Table of Tamil Unicode Table of Malayalam

0B8 0B9 0BA 0BB 0BC 0BD 0BE 0BF

$ஂ

ஃ

அ

ஆ

இ

ஈ

உ

ஊ

எ

ஏ

ஐ

ஒ

ஓ

ஔ

க

ங

ச

ஜ

ஞ

ட

ண

த

ந

ன

ப

ம

ய

ர

ற

ல

ள

ழ

வ

ஶ

ஷ

ஸ

ஹ

$ா

$ி

$ ீ

$ு

$ூ

$ெ

$ே

$ை

$ொ

$ோ

$ௌ

$்

ௐ

$ௗ

௦

௧

௨

௩

௪

௫

௬

௭

௮

௯

௰

௱

௲

௳

௴

௵

௶

௷

௸

௹

௺

0B82

0B83

0B85

0B86

0B87

0B88

0B89

0B8A

0B8E

0B8F

0B90

0B92

0B93

0B94

0B95

0B99

0B9A

0B9C

0B9E

0B9F

0BA3

0BA4

0BA8

0BA9

0BAA

0BAE

0BAF

0BB0

0BB1

0BB2

0BB3

0BB4

0BB5

0BB6

0BB7

0BB8

0BB9

0BBE

0BBF

0BC0

0BC1

0BC2

0BC6

0BC7

0BC8

0BCA

0BCB

0BCC

0BCD

0BD0

0BD7

0BE6

0BE7

0BE8

0BE9

0BEA

0BEB

0BEC

0BED

0BEE

0BEF

0BF0

0BF1

0BF2

0BF3

0BF4

0BF5

0BF6

0BF7

0BF8

0BF9

0BFA

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0D0 0D1 0D2 0D3 0D4 0D5 0D6 0D7

$ഀ

$ഁ

$ം

$ഃ

അ

ആ

ഇ

ഈ

ഉ

ഊ

ഋ

ഌ

എ

ഏ

ഐ

ഒ

ഓ

ഔ

ക

ഖ

ഗ

ഘ

ങ

ച

ഛ

ജ

ഝ

ഞ

ട

ഠ

ഡ

ഢ

ണ

ത

ഥ

ദ

ധ

ന

ഩ

പ

ഫ

ബ

ഭ

മ

യ

ര

റ

ല

ള

ഴ

വ

ശ

ഷ

സ

ഹ

ഺ

$഻

$഼

ഽ

$ാ

$ി

$ീ

$ു

$ൂ

$ൃ

$ൄ

$ െ

$ േ

$ ൈ

$ൊ

$ോ

$ൌ

$്

ൎ

൥

ൔ

ൕ

ൖ

$ൗ

൘

൙

൚

൛

൜

൝

൞

ൟ

ൠ

ൡ

$ ൢ

$ ൣ

൦

൧

൨

൩

൪

൫

൬

൭

൮

൯

൰

൱

൲

൳

൴

൵

൶

൷

൸

൹

ൺ

ൻ

ർ

ൽ

ൾ

ൿ

0D00

0D01

0D02

0D03

0D05

0D06

0D07

0D08

0D09

0D0A

0D0B

0D0C

0D0E

0D0F

0D10

0D12

0D13

0D14

0D15

0D16

0D17

0D18

0D19

0D1A

0D1B

0D1C

0D1D

0D1E

0D1F

0D20

0D21

0D22

0D23

0D24

0D25

0D26

0D27

0D28

0D29

0D2A

0D2B

0D2C

0D2D

0D2E

0D2F

0D30

0D31

0D32

0D33

0D34

0D35

0D36

0D37

0D38

0D39

0D3A

0D3B

0D3C

0D3D

0D3E

0D3F

0D40

0D41

0D42

0D43

0D44

0D46

0D47

0D48

0D4A

0D4B

0D4C

0D4D

0D4E

0D4F

0D54

0D55

0D56

0D57

0D58

0D59

0D5A

0D5B

0D5C

0D5D

0D5E

0D5F

0D60

0D61

0D62

0D63

0D66

0D67

0D68

0D69

0D6A

0D6B

0D6C

0D6D

0D6E

0D6F

0D70

0D71

0D72

0D73

0D74

0D75

0D76

0D77

0D78

0D79

0D7A

0D7B

0D7C

0D7D

0D7E

0D7F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Chapter 2 Page 014-040.indd 26 3/24/2020 12:03:07 PM

27

Table 2.6

Unicode Table of Telugu Unicode Table of Kannada

0C0 0C1 0C2 0C3 0C4 0C5 0C6 0C7

$ ఀ

$ఁ

$ం

$ః

అ

ఆ

ఇ

ఈ

ఉ

ఊ

ఋ

ఌ

ఎ

ఏ

ఐ

ఒ

ఓ

ఔ

క

ఖ

గ

ఘ

ఙ

చ

ఛ

జ

ఝ

ఞ

ట

ఠ

డ

ఢ

ణ

త

థ

ద

ధ

న

ప

ఫ

బ

భ

మ

య

ర

ఱ

ల

ళ



వ

శ

ష

స

హ

ఽ

$ా

$ ి

$ ీ

$ు

$ూ

$ృ

$ౄ

$ ె

$ే

$ ై

$ొ

$ో

$ౌ

$ ్

$ౕ

$ౖ

ౘ

ౙ

ౚ

ౠ

ౡ
$ ౢ

$ ౣ

౦

౧

౨

౩

౪

౫

౬

౭

౮

౯

౸

౹

౺

౻

౼

౽

౾

౿

0C00

0C01

0C02

0C03

0C05

0C06

0C07

0C08

0C09

0C0A

0C0B

0C0C

0C0E

0C0F

0C10

0C12

0C13

0C14

0C15

0C16

0C17

0C18

0C19

0C1A

0C1B

0C1C

0C1D

0C1E

0C1F

0C20

0C21

0C22

0C23

0C24

0C25

0C26

0C27

0C28

0C2A

0C2B

0C2C

0C2D

0C2E

0C2F

0C30

0C31

0C32

0C33

0C34

0C35

0C36

0C37

0C38

0C39

0C3D

0C3E

0C3F

0C40

0C41

0C42

0C43

0C44

0C46

0C47

0C48

0C4A

0C4B

0C4C

0C4D

0C55

0C56

0C58

0C59

0C5A

0C60

0C61

0C62

0C63

0C66

0C67

0C68

0C69

0C6A

0C6B

0C6C

0C6D

0C6E

0C6F

0C78

0C79

0C7A

0C7B

0C7C

0C7D

0C7E

0C7F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0C8 0C9 0CA 0CB 0CC 0CD 0CE 0CF

ಀ

$ಁ

$ಂ

$ಃ

ಅ

ಆ

ಇ

ಈ

ಉ

ಊ

ಋ

ಌ

ಎ

ಏ

ಐ

ಒ

ಓ

ಔ

ಕ

ಖ

ಗ

ಘ

ಙ

ಚ

ಛ

ಜ

ಝ

ಞ

ಟ

ಠ

ಡ

ಢ

ಣ

ತ

ಥ

ದ

ಧ

ನ

ಪ

ಫ

ಬ

ಭ

ಮ

ಯ

ರ

ಱ

ಲ

ಳ

ವ

ಶ

ಷ

ಸ

ಹ

$ ಼

ಽ

$ಾ

$ಿ

$ೀ

$ು

$ೂ

$ೃ

$ೄ

$ೆ

$ೇ

$ೈ

$ೊ

$ೋ

$ೌ

$್

$ೕ

$ೖ

ೞ

ೠ

ೡ

$ೢ

$ೣ

೦

೧

೨

೩

೪

೫

೬

೭

೮

೯

ೱ

ೲ

0C80

0C81

0C82

0C83

0C85

0C86

0C87

0C88

0C89

0C8A

0C8B

0C8C

0C8E

0C8F

0C90

0C92

0C93

0C94

0C95

0C96

0C97

0C98

0C99

0C9A

0C9B

0C9C

0C9D

0C9E

0C9F

0CA0

0CA1

0CA2

0CA3

0CA4

0CA5

0CA6

0CA7

0CA8

0CAA

0CAB

0CAC

0CAD

0CAE

0CAF

0CB0

0CB1

0CB2

0CB3

0CB5

0CB6

0CB7

0CB8

0CB9

0CBC

0CBD

0CBE

0CBF

0CC0

0CC1

0CC2

0CC3

0CC4

0CC6

0CC7

0CC8

0CCA

0CCB

0CCC

0CCD

0CD5

0CD6

0CDE

0CE0

0CE1

0CE2

0CE3

0CE6

0CE7

0CE8

0CE9

0CEA

0CEB

0CEC

0CED

0CEE

0CEF

0CF1

0CF2

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Chapter 2 Page 014-040.indd 27 3/24/2020 12:03:07 PM

28

Appendix
American Standard Code for Information Interchange (ASCII)

(Few specific characters only)
Alphabets

Alphabets
Decimal
number

Binary number
(8 bit)

Octal
number

Hexadecimal
number

A 65 01000001 101 41
B 66 01000010 102 42
C 67 01000011 103 43
D 68 01000100 104 44
E 69 01000101 105 45
F 70 01000110 106 46
G 71 01000111 107 47
H 72 01001000 110 48
I 73 01001001 111 49
J 74 01001010 112 4A
K 75 01001011 113 4B
L 76 01001100 114 4C
M 77 01001101 115 4D
N 78 01001110 116 4E
O 79 01001111 117 4F
P 80 01010000 120 50
Q 81 01010001 121 51
R 82 01010010 122 52
S 83 01010011 123 53
T 84 01010100 124 54
U 85 01010101 125 55
V 86 01010110 126 56
W 87 01010111 127 57
X 88 01011000 130 58
Y 89 01011001 131 59
Z 90 01011010 132 5A
a 97 01100001 141 61
b 98 01100010 142 62
c 99 01100011 143 63
d 100 01100100 144 64
e 101 01100101 145 65

Chapter 2 Page 014-040.indd 28 3/24/2020 12:03:08 PM

29

f 102 01100110 146 66
g 103 01100111 147 67
h 104 01101000 150 68
i 105 01101001 151 69
j 106 01101010 152 6A
k 107 01101011 153 6B
l 108 01101100 154 6C

m 109 01101101 155 6D
n 110 01101110 156 6E
o 111 01101111 157 6F
p 112 01110000 160 70
q 113 01110001 161 71
r 114 01110010 162 72
s 115 01110011 163 73
t 116 01110100 164 74
u 117 01110101 165 75
v 118 01110110 166 76
w 119 01110111 167 77
x 120 01111000 170 78
y 121 01111001 171 79
z 122 01111010 172 7A

Numerals

Alphabets
Decimal
number

Binary number
(8 bit)

Octal
number

Hexadecimal
number

0 48 00110000 60 30
1 49 00110001 61 31
2 50 00110010 62 32
3 51 00110011 63 33
4 52 00110100 64 34
5 53 00110101 65 35
6 54 00110110 66 36
7 55 00110111 67 37
8 56 00111000 70 38
9 57 00111001 71 39

Chapter 2 Page 014-040.indd 29 3/24/2020 12:03:08 PM

30

Special Characters

Special
symbols

Decimal
number

Binary number
(8 bit)

Octal
number

Hexadecimal
number

Blank 32 00100000 40 20
! 33 00100001 41 21
" 34 00100010 42 22
35 00100011 43 23
$ 36 00100100 44 24
% 37 00100101 45 25
& 38 00100110 46 26
' 39 00100111 47 27
(40 00101000 50 28
) 41 00101001 51 29
* 42 00101010 52 2A
+ 43 00101011 53 2B
, 44 00101100 54 2C
- 45 00101101 55 2D
. 46 00101110 56 2E
/ 47 00101111 57 2F
: 58 00111010 72 3A
; 59 00111011 73 3B
< 60 00111100 74 3C
= 61 00111101 75 3D
> 62 00111110 76 3E
? 63 00111111 77 3F
@ 64 01000000 100 40
[91 01011011 133 5B
\ 92 01011100 134 5C
] 93 01011101 135 5D
^ 94 01011110 136 5E
_ 95 01011111 137 5F
` 96 01100000 140 60
{ 123 01111011 173 7B
| 124 01111100 174 7C
} 125 01111101 175 7D
~ 126 01111110 176 7E

Chapter 2 Page 014-040.indd 30 3/24/2020 12:03:08 PM

31

Evaluation

SECTION – A
Choose the correct answer:
1. Which refers to the number of bits processed by a computer’s CPU?
 A) Byte B) Nibble C) Word length D) Bit
2. How many bytes does 1 KiloByte contain?
 A) 1000 B) 8 C) 4 D) 1024
3. Expansion for ASCII
 A) American School Code for Information Interchange
 B) American Standard Code for Information Interchange
 C) All Standard Code for Information Interchange
 D) American Society Code for Information Interchange
4. 2^50 is referred as
 A) Kilo B) Tera C) Peta D) Zetta
5. How many characters can be handled in Binary Coded Decimal System?
 A) 64 B) 255 C) 256 D) 128
6. For 11012 the equalent Hexadecimal equivalent is?
 A) F B) E C) D D) B
7. What is the 1’s complement of 00100110?
 A) 00100110 B) 11011001 C) 11010001 D) 00101001
8. Which amongst this is not an Octal number?
 A) 645 B) 234 C) 876 D) 123

SECTION-B
Very Short Answers
1. What is data?
2. Write the 1’s complement procedure.
3. Convert (46)10 into Binary number
4. We cannot find 1’s complement for (28)10. State reason.
5. List the encoding systems that represents characters in memory.

SECTION-C
Short Answers
1. What is radix of a number system? Give example
2. Write note on binary number system.
3. Convert (150)10 into Binary, then convert that Binary number to Octal
4. Write short note on ISCII
5. Add a) -2210+1510 b) 2010+2510

SECTION - D
Explain in detail
1. a) Write the procedure to convert fractional Decimal to Binary
 b) Convert (98.46)10 to Binary
2. Find 1’s Complement and 2’s Complement for the following Decimal number
 a) -98 b) -135
3. a) Add 11010102+1011012 b) Subtract 11010112 - 1110102

Chapter 2 Page 014-040.indd 31 3/24/2020 12:03:08 PM

32

2.8 Introduction

 Boolean algebra is a mathematical
discipline that is used for designing digital
circuits in a digital computer. It describes
the relation between inputs and outputs
of a digital circuit. The name Boolean
algebra has been given in honor of an
English mathematician George Boole who
proposed the basic principles of this algebra.

 George Boole (1815-1864)
was born
to a low
c l a s s

family and only
received an
elementary school
education. Despite that, he taught himself
highly advanced mathematics and
different languages as a teenager without
any assistance. He started teaching at
age sixteen, and started his own school
at age nineteen. By his mid-twenties,
he had mastered most of the important
mathematical principles in his day.

2.8.1 Binary valued quantities:

 Every day we have to make logical
decisions:

1. Should I carry Computer Science
book every day? Yes / No

2. 8-10 = 10 is this answer correct? Yes /
No

3. Chennai is capital of India? Yes / No

4. What did I say yesterday?

 The first three questions thrown
above, the answer may be True (Yes)
or False (No). But the fourth one, we
cannot be answer as True or False. Thus,
sentences which can be determined
to be True or False are called “Logical
Statement” or “Truth Functions”. The
results True or False are called “Truth
Values”. The truth values depicted by
logical constant 1 and 0; 1 means True
and 0 means False. The variable which can
store these truth values are called “Logical
variable” or “Binary valued variables” or
“Boolean Variables” as these can store
one of the two values of True or False.

2.8.2 Logical Operations:

 Boolean algebra makes use of
variables and operations (functions). The
basic logical operations are AND, OR and
NOT, which are symbolically represented
by dot (.), plus (+), and by over bar / single
apostrophe respectively. These symbols
are also called as “Logical Operators”.

2.8.3 Truth Table:

 A truth table represents all the
possible values of logical variable or
statements along with all the possible
results of given combination of truth values.

2.8.4 AND operator

The AND operator is defined in Boolean
algebra by the use of the dot (.) operator. It is
similar to multiplication in ordinary algebra.
The AND operator combines two or more
input variables so that the output is true only
if all the inputs are true. The truth table for a
2-input AND operator is shown as follows:

Part - II - Boolean Algebra

Chapter 2 Page 014-040.indd 32 3/24/2020 12:03:08 PM

33

 The NOT operator is represented
algebraically by the Boolean expression:
Y = A

Example:

 Consider the Boolean equation:

 D = A + (B . C)

 D is equal to 1 (true) if A is 1 or if
(B . C) is 1, that is, B = 0 and C = 1.

 Otherwise D is equal to 0 (false).

 The basic logic functions AND, OR,
and NOT can also be combined to make
other logic operators such as NAND and
NOR

2.8.7 NAND operator

 The NAND is the combination of
NOT and AND. The NAND is generated by
inverting the output of an AND operator.
The algebraic expression of the NAND
function is:

 Y = A . B

 The NAND function truth table is
shown below:

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A NAND B = NOT (A AND B)

2.8.8 NOR operator

 The NOR is the combination of
NOT and OR. The NOR is generated by
inverting the output of an OR operator.
The algebraic expression of the NOR
function is:

 Y = A . B

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

 The above 2-input AND operation is
expressed as: Y = A . B

2.8.5 OR operator

 The plus sign is
used to indicate the OR
operator. The OR operator
combines two or more
input variables so that the
output is true if at least
one input is true. The truth table for a
2-input OR operator is shown as follows:

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

 The above 2-input OR operation is
expressed as: Y = A + B

2.8.6 NOT operator

 The NOT operator has one input and
one output. The input is either true or false,
and the output is always the opposite, that is,
the NOT operator inverts the input. The truth
table for a NOT operator where A is the input
variable and Y is the output is shown below:

A Y
0 1
1 0

Chapter 2 Page 014-040.indd 33 3/24/2020 12:03:08 PM

34

The NOR function truth table is shown
below:

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A NOR B = NOT (A OR B)
2.9 Basic Logic Gates:
 A gate is a basic electronic circuit
which operates on one or more signals to
produce an output signal. There are three
fundamental gates namely AND, OR and
NOT. The other logic gates like NAND,
NOR, XOR and XNOR are derived gates
which are derived from the fundamental
gates. NAND and NOR gates are called
Universal gates, because the fundamental
logic gates can be realized through them.
2.9.1 AND Gate
 The AND gate can have two or
more input signals and produce an output
signal.
 The output is "true" only when both
inputs are "true", otherwise, the output is
"false". In other words the output will be 1
if and only if both inputs are 1; otherwise
the output is 0. The output of the AND gate
is represented by avariable say C, where A
and B are two boolean variables. In boolean
algebra, a variable can take either of the
values '0' or '1'. The logical symobl of the
AND gate is

A
C=AB

B

Fig. 2.4 Logic symbol of AND Gate

 One way to symbolize the action
of an AND gate is by writing the boolean
function.

C = A AND B
 In boolean algebra the multiplication
sign stands for the AND operation.
Therefore, the output of the AND gate is
 C = A . B or
simply C = AB
 Read this as "C equals A AND B".
Since there are two input variables here, the
truth table has four entries, because there
are four possible inputs : 00, 01, 10 and 11.
For instance if both inputs are 0,
 C = A . B
 = 0 . 0
 = 0
The truth table for AND Gate is

Input Output
A B C
0 0 0
0 1 0
1 0 0
1 1 1

Table 2.7 Truth Table for AND Gate
2.9.2 OR Gate
 The OR gate gets its name from its
behaviour like the logical inclusive "OR".
The output is "true" if either or both of the
inputs are "true". If both inputs are "false"
then the output is "false". In otherwords the
output will be 1 if and only if one or both
inputs are 1; otherwise, the output is 0. The
logical symbol of the OR gate is

A

B
C=A+B

Fig. 2.5 Logic symbol of OR Gate

Chapter 2 Page 014-040.indd 34 3/24/2020 12:03:08 PM

35

The OR gate output is

 C = A OR B

We use the + sign to denote the OR function.
Therefore,

 C = A + B

Read this as "C equals A OR B".

For instance, if both the inputs are 1

 C = A + B = 1 + 1 = 1

The truth table for OR gate is

Input Output
A B C
0 0 0
0 1 1
1 0 1
1 1 1

Table 2.8 Truth Table for OR Gate

2.9.3 NOT Gate

 The NOT gate, called a logical
inverter, has only one input. It reverses the
logical state. In other words the output C
is always the complement of the input. The
logical symbol of the NOT gate is

A C = A

Fig. 2.6 Logic symbol of NOT Gate

The boolean function of NOT gate is

 C = NOT A

In boolean algerbra, the overbar stands for
NOT operation. Therefore,

 C = A

Read this as "C equals NOT A" or "C equals
the complement of A".

 If A is 0,

 C = 0 = 1

 On the otherhand, if A is 1,

 C = 1 = 0

The truth table for NOT gate is

Input Output
A C
1 0
0 1

Table 2.9 Truth Table for NOT Gate
2.9.4 NOR Gate
 The NOR gate circuit is an OR
gate followed by an inverter. Its output is
"true" if both inputs are "false" Otherwise,
the output is "false". In other words, the
only way to get '1' as output is to have
both inputs '0'. Otherwise the output is 0.
The logic circuit of the NOR gateis

A
B

A+B C=A+B

Fig. 2.7 Logic Circuit of NOR Gate

A
B

C

Fig. 2.8 Logic symbol of NOR Gate
The output of NOR gate is

 C = (A + B)

 Read this as "C equals NOT of A OR
B" or "C equals the complement of A OR B".
For example if both the inputs are 0,

 C = (0 + 0) = 0 = 1

The truth table for NOR gate is

Input Output
A B C
0 0 1
0 1 0
1 0 0
1 1 0

Table 2.10 Truth Table for NOR Gate

Chapter 2 Page 014-040.indd 35 3/24/2020 12:03:08 PM

36

2.9.5 Bubbled AND Gate

 The Logic Circuit of Bubbled AND
Gate

A

B

A

C=A.B

B

Fig. 2.9 Logic circuit of Bubbled AND Gate

 In the above circuit, invertors on the
input lines of the AND gate gives the output
as

 C = (A . B)

 This circuit can be redrawn as the
bubbles on the inputs, where the bubbles
represent inversion.

A

B
C

Fig. 2.10 Logic Symbol of Bubbled AND
Gate

 We refer this as bubbled AND gate.
Let us analyse this logic circuit for all input
possiblities.

If A = 0 and B = 0 C=(0.0) = 1.1 = 1

If A = 0 and B = 1 C=(0.1) = 1.0 = 0

If A = 1 and B = 0 C=(1.0) = 0.1 = 0

If A = 1 and B = 1 C=(1.1) = 0.0 = 0

Here the truth table is

Input Output
A B C
0 0 1
0 1 0

1 0 0
1 1 0

You can see that, a bubbled AND gate
produces the same output as a NOR gate. So,
You can replace each NOR gate by a bubbled
AND gate. In other words the circuits are
interchangeable.

Therefore
(A + B) = A . B

Which establishes the De Morgan's first
theorem.

2.9.6 NAND Gate

 The NAND gate operates an AND
gate followed by a NOT gate. It acts in the
manner of the logical operation "AND"
followed by inversion. The output is "false"
if both inputs are "true", otherwise, the
output is "true". In otherwords the output
of the NAND gate is 0 if and only if both
the inputs are 1, otherwise the output is 1.
The logic circuit of NAND gate is

A

A.B C=A.B
B

Fig. 2.11 Logic Circuit of NAND Gate

The logical symbol of NAND gate is
A

B
C

Fig. 2.12 Logic Symbol of NAND Gate

 The output of the NAND gate is

C = (A . B)

 Read this as "C" equals NOT of A
AND B" or "C" equals the complement of A
AND B".

For example if both the inputs are 1

Chapter 2 Page 014-040.indd 36 3/24/2020 12:03:08 PM

37

C = (1 . 1)= 1 = 0

The truth table for NAND gate is

Input Output
A B C
0 0 1
0 1 1
1 0 1
1 1 0

Table 2.11 Truth Table for NAND Gate

2.9.7 Bubbled OR Gate

 The logic circuit of bubbled OR gate
is

A A

B B

C=A + B

Fig. 2.13 Logic Circuit of Bubbled OR Gate

 The output of this circuit can be
written as C = A + B

 The above circuit can be redrawn as
the bubbles on the input, where the bubbles
represents the inversion.

A

B
C

Fig. 2.14 Logic Symbol of Bubbled OR Gate

We refer this as bubbled OR gate. The truth
table for the bubbled OR is

Input Output
A B C
0 0 1
0 1 1
1 0 1
1 1 0

Table 2.12 Truth Table for Bubbled OR Gate

 If we compare the truth tables of the
bubbled OR gate with NAND gate, they are
identical. So the circuits are interchangeable.

Therefore,
(A . B) = A + B

Which establishes the De Morgan's second
theorem.

2.9.8 XOR Gate

 The XOR (exclusive - OR) gate acts
in the same way as the logical "either/or."
The output is "true" if either, but not both,
of the inputs are "true". The output is "false"
if both inputs are "false" or if both inputs are
"true." Another way of looking at this circuit
is to observe that the output is 1 if the inputs
are different, but 0 if the inputs are the same.
The logic circuit of XOR gate is
A

B

A

C = A.B+ A.B

A A.B

B A.BB

Fig. 2.15 Logic Circuit of XOR Gate

 The output of the XOR gate is

 The truth table for XOR gate is

Input Output
A B C
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.13 Truth Table for XOR Gate

In boolean algebra. exclusive - OR operator
⊕ or "encircled plus".

Hence C = A ⊕B

 The logical symbol of XOR gate is

Chapter 2 Page 014-040.indd 37 3/24/2020 12:03:08 PM

38

A

B
C

Fig. 2.16 Logic Symbol of XOR Gate

2.9.9 XNOR Gate
 The XNOR (exclusive - NOR) gate
is a combination XOR gate followed by an
inverter. Its output is "true" if the inputs
are the same, and "false" if the inputs are
different. In simple words, the output is 1 if
the input are the same, otherwise the output
is 0. The logic circuit of XNOR gate is
A A ≈ B
B

C = A ≈ B

Fig. 2.17 Logic Circuit of XNOR Gate
 The output of the XNOR is NOT of
XOR

C = A ⊕ B

 = A . B + A . B

 = AB + A B

(Using De Morgan's Theorem)
In boolean algebra, ⊙ or "included dot"
stands for the XNOR.
Therefore, C = A ⊙ B
The logical symbol is

A C=A ⊙ B
B

Fig. 2.18 Logic Symbol of XNOR Gate
The truth table for XNOR Gate is

Input Output
A B C
0 0 1
0 1 0
1 0 0
1 1 1

Table 2.14 Truth Table for XNOR Gate
 Using combination of logic gates,
complex operations can be performed. In
theory, there is no limit to the number of
gates that can be arranged together in a single
device. But in practice, there is a limit to the
number of gates that can be packed into a
given physical space. Arrays of logic gates
are found in digital integrated circuits.

Identity
 A + 0 = A
 A . 1 = A
Complement
 A + A = 1
 A . A = 0
Commutative
 A + B = B + A
 A . B = B . A
Associative
 A + (B + C) = (A + B) + C
 A . (B . C) = (A . B) . C
Distributive
 A . (B + C) = A . B + A . C
 A + (B . C) = (A + B) . (A + C)
Null Element
 A + 1 = 1
 A . 0 = 0

Theorems of
Boolean Algebra

Involution

 (A) = A
Idempotence
 A + A = A
 A . A = A
Absorption
 A + (A . B) = A
 A . (A + B) = A

3rd Distributive
 A + A . B = A + B

De Morgan’s
 A + B = A . B
 (A . B) = A + B

Chapter 2 Page 014-040.indd 38 3/24/2020 12:03:08 PM

39

Logical Gates Symbol Truth Table

AND

A B AB
0 0 0
0 1 0
1 0 0
1 1 1

OR

A B A + B
0 0 0
0 1 1
1 0 1
1 1 1

NOT
A A
0 1
1 0

NAND

A B A B
0 0 1
0 1 1
1 0 1
1 1 0

NOR

A B A + B
0 0 1
0 1 0
1 0 0
1 1 0

XOR

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

XNOR

A B A⊕B
0 0 1
0 1 0
1 0 0
1 1 1

Table 2. 15
Logic Gates and their corresponding Truth Tables

Chapter 2 Page 014-040.indd 39 3/24/2020 12:03:08 PM

40

)Evaluation

SECTION – A
Choose the correct answer
1. Which is a basic electronic circuit which operates on one or more signals?
 (A) Boolean algebra (B) Gate
 (C) Fundamental gates (D) Derived gates
2. Which gate is called as the logical inverter?
 (A) AND (B) OR
 (C) NOT (D) XNOR
3. A + A = ?
 (A) A (B) O
 (C) 1 (D) A
4. NOR is a combination of ?
 (A) NOT(OR) (B)NOT(AND)
 (C) NOT(NOT) (D) NOT(NOR)
5. NAND is called as …… Gate
 (A) Fundamental Gate (B) Derived Gate
 (C) Logical Gate (D) Universal gate

SECTION-B

Very Short Answers

1. What is Boolean Algebra?
2. Write a short note on NAND Gate.
3. Draw the truth table for XOR gate.
4. Write the associative laws?
5. What are derived gates?

SECTION-C
Short Answers

1. Write the truth table of fundamental gates.
2. Write a short note on XNOR gate.
3. Reason out why the NAND an NOR are called universal gates?
4. Give the truth table of XOR gate.
5. Write the De Morgan’s law.

SECTION - D

Explain in detail

1. Explain the fundamental gates with expression and truth table.
2. How AND and OR can be realized using NAND and NOR gate.
3. Explain the Derived gates with expression and truth table.

Chapter 2 Page 014-040.indd 40 3/24/2020 12:03:08 PM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040

