
COMPUTER APPLICATION
(For 12th Class)

PUNJAB SCHOOL EDUCATION BOARD
Sahibzada Ajit Singh Nagar

© Punjab Government

Edition : 2014........................... ,000 Copies
Edition : 2015........................... ,000 Copies

All rights, including those of translation, reproduction
and annotation etc., are reserved by the

Punjab Government.

.Writer : Mrs. Pooja Arora
Computer Faculty.
Govt. Sen. Sec. School, Sahauran
Sahibzada Ajit Singh Nagar.

n. Sec. School, Sahauranzada Ajit Singh Nag
Mrs. Sukhwinder Kaur
Computer Faculty
Govt. Sen. Sec. School, Sahauran
Sahibzada Ajit Singh Nagar.

Vetter : Mrs. Meenu Malhotra
Computer Faculty
Govt. High School, Garangan
Sahibzada Ajit Singh Nagar.

Co-ordinator : Manvinder Singh Mathoda
Punjab School Education Board

Artist : Manjit Singh Dhillon
Punjab School Education Board

WARNING
1. The Agency-holders shall not add any extra binding with a view to charge extra money for

the binding. (Ref. Cl. No. 7 of agreement with Agency-holders).
2. Printing, Publishing, Stocking, Holding or Selling etc., of spurious Text-books qua text-

books printed and published by the Punjab School Education Board is a cognizable offence
under Indian Penal Code.
(The textbooks of the Punjab School Education Board are printed on paper carrying water
mark of the Board.)

Price : `

Published by : Secretary, Punjab School Education Board, Vidya Bhavan Phase-8
Sahibzada Ajit Singh Nagar-160062 & Printed by M/s

Foreword

Punjab School Education Board since its inception has been engaged in

preparing text books for all classes at school level. Keeping in view the present

academic thought at National level, Board has prepared Textbooks as per the

guidelines of National Curriculum Framework 2005/ Punjab Curriculum

Framework 2013. The book in hand is one in the series.

In the recent past, discussions to bring about qualitative improvement

in teaching learning process are going on to make more relevant to the real life

situations. While taking into consideration, the use of computers in everyday

life, Computer Application has been implemented as an optional subject at

senior secondary level. The book in hand has been prepared for the students

of class XII. The subject revolves around programming. This book will help

the students to clear the fundamentals of programming.

Keeping in view the educational and vocational needs of the students

of class XII, this book is an endeavour to present the required knowledge in an

easy language after taking suggestion from school teachers, experts from

SCERT, college lecturers and university experts.

Suggestions are invited from the readers and teachers for the

improvement of the book.

Chairperson

Punjab School Education Board

CONTENTS

Revision of Class XI 1
Lesson 1 : Introduction to C++ 12

1.1 Introduction to Object Orientation
1.2 Difference between Structured & Object Oriented Language
1.3 Introduction to C++
1.4 Program structure
1.5 Program Design & Implementation Issues
1.6 Character set of C++
1.7 C++ Basic Elements
1.8 Structure of a Program
1.9 What is meant by an Object?

Lesson 2 : Data Types, Variables and Constants 25
2.1 Concepts of Data Types
2.2 Data Type Modifiers
2.3 Constants
2.4 String literals:
2.5 Variables
2.6 Operators in C++
2.7 Expressions and Statements
2.8 Conditional Expression
2.9 Operators Precedence in C++

Lesson 3 : Control Statements 40
3.1 Conditional Statements
3.2 Selection Statements : if and else
3.3 Nested if (Nested blocks)
3.4 Another selection statement : switch.
3.5 Jump statements
3.6 The break statement
3.7 The continue statement
3.8 The goto statement
3.9 Exit() Function
3.10 Iteration Statements (C++)

5

3.11 Loop & Nested Loops
3.12 Console I/O functions
3.13 Header Files

Lesson 4 : Functions 58
4.1 Definition of function
4.2 Function Prototype
4.3 Objective of using function prototype
4.4 Accessing a function
4.5 Passing argument to a function
4.6 Default values for Parameters :
4.7 THE const ARGUMENT
4.8 C++ function call by value
4.9 C++ function call by reference
4.10 Parameter pass by reference
4.11 Return Statement
4.12 Passing Arrays as Function Arguments in C++
4.13 C++ Variable Scope
4.14 Local Variables

Lesson 5 : Array 74
5.1 Declaring Arrays
5.2 One Dimensional Array
5.3 Nature of subscript
5.4 Multidimensional Arrays
5.5 Two-Dimensional Arrays
5.6 Array of strings

Lesson 6 : Classes and Objects 82
6.1 Classes
6.2 Access specifiers and default labels
6.3 Scope of class & its members
6.4 Member Functions
6.5 Data hiding & encapsulation
6.6 Inline Functions
6.7 Nesting of Member Functions
6.8 Array within a Class
6.9 Static Function Members

6

Lesson 7 : Constructors, Destructors and Function Overloading 101
7.1 Need for Constructors
7.2 Default Constructors
7.3 Parameterized Constructor :
7.4 Default Copy Constructor
7.5 Dynamic Initialization Using Constructors
7.6 The Class Destructor:
7.7 Function overloading in C++
7.8 Steps involved in finding the best match

Lesson 8: Inheritance 114
8.1 Inheritance: Extending Classes
8.2 Need for Inheritance
8.3 Defining Derived Class
8.4 Different Forms of Inheritance
8.5 Visibility Modes
8.6 Inherit private members of base class

Lesson 9: Information Technology 125
9.1 Introduction to Information Technology
9.2 Computer Networks
9.3 Network Topology
9.4 Advantages and Disadvantages of Network
9.5 Data Communication
9.6 Transmission Channel or Media
9.7 Types of Networks

12

CHAPTER 1

Introduction to C++

1.1 Introduction to object orientation
In the past, information systems used to be defined primarily by their functionality: data
and functions were kept separate and linked together by means of input and output
relations. The object-oriented approach, however, focuses on objects that represent
abstract or concrete things of the real world. These objects are first defined by their
character and their properties which are represented by their internal structure and their
attributes (data). The behaviour of these objects is described by methods (functionality).

Objects form a capsule which combines the character to the respective behaviour.
Objects should enable programmers to map a real problem and its proposed software
solution on a one-to-one basis.

In short, Object-oriented or object-orientation is a software engineering concept, in which
concepts are represented as “objects”.

The prime purpose of C++ programming was to add object orientation to the C
programming language, which is in itself one of the most powerful programming
languages.

The core of the pure object-oriented programming is to create an object, in code, that
has certain properties and methods. While designing C++ modules, we try to see whole
world in the form of objects. For example a car is an object which has certain properties
such as color, number of doors, and the like. It also has certain methods such as
accelerate, brake, and so on.

1.2 Difference Between Structured & Object oriented Language
Structured Programming: Structured programming takes on the top-to-bottom approach.
It splits the tasks into modular forms. This makes the program simpler and easier to
read with less lines and codes. This type of program accomplishes certain tasks for that
a specific reason. For example, invoice printers use structured programming. This type
has clear, correct, precise descriptions.

Object Oriented programming: This type of programming uses sections in a program to
perform certain tasks. It splits the program into objects that can be reused into other
programs. They are small programs that can be used in other software. Each object or
module has the data and the instruction of what to do with the data in it. This can be
reused in other software directly.

Object oriented programming supports the following concepts

• Abstraction

• Encapsulation

• Inheritance
• Polymorphism

13

1.3 Introduction to C++
C++ is a powerful general-purpose programming language. It can be used to create
small programs or large applications. It can be used to make CGI (Common Gateway
Interface) scripts or console-only DOS programs. C++ allows you to create programs
to do almost anything you need to do. The creator of C++,Bjarne Stroustrup, has put
together a partial list of applications written in C++.
1.3.1 Brief History

1. During 1970 Dennis Ritchie created C programming Language.
2. In the early 1980’s, also at Bell Laboratories , another programming

language was created which was based upon the C language.
3. New language was developed by Bjarne Stroustrup and was called

C++.
4. Stroustrup states that the purpose of C++ is to make writing good

program easier and more pleasant for the individual programmer.
5. C++ programming language is extension to C language.
6. In C we have already used increment operator(++). Therefore we

called C++ as “Incremented C” means extension to C.
1.3.2 Versions of C++

There are several versions of C++ programming language
Visual C++
Borland C++
Turbo C++
Standardize C++ [ANSI C++]

1.4 PROGRAM STRUCTURE
C++ programming language is most popular programming language after C
programming language. C++ is first object oriented programming language. We have
summarize structure of C++ program in the following picture

Fig 1

Header File Declaration Section

Global Declaration Section

Class Declaration
And

Method Definition Section

Main Function

Method Definition Section

14

1.5 Program Design & Implementation Issues
A C++ program is a collection of commands, which tell the computer to do “something”.
This collection of commands is usually called C++ source code, source code or
just code. Commands are either “functions” or “keywords”. Keywords are a basic building
block of the language, while functions are, in fact, usually written in terms of simpler
functions—you’ll see this in our very first program, below. (Confused? Think of it a bit like
an outline for a book; the outline might show every chapter in the book; each chapter
might have its own outline, composed of sections. Each section might have its own
outline, or it might have all of the details written up.) Thankfully, C++ provides a great
many common functions and keywords that you can use.
But how does a program actually start? Every program in C++ has one function, always
named main, that is always called when your program first executes. From main, you
can also call other functions whether they are written by us or, as mentioned earlier,
provided by the compiler.
So how do you get access to those prewritten functions? To access those standard
functions that comes with the compiler, you include a header with the #include directive.
What this does is effectively take everything in the header and paste it into your program.
Let’s look at a working program:
1. #include <iostream>
2.
3. using namespace std;
4.
5. int main()
6. {
7. cout<<“HEY, you, I’m alive! Oh, and Hello World!\n”;
8. cin.get();
9. }
Let’s look at the elements of the program. The #include is a “preprocessor” directive that
tells the compiler to put code from the header called iostream into our program before
actually creating the executable. By including header files, you gain access to many
different functions. For example, the cout function requires iostream. Following the include
is the statement, “using namespace std;”. This line tells the compiler to use a group of
functions that are part of the standard library (std). By including this line at the top of a
file, you allow the program to use functions such as cout. The semicolon is part of the
syntax of C++. It tells the compiler that you’re at the end of a command. You will see later
that the semicolon is used to end most commands in C++.
The next important line is int main(). This line tells the compiler that there is a function
named main, and that the function returns an integer, hence int. The “curly braces” ({
and }) signal the beginning and end of functions and other code blocks. You can think of
them as meaning BEGIN and END.

 The next line of the program may seem strange. If you have programmed in another
language, you might expect that print would be the function used to display text. In C++,
however, the cout object is used to display text (pronounced “C out”). It uses the <<
symbols, known as “insertion operators”, to indicate what to output. cout<< results in a

15

function call with the ensuing text as an argument to the function. The quotes tell the
compiler that you want to output the literal string as-is. The ‘\n’ sequence is actually
treated as a single character that stands for a newline (we’ll talk about this later in more
detail). It moves the cursor on your screen to the next line. Again, notice the semicolon:
it is added onto the end of most lines, such as function calls, in C++.
The next command is cin.get(). This is another function call: it reads in input and expects
the user to hit the return key. Many compiler environments will open a new console
window, run the program, and then close the window. This command keeps that window
from closing because the program is not done yet because it waits for you to hit enter.
Including that line gives you time to see the program run.
Upon reaching the end of main, the closing brace, our program will return the value of 0
(and integer, hence why we told main to return an int) to the operating system. This
return value is important as it can be used to tell the OS whether our program succeeded
or not. A return value of 0 means success and is returned automatically (but only for
main, other functions require you to manually return a value), but if we wanted to return
something else, such as 1, we would have to do it with a return statement:
1. #include <iostream>
2.
3. using namespace std;
4.
5. int main()
6. {
7. cout<<“HEY, you, I’m alive! Oh, and Hello World!\n”;
8. cin.get();
9.
10. return 1;
11. }
The final brace closes off the function. You should try compiling this program and running
it.

1.6 CHARACTER SET OF C++
The C++ supports a group of characters as listed below:-
1. Digits 0-9
2. Alphabets

i) Lower case letters a-z
ii) Upper case letters A-Z

3. Special characters +, -, *, /, !, @, #, $, %, &, ‘, <, >, ?, /, \, :, ; ...

1.7 C++ BASIC ELEMENTS
Programming language is a set of rules, symbols, and special words used to construct
programs. There are certain elements that are common to all programming languages.
Now, we will discuss these elements in brief :

16

1.7.1 C++ Character Set
Character set is a set of valid characters that a language can recognize.
Letters A-Z, a-z
Digits 0-9
Special Characters Space + - * / ^ \ () [] {} = != <> ‘ “ $, ; :

% ! & ? _ # <= >= @
Formatting characters backspace, horizontal tab, vertical tab, form feed,

and carriage return

1.7.2 Tokens
A token is a group of characters that logically belong together. The programmer
can write a program by using tokens. C++ uses the following types of tokens.
Keywords, Identifiers, Literals, Punctuators, Operators.
1.7.2.1 Keywords

These are some reserved words in C++ which have predefined meaning
to compiler called keywords..e.g. void, include etc.

1.7.2.2 Identifiers
Symbolic names can be used in C++ for various data items used by a
programmer in his program. A symbolic name is generally known as an
identifier. The identifier is a sequence of characters taken from C++
character set. The rule for the formation of an identifier are:

An identifier can consist of alphabets, digits and/or underscores.
It must not start with a digit
C++ is case sensitive that is upper case and lower case letters
are considered different from each other.
It should not be a reserved word.

1.7.2.3 Literals
Literals (often referred to as constants) are data items that never change
their value during the execution of the program. The following types of
literals are available in C++.

Integer-Constants
Character-constants
Floating-constants
Strings-constants

1.7.2.4 Punctuators
The following characters are used as punctuators in C++.
Brackets [] Opening and closing brackets indicate single and

multidimensional array subscript.
Parentheses () Opening and closing brackets indicate functions

calls,; function parameters for grouping
expressions etc.

17

Braces { } Opening and closing braces indicate the start
and end of a compound statement.

Comma , It is used as a separator in a function argument
list.

Semicolon ; It is used as a statement terminator.
Colon : It indicates a labeled statement or conditional

operator symbol.
Asterisk * It is used in pointer declaration or as multiplication

operator.
Equal sign = It is used as an assignment operator.
Pound sign # It is used as pre-processor directive.

1.7.2.5 Operators
Operators are special symbols used for specific purposes. C++ provides six
types of operators. Arithmetical operators, Relational operators, Logical operators,
Unary operators, Assignment operators, Conditional operators, Comma operator

1.8 STRUCTURE OF A PROGRAM
The best way to learn a programming language is by writing programs. Typically, the first
program beginners write is a program called “Hello World”, which simply prints “Hello
World” to your computer screen. Although it is very simple, it contains all the fundamental
components C++ programs have:
1. // my first program in C++ Hello World!
2. #include <iostream>
3.
4. int main()
5. {
6. std::cout << “Hello World!”;
7. }
The left panel above shows the C++ code for this program. The right panel shows the
result when the program is executed by a computer. The grey numbers to the left of the
panels are line numbers to make discussing programs and researching errors easier.
They are not part of the program.
Let’s examine this program line by line:
Line 1: // my first program in C++

Two slash signs indicate that the rest of the line is a comment inserted by the
programmer but which has no effect on the behavior of the program.
Programmers use them to include short explanations or observations concerning
the code or program. In this case, it is a brief introductory description of the
program.

18

Line 2: #include <iostream>
Lines beginning with a hash sign (#) are directives read and interpreted by what
is known as the preprocessor. They are special lines interpreted before the
compilation of the program itself begins. In this case, the directive #include
<iostream>, instructs the preprocessor to include a section of standard C++
code, known as header iostream, that allows to perform standard input and output
operations, such as writing the output of this program (Hello World) to the screen.

Line 3: A blank line.
Blank lines have no effect on a program. They simply improve readability of the
code.

Line 4: int main ()
This line initiates the declaration of a function. Essentially, a function is a group of
code statements which are given a name: in this case, this gives the name
“main” to the group of code statements that follow. Functions will be discussed
in detail in a later chapter, but essentially, their definition is introduced with a
succession of a type (int), a name (main) and a pair of parentheses (()), optionally
including parameters.
The function named main is a special function in all C++ programs; it is the
function called when the program is run. The execution of all C++ programs
begins with the main function, regardless of where the function is actually located
within the code.

Lines 5 and 7: { and }
The open brace ({) at line 5 indicates the beginning of main’s function definition,
and the closing brace (}) at line 7, indicates its end. Everything between these
braces is the function’s body that defines what happens when main is called. All
functions use braces to indicate the beginning and end of their definitions.

Line 6: std::cout << “Hello World!”;
This line is a C++ statement. A statement is an expression that can actually
produce some effect. Statements are executed in the same order that they appear
within a function’s body.
This statement has three parts: First, std::cout, which identif ies
the standard character output device (usually, this is the computer screen).
Second, the insertion operator (<<), which indicates that what follows is inserted
into std::cout. Finally, a sentence within quotes (“Hello world!”), is the content
inserted into the standard output.
Notice that the statement ends with a semicolon (;). This character marks the
end of the statement, just as the period ends a sentence in English. All C++
statements must end with a semicolon character. One of the most common
syntax errors in C++ is forgetting to end a statement with a semicolon.
You may have noticed that not all the lines of this program perform actions when
the code is executed. There is a line containing a comment (beginning with //).
There is a line with a directive for the preprocessor (beginning with#). There is a
line that defines a function (in this case, the main function). And, finally, a line
with a statements ending with a semicolon (the insertion into cout), which was
within the block delimited by the braces ({ }) of the main function.

19

The program has been structured in different lines and properly indented, in order to
make it easier to understand for the humans reading it. But C++ does not have strict
rules on indentation or on how to split instructions in different lines.
 For example, instead of
1. int main ()
2. {
3. std::cout << “ Hello World!”;
4. }
We could have written:

 int main () { std::cout << “Hello World!”; }

all in a single line, and this would have had exactly the same meaning as the preceding
code.
In C++, the separation between statements is specified with an ending semicolon (;),
with the separation into different lines not mattering at all for this purpose. Many statements
can be written in a single line, or each statement can be in its own line. The division of
code in different lines serves only to make it more legible and schematic for the humans
that may read it, but has no effect on the actual behavior of the program.
Now, let’s add an additional statement to our first program:
1 // my second program in C++ Hello World! I’m a C++ program
2 #include <iostream>
3
4 int main ()
5 {
6 std::cout << “Hello World! “;
7 std::cout << “I’m a C++ program”;
8 }

In this case, the program performed two insertions into std::cout in two different
statements. Once again, the separation in different lines of code simply gives greater
readability to the program, since main could have been perfectly valid defined in this
way:

 int main () { std::cout << “ Hello World! “; std::cout << “ I’m a C++ program “; }

The source code could have also been divided into more code lines instead:
1 int main ()
2 {
3 std::cout <<
4 “Hello World!”;
5 std::cout
6 << “I’m a C++ program”;
7 }

20

And the result would again have been exactly the same as in the previous examples.
Preprocessor directives (those that begin by #) are out of this general rule since they are
not statements. They are lines read and processed by the preprocessor before proper
compilation begins. Preprocessor directives must be specified in their own line and,
because they are not statements, do not have to end with a semicolon (;).
1.8.1 Comments

As noted above, comments do not affect the operation of the program; however,
they provide an important tool to document directly within the source code what
the program does and how it operates.
C++ supports two ways of commenting code:
1 // line comment
2 /* block comment */

The first of them, known as line comment, discards everything from where the pair of
slash signs (//) are found up to the end of that same line. The second one, known as block
comment, discards everything between the /*characters and the first appearance of
the */ characters, with the possibility of including multiple lines.
Let’s add comments to our second program:
1 /* my second program in C++ Hello World! I’m a C++ program
2 with more comments */
3
4 #include <iostream>
5
6 int main ()
7 {
8 std::cout << “Hello World! “; // prints Hello World!
9 std::cout << “I’m a C++ program”; // prints I’m a C++
10 program
11 }

If comments are included within the source code of a program without using the comment
characters combinations//, /* or */, the compiler takes them as if they were C++
expressions, most likely causing the compilation to fail with one, or several, error
messages.
1.8.2 Using namespace std

If you have seen C++ code before, you may have seen cout being used instead
of std::cout. Both name the same object: the first one uses its unqualified
name (cout), while the second qualifies it directly within the namespace
std(as std::cout).
cout is part of the standard library, and all the elements in the standard C++
library are declared within what is a called a namespace: the namespace std.

21

In order to refer to the elements in the std namespace a program shall either
qualify each and every use of elements of the library (as we have done by
prefixing cout with std::), or introduce visibility of its components. The most typical
way to introduce visibility of these components is by means of using declarations:

 using namespace std;

The above declaration allows all elements in the std namespace to be accessed
in an unqualified manner (without the std:: prefix).
With this in mind, the last example can be rewritten to make unqualified uses
of cout as:
1 // my second program in C++ Hello World! I’m a C++ program
2 #include <iostream>
3 using namespace std;
4
5 int main ()
6 { cout << “Hello World! “;
7 cout << “I’m a C++ program”;
8 }

1.9 What is meant by an object?
• Objects are the basic run-time entities in an object-oriented system.
• They may represent a person, a place, , a table of data or any item that

the program must handle.
• They may also represent user defined data such as vectors, time and lists.
• When a program is executed, the objects interact by sending message to one

another.
• Each object contains data and code to manipulate the data.
• Objects can interact without knowing having to know details of each other’s

data or code.
1.9.1 Classes

1. A class is a collection of objects of same type.
2. Once the class has been defined , we can create any number of objects

belonging to that class.
3. Each object is associated with the data of type class with which they are

created.
1.9.2 Encapsulation

The wrapping up of data and functions into a single unit (called class) is
known as encapsulation
Data encapsulation is the most striking feature of a class. The data is not
accessible to the outside world and only those functions which are
wrapped in the class can access it.

22

These functions provide the interface between the object’s data and the
program
This insulation of the data from direct access by the program is called
data hiding

 1.9.3 Inheritance.

• Inheritance is the process by which objects of one class acquire the
properties of objects of another class.

• It provides the idea of reusability.

• This is possible by deriving a new class from the existing class . The
new class will have the combined features of both the classes.

 1.9.4 Polymorphism

• It means the ability to take more than one form. For ex, consider the
operation of addition.

• If the operands are strings, then the operation would produce a third string
by concatenation.

• If the operands are numbers, it will generate a sum.
Some examples of classes:

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// classes example
#include <iostream>
using namespace std;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int
y) {
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);

 cout << "area: " << rect.area();
 return 0;
}

area: 12

23

POINTS TO REMEMBER

Object-oriented or object-orientation is a software engineering concept, in which
concepts are represented as “objects.
Structured programming takes on the top-to-bottom approach. It splits the tasks into
modular forms.
C++ is a powerful general-purpose programming language. It can be used to create
small programs or large applications. It can be used to make CGI scripts or console-
only DOS programs.
C++ was developed by Bjarne Stroustrup.
A C++ program is a collection of commands, which tell the computer to do “something”.
This collection of commands is usually called C++ source code, source code or
just code
Character set is a set of valid characters that a language can recognize.
A token is a group of characters that logically belong together.
Rreserved words in C++ which have predefined meaning to compiler called keywords.
Literals (often referred to as constants) are data items that never change their value
during the execution of the program.
Operators are special symbols used for specific purposes. C++ provides six types of
operators.

24

EXERCISE

1. Give one word Answer of the following statements:
a. A software engineering concept, in which concepts are represented as

“objects”.
b. Every program in C++ has one function, which is always called when your program

first executes.
c. Reserved words in C++ which have predefined meaning to compiler.
d. A group of characters that logically belong together.
e. The process by which objects of one class acquire the properties of objects of

another class.
2. True /False

a. The wrapping up of data and functions into a single unit is known as
encapsulation.

b. Comments affect the operation of the program.
c. Literals are data items that never change their value during the execution of the

program.
d. Structured programming takes on the top-to-bottom approach.
e. Polymorphism is a process of deriving a new class from the existing class.

3. Short Answer type Questions
a. Briefly explain the structure of typical C++ program
b. What is comment?
c. List out C++ main character set.
d. What is meant by an object?
e. What is an identifier?

4. Long Answer type Questions
a. Explain the role of Punctuators in C++ language.
b. How C++ came in to existence ?Explain.

c. Explain the concept of object orientation in C++.

25

Chapter 2

DATA TYPES, VARIABLES AND CONSTANTS

2.1 Concepts of Data Types

While doing programming in any programming language, you need to use various
variables to store various information. Variables are nothing but reserved memory
locations to store values. This means that when you create a variable you reserve
some space in memory.

You may like to store information of various data types like character, wide character,
integer, floating point, double floating point, boolean etc. Based on the data type of a
variable, the operating system allocates memory and decides what can be stored in the
reserved memory.

2.1.1 Primitive Built-in Types:

C++ offer the programmer a rich assortment of built-in as well as user defined data
types. Following table lists down seven basic C++ data types:

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers:

signed

unsigned

short

long

The following table shows the variable type, how much memory it takes to store the
value in memory, and what is maximum and minimum value which can be stored in
such type of variables.

26

Type Typical Bit Width Typical Range
char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int Range 0 to 65,535

signed short int Range -32768 to 32767

long int 4bytes -2,147,483,647 to 2,147,483,647

signed long int 4bytes same as long int

unsigned long int 4bytes 0 to 4,294,967,295

float 4bytes +/- 3.4e +/- 38 (~7 digits)

double 8bytes +/- 1.7e +/- 308 (~15 digits)

long double 8bytes +/- 1.7e +/- 308 (~15 digits)
wchar_t 2 or 4 bytes 1 wide character

The sizes of variables might be different from those shown in the above table, depending
on the compiler and the computer you are using.

There are following basic types of variable in C++ as explained above:

Type Description
bool Stores either value true or false.

char Typically a single octet(one byte). This is an integer type.

int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

wchar_t A wide character type.

2.2 Data Type Modifiers
C++ allows the char, int, and double data types to have modifiers preceding them. A
modifier is used to alter the meaning of the base type so that it more precisely fits the
needs of various situations.

27

The data type modifiers are listed here:

signed

unsigned

long

short

The modifiers signed, unsigned, long, and short can be applied to integer base types.
In addition, signed and unsigned can be applied to char, and long can be applied to
double.

The modif iers signed and unsigned can also be used as pref ix
to long or short modifiers. For example, unsigned long int.
C++ allows a shorthand notation for declaring unsigned, short, or long integers. You
can simply use the word unsigned, short, or long, without the int. The int is implied. For
example, the following two statements both declare unsigned integer variables.

unsigned x;

unsigned int y;

To understand the difference between the way that signed and unsigned integer modifiers
are interpreted by C++, you should run the following short program:

#include <iostream>

using namespace std;

/* This program shows the difference between

* signed and unsigned integers.

*/

int main()

{

short int i; // a signed short integer

 short unsigned int j; // an unsigned short integer

 j = 50000;

 i = j;

cout << i << “ “ << j;

 return 0;

}

When this program is run, following is the output:

-15536 50000

The above result is because the bit pattern that represents 50,000 as a short unsigned
integer is interpreted as -15,536 by a short.

28

2.3 Constants
Constants refer to fixed values that the program may not alter and they are called literals.

Constants can be of any of the basic data types and can be divided into Integer Numerals,
Floating-Point Numerals, Characters, Strings and Boolean Values.

Again, constants are treated just like regular variables except that their values cannot
be modified after their definition.

2.3.1 Integer literals:

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the
base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned
and long, respectively. The suffix can be uppercase or lowercase and can be in any
order.

Here are some examples of integer literals:

212 // Legal

215u // Legal

0xFeeL // Legal

078 // Illegal: 8 is not an octal digit

032UU // Illegal: cannot repeat a suffix

2.3.2 Floating-point literals:

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent
part. You can represent floating point literals either in decimal form or exponential form.

While representing using decimal form, you must include the decimal point, the exponent,
or both and while representing using exponential form, you must include the integer
part, the fractional part, or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals:

3.14159 // Legal

314159E-5L // Legal

510E // Illegal: incomplete exponent

210f // Illegal: no decimal or exponent

.e55 // Illegal: missing integer or fraction

2.3.3 Boolean literals:

There are two Boolean literals and they are part of standard C++ keywords:

A value of true representing true.

A value of false representing false.

You should not consider the value of true equal to 1 and value of false equal to 0.

29

2.3.4 Character literals:
Character literals are enclosed in single quotes. If the literal begins with L (uppercase
only), it is a wide character literal (e.g., L’x’) and should be stored in wchar_t type of
variable . Otherwise, it is a narrow character literal (e.g., ‘x’) and can be stored in a
simple variable of char type.

A character literal can be a plain character (e.g., ‘x’), an escape sequence (e.g., ‘\t’), or
a universal character (e.g., ‘\u02C0’).

There are certain characters in C++ when they are preceded by a backslash they will
have special meaning and they are used to represent like newline (\n) or tab (\t). Here,
you have a list of some of such escape sequence codes:

Escape sequence Meaning

\\ \ character

\’ ‘ character

\” “ character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

Following is the example to show few escape sequence characters:

#include <iostream>
using namespace std;
int main()
{

cout << “Hello\tWorld\n\n”;
return 0;

}

When the above code is compiled and executed, it produces the following result:

Hello World

30

2.4 String literals:
String literals are enclosed in double quotes. A string contains characters that are similar
to character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separate them using
whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

“hello, dear”

“hello, \

dear”

“hello, “ “d” “ear”

2.5 Variables

Definition

“Variable is a memory location inC++ Programming language”

Variable are used to store data on memory.

 Why we use variables in C++ language?

Variables are used to store value and those values can be changed.

The values of variables can be numeric or alphabet.

There are certain rules on choosing variable name:

• Variable name can consist of letter, alphabets and start with underscore character.

• First character of variable should always be alphabet and cannot be numeric.

• Blank spaces are not allowed in variable name.

• Special characters like #, $ are not allowed.

• A single variable can only be declared for only 1 data type in a program.

• As C++ is case sensitive language so if we declare a variable name and
one more NAME both are two different variables.

• C++ has certain keywords which cannot be used as variable name.

• A variable name can consist of 31 characters only if we declare a variable more
than 1 characters compiler will ignore after 31 characters.

2.5.1 Declaration of Variables

C++ is a strongly-typed language, and requires every variable to be declared
with its type before its first use. This informs the compiler the size to reserve
memory for the variable and how to interpret its value. The syntax to declare a
new variable in C++ is straightforward: we simply write the type followed by the
variable name (i.e., its identifier).

31

A variable declaration has the form:

type identifier-list;

type specifies the type of the variables being declared. The identifier-list is a list
of the identifiers of the variables being declared, separated by commas.

For example:

1 int a;float

2 mynumber;

These are two valid declarations of variables. The first one declares a variable
of type int with the identifier a. The second one declares a variable of type float with
the identifier mynumber. Once declared, the variables a and mynumber can be
used within the rest of their scope in the program.

If declaring more than one variable of the same type, they can all be declared in
a single statement by separating their identifiers with commas. For example:

int a, b, c;

this declares three variables (a, b and c), all of them of type int, and has exactly
the same meaning as:

1 int a;

2 int b;

3 int c;

To see what variable declarations look like in action within a program, let’s have
a look at the entire C++ code of the example about your mental memory proposed
at the beginning of this chapter:

1 // operating with variables

2.

3 #include <iostream>

4 using namespace std;

5

6 int main ()

7 {

8 // declaring variables:

9 int a, b;

10 int result;

11

12 // process:

13 a = 5;

14 b = 2;

15 a = a + 1;

32

16 result = a - b;

17

18 // print out the result:

19cout << result;

20

21 // terminate the program:

22 return 0;}

23 }

2.5.2 Initialization of Variables
When the variables in the example above are declared, they have an undetermined
value until they are assigned a value for the first time. But it is possible for a
variable to have a specific value from the moment it is declared. This is called
the initialization of the variable.

In C++, there are three ways to initialize variables. They are all equivalent and
are reminiscent of the evolution of the language over the years:

The first one, known as c-like initialization (because it is inherited from the C
language), consists of appending an equal sign followed by the value to which
the variable is initialized:

type identifier = initial_value;

For example, to declare a variable of type int called x and initialize it to a value of
zero from the same moment it is declared, we can write:

 int x = 0;

2.6 Operators in C++

An operator is a symbol that tells the compiler to perform specific mathematical or
logical manipulations. C++ is rich in built-in operators and provides the following types
of operators:

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operators

Misc Operators

33

 Arithmetic Operators:
 There are following arithmetic operators supported by C++ language: int A=10, B=20

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after an B % A will give 0
integer division

++ Increment operator, increases integer value A++ will give 11
by one

– – Decrement operator, decreases integer value A– – will give 9
by one

2.6.2 Relational Operators:
There are following relational operators supported by C++ language

Operator Description Example

==
Checks if the values of two operands
are equal or not, if yes then condition
becomes true.

(A == B) is not true.

!=
Checks if the values of two operands
are equal or not, if values are not equal
then condition becomes true.

(A != B) is true.

>
Checks if the value of left operand is
greater than the value of right operand,
if yes then condition becomes true.

(A > B) is not true.

<
Checks if the value of left operand is
less than the value of right operand, if
yes then condition becomes true.

(A < B) is true.

>=

Checks if the value of left operand is
greater than or equal to the value of
right operand, if yes then condition
becomes true.

(A >= B) is not true.

<=

Checks if the value of left operand is
less than or equal to the value of right
operand, if yes then condition
becomes true.

(A <= B) is true.

34

2.6.3 Logical Operators:
There are following logical operators supported by C++ language

Operator Description Example

&&
Called Logical AND operator. If both the
operands are non-zero, then condition
becomes true.

(A && B) is false.

||
Called Logical OR Operator. If any of the
two operands is non-zero, then condition
becomes true.

(A || B) is true.

!
Called Logical NOT Operator. Use to
reverses the logical state of its operand. If
a condition is true, then Logical NOT
operator will make false.

!(A && B) is true.

2.6.4 Bitwise operators (&, |, ^, ~, <<, >>)
Bitwise operators modify variables considering the bit patterns that represent

the values they store.

operator asm equivalent description
& AND Bitwise AND

| OR Bitwise inclusive OR

^ XOR Bitwise exclusive OR

~ NOT Unary complement (bit inversion)
<< SHL Shift bits left

>> SHR Shift bits right

2.6.5 Assignment Operators:
There are following assignment operators supported by C++ language:

Operator Description Example

=
Simple assignment operator,
Assigns values from right side
operands to left side operand

C = A + B wil l assign value of A + B
into C

+=
Add AND assignment operator, It
adds right operand to the left
operand and assign the result to left
operand

C += A is equivalent to C = C + A

35

-=
Subtract AND assignment operator, It subtracts right
operand from the left operand and assign the result to
left operand

C -= A is equivalent
to C = C - A

*=
Mult iply AND assignment operator, It multiplies right
operand with the left operand and assign the result to left
operand

C *= A is equivalent
to C = C * A

/=
Divide AND assignment operator, It divides left operand
with the right operand and assign the result to left
operand

C /= A is equivalent
to C = C / A

%= Modulus AND assignment operator, It takes modulus
using two operands and assign the result to left operand

C %= A is
equivalent to C = C
% A

<<= Left shif t AND assignment operator C <<= 2 is same as
C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as
C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as
C = C & 2

^= bitwise exclusive OR and assignment operator C ^= 2 is same as C
= C ^ 2

|= bitwise inclusive OR and assignment operator C |= 2 is same as C
= C | 2

2.6.6 Conditional ternary operator (?)
The conditional operator evaluates an expression, returning one value if that
expression evaluates to true, and a different one if the expression evaluates
as false. Its syntax is:
condition ? result1 : result2
If condition is true, the entire expression evaluates to result1, and otherwise
to result2.
1 7==5 ? 4 : 3 // evaluates to 3, since 7 is not equal to 5.
2 7==5+2 ? 4 : 3 // evaluates to 4, since 7 is equal to 5+2.
3 5>3 ? a : b // evaluates to the value of a, since 5 is greater than 3.
4 a>b ? a : b // evaluates to whichever is greater, a or b.

36

2.7 Expressions and Statements
These assignment statements have a very simple structure.
Variable = Expression
We know what a variable is, i.e. somewhere to store the value of the expression, but j
ust what is an expression? It’s a statement that resolves to a value: either numeric or
character.
What exactly is a Statement?
A statement is a building block of a program. For example the assignment statement
 int a=10;
This is also an expression and has the value 10. If we write this code
 int b= (a=10) ;

Both a and b will be set to the value 10.

2.8 Conditional Expression

A conditional expression is one which evaluates as true (a non zero value) or false (0).
True is almost always 1 but any non zero value is also true! A zero value is false,
anything else is true.

#include <iostream>

using namespace std;

 int main()

{

 int a=10;

 int b=(a = 10) ;

 int c=(a==10) ;

 cout << “Value of b is “ << b << endl ;

 cout << “Value of c is “ << c << endl ;

 return 0;

 }

Compile and run the example above. It should print out the following.

 Value of b is 10

 Value of c is 1

2.9 Operators Precedence in C++:
Operator precedence determines the grouping of terms in an expression. This affects
how an expression is evaluated. Certain operators have higher precedence than others;
for example, the multiplication operator has higher precedence than the addition operator:

37

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with
the lowest appear at the bottom. Within an expression, higher precedence operators
will be evaluated first.

Category Operator Associativity

Postf ix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

38

POINTS TO REMEMBER:

When you create a variable you reserve some space in memory.

C++ allows the char, int, and double data types to have modifiers preceding
them.

Constants refer to fixed values that the program may not alter and they are
called literals
Character literals are enclosed in single quotes

A floating-point literal has an integer part, a decimal point, a fractional part, and
an exponent part.

The conditional operator evaluates an expression, returning one value if that
expression evaluates to true, and a different one if the expression evaluates
as false

Operator precedence determines the grouping of terms in an expression.

39

EXERCISE

1. Fill in the blanks:
a. Reserved memory locations to store values is called ………….

b. A building block of a program is known as …………...

c. ………….. symbol that tells the compiler to perform specific mathematical or
logical manipulations.

d. …………… is used to alter the meaning of the base type so that it more precisely
fits the needs of various situations.

e. …………… contains characters that are similar to character literals: plain
characters, escape sequences, and universal characters.

2. True/False
a. Operator precedence does not determine the grouping of terms in an expression.

b. Basic types cannot be modified by type modifiers.

c. Constants refer to fixed values that the program may not alter.

d. A conditional expression is one which evaluates as true (a non zero value) or
false (0).

e. You cannot break a long line into multiple lines using string literals.

3. Short Answer type questions:
a. What are basic types of variable in C++?
b. Explain the term type modifier.
c. What is the difference between constant and variable?
d. What is operator?
e. What is conditional Expression?

4. Long answer type questions:
a. Explain about the arithmetic operators and relational operators in detail.
b. What do you mean by character literal? Also explain escape sequences.

40

Chapter 3

CONTROL STATEMENTS

Compound statement, is a group of statements that is treated by the compiler as if it were a
single statement. Blocks begin with a { symbol, end with a } symbol, and the statements to be
executed are placed in between. Blocks can be used any place where a single statement is
allowed.
Here is an example of a block when writing the function main():

1. int main()
2. { // start a block
3.
4. // multiple statements
5. int nValue = 0;
6. return 0
7.
8. ; } // end a block

Note: Nested blocks can be further discussed in this chapter
3.1 Conditional statements
In C++ statement each of the individual instructions of a program, like the variable declarations
and expressions seen in previous sections. They always end with a semicolon (;), and are
executed in the same order in which they appear in a program.
But programs are not limited to a linear sequence of statements. During its process, a program
may repeat segments of code, or take decisions and bifurcate. For that purpose, C++ provides
flow control statements that serve to specify what has to be done by our program, when, and
under which circumstances.
Many of the flow control statements explained in this section require a generic (sub) statement
as part of its syntax. This statement may either be a simple C++ statement, -such as a single
instruction, terminated with a semicolon (;) - or a compound statement. A compound statement
is a group of statements (each of them terminated by its own semicolon), but all grouped
together in a block, enclosed in curly braces: {} (As explained above)

{ statement1; statement2; statement3; }

The entire block is considered a single statement (composed itself of multiple sub statements).
Whenever a generic statement is part of the syntax of a flow control statement, this can either
be a simple statement or a compound statement.
3.2 Selection statements: if and else
The if keyword is used to execute a statement or block, if, and only if, a condition is fulfilled. Its
syntax is:
if (condition) statement

41

Here, condition is the expression that is being evaluated. If this condition is true, statement is
executed. If it is false, statement is not executed (it is simply ignored), and the program continues
right after the entire selection statement.
For example, the following code fragment prints the message (x is 100), only if the value stored
in the x variable is indeed 100:

1. if (x == 100)
2. cout << “x is 100”;

If x is not exactly 100, this statement is ignored, and nothing is printed.
If you want to include more than a single statement to be executed when the condition is fulfilled,
these statements shall be enclosed in braces ({}), forming a block:

1. if (x == 100)
2.. {
3. cout << “x is “;
4. cout << x;
5. }

As usual, indentation and line breaks in the code have no effect, so the above code is
equivalent to:
 if (x == 100) { cout << “x is “; cout << x; }

Selection statements with if can also specify what happens when the condition is not fulfilled,
by using the else keyword to introduce an alternative statement. Its syntax is:

if (condition) statement1 else statement2
where statement1 is executed in case condition is true, and in case it is not, statement2 is
executed.

For example:
1. if (x == 100)
2. cout << “x is 100”;
3. else
4. cout << “x is not 100”;

This prints x is 100, if indeed x has a value of 100, but if it does not, and only if it does not, it
prints x is not 100instead.
Several if + else structures can be concatenated with the intention of checking a range of
values. For example:

1. if (x > 0)
2. cout << “x is positive”;
3. else if (x < 0)
4. cout << “x is negative”;
5. else
6. cout << “x is 0”;

42

This prints whether x is positive, negative, or zero by concatenating two if-else structures.
Again, it would have also been possible to execute more than a single statement per case by
grouping them into blocks enclosed in braces: {}.
3.3 Nested if (Nested blocks)
Blocks can be nested inside of other blocks. As you have seen, the if statement executes a
single statement if the condition is true. However, because blocks can be used anywhere a
single statement can, we can instead use a block of statements to make the if statement execute
multiple statements if the condition is true!

1. #include <iostream>
2. int main()
3. {
4. using namespace std;
5. cout << “Enter a number: “;
6. int nValue;
7. cin >> nValue;
8. if (nValue > 0)
9. { // start of nested block
10. cout << nValue << “ is a positive number” << endl;
11. cout << “Double this number is “ << nValue * 2 << endl;
12. } // end of nested block
13. }

If the user enters the number 3, this program prints:
3 is a positive number
Double this number is 6
Note that both statements inside the nested block executed when the if statement is true!
It is even possible to put blocks inside of blocks inside of blocks:

1. int main()
2. {
3. using namespace std;
4. cout << “Enter a number: “;
5. int nValue;
6. cin >> nValue;
7.
8. if (nValue > 0)
9. {
10 if (nValue < 10)
11. {
12. cout << nValue << “ is between 0 and 10” << endl;
13. }
14. }
15. }

43

There is no practical limit to how many nested blocks you can have. However, it is generally a
good practice to try to keep the number of nested blocks to at most 3 (maybe 4) blocks deep. If
your function has a need for more, it’s probably time to break your function into multiple smaller
functions!
3.4 Another selection statement: switch.

The syntax of the switch statement is a bit peculiar. Its purpose is to check for a value
among a number of possible constant expressions. It is something similar to concatenating if-
else statements, but limited to constant expressions. Its most typical syntax is:

switch (expression)
{

case constant1:
 group-of-statements-1;

break;
case constant2:
group-of-statements-2;
break;
.
.
.
default:
default-group-of-statements

}
It works in the following way: switch evaluates expression and checks if it is equivalent
to constant1; if it is, it executes group-of-statements-1 until it finds the break statement. When
it finds this break statement, the program jumps to the end of the entire switch statement (the
closing brace).
If expression was not equal to constant1, it is then checked against constant2. If it is equal to
this, it executesgroup-of-statements-2 until a break is found, when it jumps to the end of the
switch.
Finally, if the value of expression did not match any of the previously specified constants (there
may be any number of these), the program executes the statements included after
the default: label, if it exists (since it is optional).
Both of the following code fragments have the same behavior, demonstrating the if-else equivalent
of a switch statement:

switch example if-else equivalent
switch (x) { if (x == 1) {
case 1: cout << “x is 1”;}
cout << “x is 1”; }
break; else if (x == 2) {
case 2: cout << “x is 2”;
cout << “x is 2”; }
break; else {
default:
cout << “value of x unknown”; } cout << “value of x unknown”;}

44

The switch statement has a somewhat peculiar syntax inherited from the early times of the first
C compilers, because it uses labels instead of blocks. In the most typical use (shown above),
this means that break statements are needed after each group of statements for a particular
label. If break is not included, all statements following the case (including those under any other
labels) are also executed, until the end of the switch block or a jump statement (such as break)
is reached.

If the example above lacked the break statement after the first group for case one, the program
would not jump automatically to the end of the switch block after printing x is 1, and would
instead continue executing the statements in case two (thus printing also x is 2). It would then
continue doing so until a break statement is encountered, or the end of the switch block. This
makes unnecessary to enclose the statements for each case in braces {}, and can also be
useful to execute the same group of statements for different possible values. For example:

1. switch (x) {

2. case 1:

3. case 2:

4. case 3:

5. cout << “x is 1, 2 or 3”;

6. break;

7. default:

8. cout << “x is not 1, 2 nor 3”;

9. }

Notice that switch is limited to compare its evaluated expression against labels that are constant
expressions. It is not possible to use variables as labels or ranges, because they are not valid
C++ constant expressions.

To check for ranges or values that are not constant, it is better to use concatenations of if and else
if statements.

3.5 Jump statements

Jump statements allow altering the flow of a program by performing jumps to specific
locations.

3.6 The break statement

break leaves a loop, even if the condition for its end is not fulfilled. It can be used to end an
infinite loop, or to force it to end before its natural end. For example, let’s stop the countdown
before its natural end:

45

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

// break loop example

#include <iostream>

using namespace std;

int main ()

{

 for (int n=10; n>0; n- -)

 {

 cout << n << ", ";

 if (n==3)

 {

 cout << "countdown aborted!";

 break;

 }

 }

}

10, 9, 8, 7, 6, 5, 4, 3, countdown aborted!

3.7 The continue statement
The continue statement causes the program to skip the rest of the loop in the current iteration,
as if the end of the statement block had been reached, causing it to jump to the start of the
following iteration. For example, let’s skip number 5 in our countdown:

1

2
3

4

5

6

7

8
9

10

11

12

// continue loop example

#include <iostream>
using namespace std;

int main ()

{

 for (int n=10; n>0; n--) {

 if (n==5) continue;
 cout << n << ", ";

 }

 cout << "liftoff!\n";

}

10, 9, 8, 7, 6, 4, 3, 2, 1, liftoff!

46

3.8 The goto statement
goto allows to make an absolute jump to another point in the program. This unconditional jump
ignores nesting levels, and does not cause any automatic stack unwinding. Therefore, it is a
feature to use with care, and preferably within the same block of statements, especially in the
presence of local variables.
The destination point is identified by a label, which is then used as an argument for
the goto statement. A label is made of a valid identifier followed by a colon (:).
goto is generally deemed a low-level feature, with no particular use cases in modern higher-
level programming paradigms generally used with C++. But, just as an example, here is a
version of our countdown loop using goto:

1

2

3

4

5

6

7

8

9

10

11

12

13

// goto loop example

#include <iostream>

using namespace std;

int main ()

{

 int n=10;

mylabel:

 cout << n << ", ";

 n- -;

 if (n>0) goto mylabel;

 cout << "liftoff!\n";

}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, liftoff!

3.9 Exit() Function
Exit ends the program. The ExitCode is returned to the operating system, similar to returning a
value to int main.
Example:

//Program exits itself
//Note that the example would terminate anyway
#include <iostream>

using namespace std;

int main()
{
 cout<<“Program will exit”;
 exit(1); // Returns 1 to the operating system
 cout<<“Never executed”;
}

47

3.10 Iteration Statements (C++)
Iteration statements cause statements (or compound statements) to be executed zero or more
times, subject to some loop-termination criteria. When these statements are compound
statements, they are executed in order, except when either the break statement or
the continue statement is encountered.
3.11 Loop & Nested Loops
Loops repeat a statement a certain number of times, or while a condition is fulfilled. They are
introduced by the keywords while, do, and for.
The while loop
The simplest kind of loop is the while-loop. Its syntax is:
while (expression) statement
The while-loop simply repeats statement while expression is true. If, after any execution
of statement, expressionis no longer true, the loop ends, and the program continues right after
the loop. For example, let’s have a look at a countdown using a while-loop:

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

// custom countdown using while

#include <iostream>

using namespace std;

int main ()

{

 int n = 10;

 while (n>0) {

 cout << n << ", ";

 --n;

 }

 cout << "liftoff!\n";

}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, liftoff!

The first statement in main sets n to a value of 10. This is the first number in the countdown.
Then the while-loop begins: if this value fulfills the condition n>0 (that n is greater than zero),
then the block that follows the condition is executed, and repeated for as long as the condition
(n>0) remains being true
The whole process of the previous program can be interpreted according to the following script
(beginning in main):
1. n is assigned a value

48

2. The while condition is checked (n>0). At this point there are two possibilities:
o condition is true: the statement is executed (to step 3)
o condition is false: ignore statement and continue after it (to step 5)

3. Execute statement:
cout << n << “, “;
- - n;
(prints the value of n and decreases n by 1)

4. End of block. Return automatically to step 2.
5. Continue the program right after the block:

print liftoff! and end the program.
A thing to consider with while-loops is that the loop should end at some point, and thus the
statement shall alter values checked in the condition in some way, so as to force it to become
false at some point. Otherwise, the loop will continue looping forever. In this case, the loop
includes - - n, that decreases the value of the variable that is being evaluated in the condition (n)
by one - this will eventually make the condition (n>0) false after a certain number of loop iterations.
To be more specific, after 10 iterations, n becomes 0, making the condition no longer true, and
ending the while-loop.
Note that the complexity of this loop is trivial for a computer, and so the whole countdown is
performed instantly, without any practical delay between elements of the count.
The do-while loop
A very similar loop is the do-while loop, whose syntax is:
do statement while (condition);
It behaves like a while-loop, except that condition is evaluated after the execution
of statement instead of before, guaranteeing at least one execution of statement, even
if condition is never fulfilled. For example, the following example program echoes any text the
user introduces until the user enters goodbye:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

// echo machine

#include <iostream>

#include <string>

using namespace std;

int main ()

{

 string str;

 do {

 cout << "Enter text: ";

 getline (cin,str);

 cout << "You entered: " << str << '\n';

 } while (str != "goodbye");

}

Enter text: hello

You entered: hello

Enter text: who's there?

You entered: who's there?

Enter text: goodbye

You entered: goodbye

49

The do-while loop is usually preferred over a while-loop when the statement needs to be executed
at least once, such as when the condition that is checked to end of the loop is determined within
the loop statement itself. In the previous example, the user input within the block is what will
determine if the loop ends. And thus, even if the user wants to end the loop as soon as possible
by entering goodbye, the block in the loop needs to be executed at least once to prompt for
input, and the condition can, in fact, only be determined after it is executed.
The for loop
The for loop is designed to iterate a number of times. Its syntax is:
for (initialization; condition; increase) statement;
Like the while-loop, this loop repeats statement while condition is true. But, in addition, the for
loop provides specific locations to contain an initialization and an increase expression, executed
before the loop begins the first time, and after each iteration, respectively. Therefore, it is
especially useful to use counter variables as condition.
It works in the following way:
1. initialization is executed. Generally, this declares a counter variable, and sets it to some

initial value. This is executed a single time, at the beginning of the loop.
2. condition is checked. If it is true, the loop continues; otherwise, the loop ends,

and statement is skipped, going directly to step 5.
3. statement is executed. As usual, it can be either a single statement or a block enclosed

in curly braces { }.
4. increase is executed, and the loop gets back to step 2.
5. the loop ends: execution continues by the next statement after it.
6. Here is the countdown example using a for loop:

1

2

3

4

5

6

7

8

9

10

11

// countdown using a for loop

#include <iostream>

using namespace std;

int main ()

{

 for (int n=10; n>0; n- -)

 { cout << n << ", ";

 }

 cout << "liftoff!\n";

}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, liftoff!

The three fields in a for-loop are optional. They can be left empty, but in all cases the semicolon
signs between them are required. For example, for (;n<10;) is a loop
without initialization or increase (equivalent to a while-loop); and for (;n<10;++n) is a loop

50

with increase, but no initialization (maybe because the variable was already initialized before
the loop). A loop with no condition is equivalent to a loop with true as condition (i.e., an infinite
loop).
Because each of the fields is executed in a particular time in the life cycle of a loop, it may be
useful to execute more than a single expression as any of initialization, condition, or statement.
Unfortunately, these are not statements, but rather, simple expressions, and thus cannot be
replaced by a block. As expressions, they can, however, make use of the comma operator (,):
This operator is an expression separator, and can separate multiple expressions where only
one is generally expected. For example, using it, it would be possible for a for loop to handle two
counter variables, initializing and increasing both:

1 for (n=0, i=100 ; n!=i ; ++n, - - i)
2 {
3 // whatever here...
4 }

This loop will execute 50 times if neither n or i are modified within the loop:

for (n = 0, i = 100 ; n! = i ; ++n, --i)
Increase

Condition
Initialization

n starts with a value of 0, and i with 100, the condition is n!=i (i.e., that n is not equal to i).
Because n is increased by one, and i decreased by one on each iteration, the loop’s condition
will become false after the 50th iteration, when both n and i are equal to 50
Nested Loops
When we write any loop statement within the another loop statement the that structure
is called as nested loops
A loop can be nested inside of another loop. C++ allows at least 256 levels of nesting.
Syntax:
T h e s y n t a x f o r a nested for loop statement in C++ is as follows:

for (init; condition; increment)
{
 for (init; condition; increment)
 {
 statement(s);
 }
 statement(s); // you can put more statements.
}

51

The syntax for a nested while loop statement in C++ is as follows:
while(condition)
{
 while(condition)
 {
 statement(s);
 }
 statement(s); // you can put more statements.
}

The syntax for a nested do...while loop statement in C++ is as follows:
do
{
 statement(s); // you can put more statements.
 do
 {
 statement(s);
 }while(condition);

}while(condition);
Example:
The following program uses a nested for loop to find the prime numbers from 2 to 100:

#include <iostream>
using namespace std;

int main ()
{
 int i, j;

 for(i=2; i<100; i++) {
 for(j=2; j <= (i/j); j++)
 if(!(i%j)) break; // if factor found, not prime
 if(j > (i/j)) cout << i << “ is prime\n”;
 }
 return 0;
}

52

This would produce the following result:
2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

3.12 CONSOLE I/O FUNCTIONS
C and C++ handle I/O in very different ways
Streams:
o A stream can be thought of as a flow (or sequence) of objects (e.g., characters, bytes)
o Input involves taking objects from the stream
o Output involves adding objects to the stream

53

A Portion of the Class Hierarchy:

Common Practice:
o One generally includes either <iostream> or <fstream>, rather than one of their parents
Standard In and Out:
o If you only need to use “console I/O” or “standard in” and “standard out” you can use the

streams cin and cout
Other Standard Output Files in <iostream>:
o cerr
o clog
C++ provides various formatted console I/O functions for formatting the output. They are of
three types.
(1) ios class function and flags
(2) Manipulators
(3) User-defined output functions
The ios grants operations common to both input and output. The classes derived from ios
are (istream, ostream, and iostream) special I/O with high-level formatting operations:
The iostream class is automatically loaded in the program by the compiler.
(a) istream performs formatted input.
(b) ostream performs formatted output.
(c) iostream performs formatted input and output.

3.13 Header Files
Many programming languages and other computer files have a directive, often called include (as
well as copy and import), that causes the contents of a second file to be inserted into the
original file. These included files are called copybooks or header files. They are often used to
define the physical layout of program data, pieces of procedural code and/or forward
declarations while promoting encapsulation and the reuse of code.

54

Stdio.h: The C programming language provides many standard library functions for file input
and output. These functions make up the bulk of the C standard library header <stdio.h>.The
functionality descends from a “portable I/O package” written by Mike Lesk at Bell Labs in the
early 1970s.[2]

Iostream.h: In the C++ programming language, Input/output library refers to a family of class
templates and supporting functions in the C++ Standard Library that implement stream-based
input/output capabilities. It is an object-oriented alternative to C’s FILE-based streams from the C
standard library.
getc() and putc() Function
getc()
The getc() function returns the next character from the specified input stream and increment
file position indicator. The character is read as an unsigned char that is converted to an integer.
Declaration:

int getc(FILE *stream);
Example:

1. #include <stdio.h>
2. #include <stdlib.h>
3. int main()
4. {
5. FILE *fptr;
6. char c;
7. clrscr();
8. if((fptr = fopen(“TEST”,”r”))==NULL)
9. {
10. printf(“Cannot open file\n”);
11. exit(1);
12. }
13. while((c=getc(fptr))!=EOF)
14. putchar(c);
15. if(fclose(fptr))
16. pritf(“File close error\n”);
17. getch();
18. return 0;
19. }

putc()
The putc() function writes the character ch to the specified stream at the current file position
and then advance the file position indicator. Even though the ch is declared to be an int, it is
converted by putc() into an unsigned char.

55

Declaration:
int putc(int ch, FILE *stream);

Example:
1. #include <stdio.h>
2. #include <stdlib.h>
3. void main()
4. {
5. FILE *fptr;
6. char text[100];
7. int i=0;
8. clrscr();
9. printf(“Enter a text:\n”);
10. gets(text);
11. if((fptr = fopen(“TEST”,”w”))==NULL)
12. {
13. printf(“Cannot open file\n”);
14. exit(1);
15. }
16. while(text[i]!=’\0’)
17. putc(text[i++],fptr);
18. if(fclose(fptr))
19. pritf(“File close error\n”);
20. getch();
21. }

gets() and puts() both are unformatted function.
gets() is used to read stdin into the character array pointed to by a string variable str until a
newline character is found or end-of-file occurs. A null character is written immediately after the
last character read into the array. It is defined in stdio.h header file.
gets: from standard input to memory
puts: from memory to standard input
Example :

#include<stdio.h>
void main()
{
char name[10];
printf(“What is your first and last name?”);
gets(name);
puts(name);
}

56

POINTS TO REMEMBER:

Compound statement, is a group of statements that is treated by the compiler as if it
were a single statement.

C++ provides flow control statements that serve to specify what has to be done by our
program, when, and under which circumstances.

Blocks can be nested inside of other blocks.

Jump statements allow altering the flow of a program by performing jumps to specific
locations.

Break leaves a loop, even if the condition for its end is not fulfilled.

When we write any loop statement within the another loop statement the that structure
is called as nested loops.

C++ provides various formatted console I/O functions for formatting the output.

gets() and puts() both are unformatted function.

57

EXERCISE

1. Fill in the blanks:

a. A compound statement is a ___________.

b. _____ allows to make an absolute jump to another point in the program.

c. _________ grants operations common to both input and output

d. C++ allows at least __________ levels of nesting.

2. True/False

a. Block begin with a {symbol, end with a} symbol.

b. In case of switch statement, It is possible to use variables as labels or ranges.

c. Compound statement, is a group of statements that is treated by the compiler
as if it were a single statement.

d. Break leaves a loop, even if the condition for its end is not fulfilled.

e. The putc() function returns the next character from the specified input stream.

3. Short answer type questions:

a. What is a compound statement?

b. How many types of conditional statements can be used in C++?

c. Briefly explain the working of Break statement.

d. What is the role of Exit() function?

e. What is nested loop? Give syntax.

4. Long Answer type questions

a. Explain I/O operations in respect with ios.

b. What is difference between gets() and puts() functions.

c. Give syntax of any one of the iteration statement.

d. Explain switch statement with example.

e. What is the role of jump statements in C++ programming?

58

Chapter 4

FUNCTIONS

4.1 Definition of function
A function is a group of statements that together perform a task. Every C++ program
has at least one function, which is main(), and all the most trivial programs can define
additional functions.
You can divide up your code into separate functions. How you divide up your code
among different functions is up to you, but logically the division usually is so that each
function performs a specific task.
A function declaration tells the compiler about a function’s name, return type, and
parameters. A function definition provides the actual body of the function.
The C++ standard library provides numerous built-in functions that your program can
call. For example, function strcat() to concatenate two strings, function memcpy() to
copy one memory location to another location and many more functions.
A function is knows with various names like a method or a sub-routine or a procedure
etc.
4.1.2 Defining a Function:
The general form of a C++ function definition is as follows:

return_type function_name(parameter list)
{
 body of the function
}

A C++ function definition consists of a function header and a function body. Here are all
the parts of a function:

Return Type: A function may return a value. The return_type is the data type
of the value the function returns. Some functions perform the desired operations
without returning a value. In this case, the return_type is the keyword void.
Function Name: This is the actual name of the function. The function name
and the parameter list together constitute the function signature.
Parameters: A parameter is like a placeholder. When a function is invoked, you
pass a value to the parameter. This value is referred to as actual parameter or
argument. The parameter list refers to the type, order, and number of the
parameters of a function. Parameters are optional; that is, a function may contain
no parameters.
Function Body: The function body contains a collection of statements that define
what the function does.

Example:
Following is the source code for a function called max(). This function takes two
parameters num1 and num2 and returns the maximum between the two:

59

// function returning the max between two numbers

int max(int num1, int num2)
{
 // local variable declaration
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

4.2 Function Prototype
A function prototype is a declaration in C++ of a function, its name, parameters and
return type. Unlike full definition, the prototype terminates with a semi-colon.
e.g. int getsum(float * value) ;
4.2.1 Function Declaration

A function declaration tells the compiler about a function name and how to call
the function. The actual body of the function can be defined separately.
A function declaration has the following parts:

return_type function_name(parameter list);
For the above defined function max(), following is the function declaration:

int max(int num1, int num2);
Parameter names are not important in function declaration only their type is
required, so following is also valid declaration:

int max(int, int);
Function declaration is required when you define a function in one source file
and you call that function in another file. In such case, you should declare the
function at the top of the file calling the function.

4.3 Objective of using function prototype
Prototypes are used in header files so that external functions in other files can be called
and the compiler can check the parameters during compilation.

4.4 Accessing a function
While creating a C++ function, you give a definition of what the function has to do. To
use a function, you will have to call or invoke that function.

60

When a program calls a function, program control is transferred to the called function.
A called function performs defined task and when its return statement is executed or
when its function-ending closing brace is reached, it returns program control back to
the main program.
To call a function, you simply need to pass the required parameters along with function
name, and if function returns a value, then you can store returned value. For example:

#include <iostream>
using namespace std;

// function declaration
int max(int num1, int num2);

int main ()
{
 // local variable declaration:
 int a = 100;
 int b = 200;
 int ret;

 // calling a function to get max value.
 ret = max(a, b);

 cout << “Max value is : “ << ret << endl;

 return 0;
}

// function returning the max between two numbers
int max(int num1, int num2)
{
 // local variable declaration
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

While running final executable, it would produce the following result:
Max value is : 200

61

4.5 Passing argument to a function
If a function is to use arguments, it must declare variables that accept the values of the
arguments. These variables are called the formal parameters of the function.
The formal parameters behave like other local variables inside the function and are
created upon entry into the function and destroyed upon exit.
While calling a function, there are two ways that arguments can be passed to a function:

Call Type Description

Call by value
This method copies the actual value of an argument into the formal
parameter of the function. In this case, changes made to the parameter
inside the function have no effect on the argument.

Call by pointer

This method copies the address of an argument into the formal
parameter. Inside the function, the address is used to access the actual
argument used in the call. This means that changes made to the
parameter affect the argument.

Call by reference

This method copies the reference of an argument into the formal
parameter. Inside the function, the reference is used to access the
actual argument used in the call. This means that changes made to the
parameter affect the argument.

By default, C++ uses call by value to pass arguments. In general, this means that
code within a function cannot alter the arguments used to call the function and above
mentioned example while calling max() function used the same method.

4.6 Default Values for Parameters:
When you define a function, you can specify a default value for each of the last parameters.
This value will be used if the corresponding argument is left blank when calling to the
function.
This is done by using the assignment operator and assigning values for the arguments
in the function definition. If a value for that parameter is not passed when the function is
called, the default given value is used, but if a value is specified, this default value is
ignored and the passed value is used instead. Consider the following example:

#include <iostream>
using namespace std;

int sum(int a, int b=20)
{
 int result;

 result = a + b;

 return (result);
}

62

int main ()
{
 // local variable declaration:
 int a = 100;
 int b = 200;
 int result;

 // calling a function to add the values.
 result = sum(a, b);
 cout << “Total value is :” << result << endl;

 // calling a function again as follows.
 result = sum(a);
 cout << “Total value is :” << result << endl;

 return 0;
}

When the above code is compiled and executed, it produces the following result:
Total value is :300
Total value is :120

4.7 THE const ARGUMENT
The constant variable can be declared using const keyword. The const keyword makes
variable value stable. The constant variable should be initialized while declaring.
Syntax:
(a) const <variable name> = <value>;
(b) <function name> (const <type>*<variable name>;)
(c) int const x // in valid
(d) int const x =5 // valid
In statement (a), the const modifier assigns an initial value to a variable that cannot be
changed later by the program.
For example,
const age = 40;
Any attempt to change the contents of const variable age will produce a compiler error.
Using pointer, one can indirectly modify a const variable as shown below:
*(int *)&age = 45;
When the const variable is used with a pointer argument in a function’s parameter list,
the function cannot modify the variable that the pointer points to.

63

4.8 C++ function call by value
The call by value method of passing arguments to a function copies the actual value of
an argument into the formal parameter of the function. In this case, changes made to
the parameter inside the function have no effect on the argument.
By default, C++ uses call by value to pass arguments. In general, this means that code
within a function cannot alter the arguments used to call the function. Consider the
function swap() definition as follows.

// function definition to swap the values.
void swap(int x, int y)
{
 int temp;

 temp = x; /* save the value of x */
 x = y; /* put y into x */
 y = temp; /* put x into y */

 return;
}

Now, let us call the function swap() by passing actual values as in the following example:
#include <iostream>
using namespace std;

// function declaration
void swap(int x, int y);

int main ()
{
 // local variable declaration:
 int a = 100;
 int b = 200;

 cout << “Before swap, value of a :” << a << endl;
 cout << “Before swap, value of b :” << b << endl;

 // calling a function to swap the values.
 swap(a, b);

 cout << “After swap, value of a :” << a << endl;
 cout << “After swap, value of b :” << b << endl;

 return 0;
}

64

When the above code is put together in a file, compiled and executed, it produces the
following result:
Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :100
After swap, value of b :200
Which shows that there is no change in the values though they had been changed
inside the function.

4.9 C++ function call by reference
The call by reference method of passing arguments to a function copies the reference
of an argument into the formal parameter. Inside the function, the reference is used to
access the actual argument used in the call. This means that changes made to the
parameter affect the passed argument.
To pass the value by reference, argument reference is passed to the functions just like
any other value. So accordingly you need to declare the function parameters as reference
types as in the following function swap(), which exchanges the values of the two integer
variables pointed to by its arguments.

// function definition to swap the values.
void swap(int &x, int &y)
{
 int temp;
 temp = x; /* save the value at address x */
 x = y; /* put y into x */
 y = temp; /* put x into y */

 return;
}

For now, let us call the function swap() by passing values by reference as in the following
example:

#include <iostream>
using namespace std;

// function declaration
void swap(int &x, int &y);

int main ()
{
 // local variable declaration:
 int a = 100;

65

 int b = 200;

 cout << “Before swap, value of a :” << a << endl;
 cout << “Before swap, value of b :” << b << endl;

 /* calling a function to swap the values using variable reference.*/
 swap(a, b);

 cout << “After swap, value of a :” << a << endl;
 cout << “After swap, value of b :” << b << endl;

 return 0;
}

When the above code is put together in a file, compiled and executed, it produces the
following result:

Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :200
After swap, value of b :100

4.10 Parameter pass by reference
Pass-by-reference means to pass the reference of an argument in the calling function
to the corresponding formal parameter of the called function. The called function can
modify the value of the argument by using its reference passed in.
The following example shows how arguments are passed by reference. The reference
parameters are initialized with the actual arguments when the function is called.

#include <stdio.h>

void swapnum(int &i, int &j) {
 int temp = i;
 i = j;
 j = temp;
}

int main(void) {
 int a = 10;
 int b = 20;

66

 swapnum(a, b);
 printf(“A is %d and B is %d\n”, a, b);
 return 0;
}

When the function swapnum() is called, the values of the variables a and b are
exchanged because they are passed by reference. The output is:

A is 20 and B is 10

4.11 Return statement
The return statement stops execution and returns to the calling function. When a return
statement is executed, the function is terminated immediately at that point, regardless
of whether it’s in the middle of a loop, etc.
4.11.1 Return optional in void functions

A void function doesn’t have to have a return statement — when the end is
reached, it automatically returns. However, a void function may optionally contain
one or more return statements.

void printChars(char c, int count) {
 for (int i=0; i<count; i++) {
 cout << c;
 }//end for

return; // Optional because it’s a void function
}//end printChars

4.11.2 Return required in non-void functions
If a function returns a value, it must have a return statement that specifies the
value to return. It’s possible to have more than one return, but the (human)
complexity of a function generally increases with more return statements. It’s
generally considered better style to have one return at the end, unless that
increases the complexity.
The max function below requires one or more return statements because it
returns an int value.

// Multiple return statements often increase complexity.
int max(int a, int b) {
 if (a > b) {
 return a;

 } else {
 return b;
 }
}//end max

67

Here is a version of the max function that uses only one return statement by saving the
result in a local variable. Some authors insist on only one return statement at the end of
a function. Readable code is much more important than following such a fixed rule. The
use of a single return probably improves the clarity of the max function slightly.

// Single return at end often improves readability.
int max(int a, int b) {
 int maxval;
 if (a > b) {
 maxval = a;
 } else {
 maxval = b;
 }
 return maxval;
}//end max

4.12 Passing Arrays as Function Arguments in C++
C++ does not allow to pass an entire array as an argument to a function. However, You
can pass a pointer to an array by specifying the array’s name without an index.
If you want to pass a single-dimension array as an argument in a function, you would
have to declare function formal parameter in one of following three ways and all three
declaration methods produce similar results because each tells the compiler that an
integer pointer is going to be received.
Way-1

Formal parameters as a pointer as follows:
void myFunction(int *param)
{
.
.
.
}

Way-2
Formal parameters as a sized array as follows:
void myFunction(int param[10])
{
.
.
.
}

68

Way-3
Formal parameters as an unsized array as follows:
void myFunction(int param[])
{
.
.
.
}

Now, consider the following function, which will take an array as an argument along with
another argument and based on the passed arguments, it will return average of the
numbers passed through the array as follows:

double getAverage(int arr[], int size)
{
 int i, sum = 0;
 double avg;

 for (i = 0; i < size; ++i)
 {
 sum += arr[i];
 }

 avg = double(sum) / size;

 return avg;
}

4.12.1 Calling function with array
Now, let us call the above function as follows:

#include <iostream>
using namespace std;

// function declaration:
double getAverage(int arr[], int size);

int main ()
{
 // an int array with 5 elements.

69

 int balance[5] = {1000, 2, 3, 17, 50};
 double avg;

 // pass pointer to the array as an argument.
 avg = getAverage(balance, 5) ;

 // output the returned value
 cout << “Average value is: “ << avg << endl;

 return 0;
}

When the above code is compiled together and executed, it produces the
following result:
Average value is: 214.4
As you can see, the length of the array doesn’t matter as far as the function is
concerned because C++ performs no bounds checking for the formal
parameters.

4.13 C++ Variable Scope
A scope is a region of the program and broadly speaking there are three places, where
variables can be declared:

Inside a function or a block which is called local variables,
In the definition of function parameters which is called formal parameters.
Outside of all functions which is called global variables.

4.13.1 Scope Rules of Functions in C++
The scope rules of a language are the rules that govern whether a piece of code
knows about or has access to another piece of code or data. Each function is a
discrete block of code. A function’s code is private to that function and cannot be
accessed by any statement in any other function except through a call to that
function. (For instance, you cannot use goto to jump into the middle of another
function.) The code that constitutes the body of a function is hidden from the
rest of the program and, unless it uses global variables or data, it can neither
affect nor be affected by other parts of the program. Stated another way, the
code and data that are defined within one function cannot interact with the code
or data defined in another function because the two functions have a different
scope. Variables that are defined within a function are called local variables. A
local variable comes into existence when the function is entered and is destroyed
upon exit. That is, local variables cannot hold their value between function calls.
The only exception to this rule is when the variable is declared with the static
storage class specifier. This causes the compiler to treat the variable as if it
were a global variable for storage purposes, but limits its scope to within the
function. In C (and C++) you cannot define a function within a function. This is
why neither C nor C++ are technically block-structured languages.

70

4.14 Local Variables:
Variables that are declared inside a function or block are local variables. They can be
used only by statements that are inside that function or block of code. Local variables
are not known to functions outside their own. Following is the example using local
variables:

#include <iostream>
using namespace std;

int main ()
{
 // Local variable declaration:
 int a, b;
 int c;

 // actual initialization
 a = 10;
 b = 20;
 c = a + b;

 cout << c;

 return 0;
}

4.14.1 Global Variables:
Global variables are defined outside of all the functions, usually on top of the
program. The global variables will hold their value throughout the life-time of
your program.
A global variable can be accessed by any function. That is, a global variable is
available for use throughout your entire program after its declaration. Following
is the example using global and local variables:

#include <iostream>
using namespace std;

// Global variable declaration:
int g;

int main ()

71

{
 // Local variable declaration:
 int a, b;

 // actual initialization
 a = 10;
 b = 20;
 g = a + b;

 cout << g;

 return 0;
}

A program can have same name for local and global variables but value of local
variable inside a function will take preference. For example:

#include <iostream>
using namespace std;

// Global variable declaration:
int g = 20;

int main ()
{
 // Local variable declaration:
 int g = 10;

 cout << g;

 return 0;
}

When the above code is compiled and executed, it produces the following result:
10

4.14.2 Initializing Local and Global Variables:
When a local variable is defined, it is not initialized by the system, you must
initialize it yourself. Global variables are initialized automatically by the system
when you define them as follows:

72

Data Type Initializer
int 0
char ‘\0’
float 0
double 0
pointer NULL

It is a good programming practice to initialize variables properly, otherwise sometimes
program would produce unexpected result.

POINTS TO REMEMBER

A function is a group of statements that together perform a task.
A function declaration tells the compiler about a function’s name, return type, and
parameters.
A function definition provides the actual body of the function.
The return_type is the data type of the value the function returns.
While creating a C++ function, you give a definition of what the function has to do. To
use a function, you will have to call or invoke that function.
The constant variable can be declared using const keyword. The const keyword makes
variable value stable
The call by value method of passing arguments to a function copies the actual value of
an argument into the formal parameter of the function.
The call by reference method of passing arguments to a function copies the reference
of an argument into the formal parameter.
C++ does not allow to pass an entire array as an argument to a function. However, You
can pass a pointer to an array by specifying the array’s name without an index.
The scope rules of a language are the rules that govern whether a piece of code knows
about or has access to another piece of code or data.
Variables that are declared inside a function or block are local variables.
Global variables are defined outside of all the functions, usually on top of the program.

73

EXERCISE

1. Fill in the blanks
1. A function is a __________ that together perform a task.
2. Variables that are declared inside a function or block are ____________.
3. If a function returns a value, it must have a __________ statement that specifies

the value to return.
4. The ___________ keyword makes variable value stable
5. The _____________ and the __________ together constitute the function

signature.

2. True/False
a. The return_type is the data type of the value the function returns.
b. A program can have same name for local and global variables.
c. C++ does not allow to pass an entire array as an argument to a function.
d. A function definition provides the actual body of the function.
e. If a function returns a value, it may or may not have a return statement that

specifies the value to return.

3. Short Answer Type Questions:
1. What is a function?
2. What do you mean by function prototype?
3. How we can access a function in c++?
4. What do you mean by return type?
5. What is the use of constant arguments?

4. Long Answer type Questions.
1. Define scope rules of functions and variables.
2. Explain the term ‘parameters’.

5. Give difference:
1. Call by value and call by reference
2. Local and global variable.

74

Chapter 5

ARRAY

C++ provides a data structure, the array, which stores a fixed-size sequential collection of
elements of the same type. An array is used to store a collection of data, but it is often more
useful to think of an array as a collection of variables of the same type.
Instead of declaring individual variables, such as number0, number1, ..., and number99, you
declare one array variable such as numbers and use numbers[0], numbers[1], and ...,
numbers[99] to represent individual variables. A specific element in an array is accessed by an
index.
All arrays consist of contiguous memory locations. The lowest address corresponds to the first
element and the highest address to the last element.
5.1 Declaring Arrays:

To declare an array in C++, the programmer specifies the type of the elements and the
number of elements required by an array as follows:

type arrayName [arraySize];
This is called a single-dimension array. The arraySize must be an integer constant
greater than zero and type can be any valid C++ data type. For example, to declare a
10-element array called balance of type double, use this statement:

double balance[10]’

5.1.1 Initializing Arrays:
You can initialize C++ array elements either one by one or using a single statement
as follows:

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};
The number of values between braces { } can not be larger than the number of
elements that we declare for the array between square brackets []. Following is
an example to assign a single element of the array:
If you omit the size of the array, an array just big enough to hold the initialization
is created. Therefore, if you write:

double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};
You will create exactly the same array as you did in the previous example.

balance[4] = 50.0;
The above statement assigns element number 5th in the array a value of 50.0.
Array with 4th index will be 5th, i.e., last element because all arrays have 0 as
the index of their first element which is also called base index. Following is the
pictorial representaion of the same array we discussed above:

75

5.1.2 Accessing Array Elements:
An element is accessed by indexing the array name. This is done by placing the
index of the element within square brackets after the name of the array. For
example:

double salary = balance[9];

The above statement will take 10th element from the array and assign the value
to salary variable. Following is an example, which will use all the above-mentioned
three concepts viz. declaration, assignment and accessing arrays:

#include <iostream>

using namespace std;

#include <iomanip>

using std::setw;

int main ()

{

 int n[10]; // n is an array of 10 integers

 // initialize elements of array n to 0

 for (int i = 0; i < 10; i++)

 {

 n[i] = i + 100; // set element at location i to i + 100

 }

 cout << “Element” << setw(13) << “Value” << endl;

 // output each array element’s value

 for (int j = 0; j < 10; j++)

 {

 cout << setw(7)<< j << setw(13) << n[j] << endl;

 }

 return 0;
}

76

This program makes use of setw() function to format the output. When the above
code is compiled and executed, it produces the following result:

 Element Value
0 100
1 101
2 102
3 103
4 104
5 105
6 106
7 107
8 108
9 109

5.2 One Dimensional Array
Single/One Dimensional Array is an array having a single index value to represent the
arrays element.
Syntax:

 type array_name[array_size_1]
Example:

 #include <iostream.h>
 void main()
 {
 int i;
 float mark[6];
 cout << "Enter the marks of your 6 subjects:: \n";
 for(i=0; i<6; i++)
 {
 cin >> mark[i];
 }
 float sum=0;
 for(i=0;i<6;i++)
 {
 sum += mark[i];
 }
 float ave = sum/6;
 cout << "Average Marks is::" << ave << '\n';
 }

77

Result:
Enter a the mark of your 6 sujects::
 45
 56
 67
 58
 60
 59
 Average Marks is::57.5
In the above example, the array “mark” refers to the elements of an array by the index
value “6”. The marks entered are stored in the array using the index value of the array in
a loop. The array elements are retrieved to calculate the sum of the array, then the
average is found.

5.3 Nature of subscript
Array subscript is the same as the index. The number in the array that the data is being
stored. For example
Array

0 1 2 3 4 5 6
a b c d e f g

Where the numbers are the index, or subscript, and the letters are the data of the
subscript.

5.4 Multidimensional arrays
C++ allows multidimensional arrays. Here is the general form of a multidimensional
array declaration:

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5 . 10 . 4 integer
array:

int threedim[5][10][4];

5.5 Two-Dimensional Arrays:
The simplest form of the multidimensional array is the two-dimensional array. A two-
dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-
dimensional integer array of size x,y, you would write something as follows:

type arrayName [x][y];

Where type can be any valid C++ data type and arrayName will be a valid C++ identifier.
A two-dimensional array can be think as a table, which will have x number of rows and
y number of columns. A 2-dimensional array a, which contains three rows and four
columns can be shown as below:
Thus, every element in array a is identified by an element name of the form a[i][j],
where a is the name of the array, and i and j are the subscripts that uniquely identify
each element in a.

78

5.5.1 Initializing Two-Dimensional Arrays:

Multidimensioned arrays may be initialized by specifying bracketed values for each row.
Following is an array with 3 rows and each row have 4 columns.

int a[3][4] = {
 {0, 1, 2, 3} , /* initializers for row indexed by 0 */
 {4, 5, 6, 7} , /* initializers for row indexed by 1 */
 {8, 9, 10, 11} /* initializers for row indexed by 2 */
};

The nested braces, which indicate the intended row, are optional. The following
initialization is equivalent to previous example:
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};
5.5.2 Accessing Two-Dimensional Array Elements:

An element in 2-dimensional array is accessed by using the subscripts, i.e., row
index and column index of the array. For example:

int val = a[2][3];
The above statement will take 4th element from the 3rd row of the array. You can
verify it in the above diagram.

#include <iostream>
using namespace std;

int main ()
{
 // an array with 5 rows and 2 columns.
 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

 // output each array element’s value
 for (int i = 0; i < 5; i++)
 for (int j = 0; j < 2; j++)
 {
 cout << “a[“ << i << “][“ << j << “]: “;
 cout << a[i][j]<< endl;
 }

 return 0;
}

79

When the above code is compiled and executed, it produces the following result:
a[0][0]: 0
a[0][1]: 0
a[1][0]: 1
a[1][1]: 2
a[2][0]: 2
a[2][1]: 4
a[3][0]: 3
a[3][1]: 6
a[4][0]: 4
a[4][1]: 8

As explained above, you can have arrays with any number of dimensions,
although it is likely that most of the arrays you create will be of one or two
dimensions.

5.6 Array of strings
Array of strings in C++ is used to store a null terminated string which is a character
array. This type of array has a string with a null character at the end of the string. Usually
array of strings are declared one character long to accomodate the null character.
Example:

 #include <iostream.h>
 #include <string.h>
 const int DAYS =7;
 const int MAX =10;
 void main()
 {
 char week[DAYS] [MAX] = {"Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday" };
 for(int j=0;){
 cout<< week[j]<<endl;
}
 }

Result:
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

80

In the above example a two dimensional array is used as an array of strings.The first
index specifies the total elements of an array, the second index the maximum length of
each string. The "MAX" value is set to "10" since the string "Wednesday" has length of
"9" with a null makes it "10".

POINTS TO REMEMBER

• An array is a collection of variables of the same type.

• All arrays consist of contiguous memory locations. The lowest address corresponds to
the first element and the highest address to the last element.

• The arraySize must be an integer constant greater than zero and type can be any valid
C++ data type.

• An element is accessed by indexing the array name.

• The simplest form of the multidimensional array is the two-dimensional array.

• Array of strings in C++ is used to store a null terminated string which is a character
array.

• Array subscript is the same as the index number.

81

EXERCISE

1. Fill in the blanks:
1. An array is a _________________ of the same type.
2. An element in 2-dimensional array is accessed by using the ____________
3. Array of strings in C++ is used to store a ________________ which is a character

array.
4. _________is an array having a single index value to represent the arrays element.
5. If you omit ___________, an array just big enough to hold the initialization is

created.

2. True/False
a. The number of values between braces { } can not be larger than the number of

elements that we declare for the array between square brackets [].
b. Array subscript is the same as the index.
c. Array of strings in C++ is used to store a null terminated string which is not a

character array.
d. The simplest form of the multidimensional array is the two-dimensional array.
e. The arraySize can be equal to zero.

3. Short Answer Type Questions:
1. Define an array.
2. Write a procedure to declare an array in c++.
3. What is subscript?
4. Explain two dimensional array. Give example.
5. What do you mean by array initialization?

4. Long Answer type Questions:
a. Explain the process of accessing two dimensional array with the help of a

example.
b. What is the difference between declaring and initialization of an array.

82

Chapter 6

CLASSES AND OBJECTS

6.1 Classes

The main purpose of C++ programming is to add object orientation to the C programming
language and classes are the central feature of C++ that supports object-oriented
programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation and
methods for manipulating that data into one neat package. Classes are an expanded
concept of data structures: like data structures, it contain data members, and also contain
functions as members.

An object is an instantiation of a class. In terms of variables, a class would be the type,
and an object would be the variable.

Classes are defined using keyword class , with the following syntax:

class class_name {

 access_specifier_1:

 member1;

 access_specifier_2:

 member2;

 ...

} object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of
names for objects of this class. The body of the declaration contain members, which
can either be data or function declarations, and optionally access specifiers.

6.1.1 Declaration of classes

To understand the declaration we will take the following example

Declares a class (i.e., a type called Rectangle) and an object (i.e., a variable) of
this class, called rect. This class contains four members: two data members of
type int (member width and member height) with private access(because private
is the default access level) and two member functions with public access: the
functions set_values and area, of which for now we have only included their
declaration, but not their definition.

83

Here is the complete example of class Rectangle:
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

// classes example

#include <iostream>

using namespace std;

class Rectangle {

 int width, height;

 public:

 void set_values (int,int);

 int area() {return width*height;}

};

void Rectangle::set_values (int x, int y) {

 width = x;

 height = y;

}

int main () {

 Rectangle rect;

 rect.set_values (3,4);

 cout << "area: " << rect.area();

 return 0;

}

area: 12

After the declarations of Rectangle and rect, any of the public members of
object rect can be accessed as if they were normal functions or normal variables,
by simply inserting a dot (.) between object name and member name. This follows
the same syntax as accessing the members of plain data structures. For example:

1 rect.set_values (3,4);
2 myarea = rect.area();

The only members of rect that cannot be accessed from outside the class
are width and height, since they have private access and they can only be referred
to from within other members of that same class.

 This example introduces the scope resolution operator (::, two colons)

The scope resolution operator (::) specifies the class to which the member being
declared belongs, granting exactly the same scope properties as if this function
definition was directly included within the class definition. For example, the
function set_values in the previous example has access to the
variables width and height, which are private members of class Rectangle, and
thus only accessible from other members of the class, such as this.

84

6.2 Access specifiers and default labels
Data hiding is one of the important features of Object Oriented Programming which
allows preventing the functions of a program to access directly the internal representation
of a class type. The access restriction to the class members is specified by the
labeled public, private, and protected sections within the class body. The keywords
public, private, and protected are called access specifiers.
A class can have multiple public, protected, or private labeled sections. Each section
remains in effect until either another section label or the closing right brace of the class
body is seen. The default access for members and classes is private.

class Base {

 public:

 // public members go here

 protected:

 // protected members go here

 private:

 // private members go here

};

6.3 Scope of class & its members
6.3.1 The public members:

A public member is accessible from anywhere outside the class but within a
program. You can set and get the value of public variables without any member
function as shown in the following example:

#include <iostream>

using namespace std;

class Line
{
 public:
 double length;
 void setLength(double len);
 double getLength(void);
};

// Member functions definitions

85

double Line::getLength(void)
{
 return length ;
}

void Line::setLength(double len)
{
 length = len;
}

// Main function for the program
int main()
{
 Line line;

 // set line length
 line.setLength(6.0);
 cout << “Length of line : “ << line.getLength() <<endl;

 // set line length without member function
 line.length = 10.0; // OK: because length is public
 cout << “Length of line : “ << line.length <<endl;
 return 0;
}

When the above code is compiled and executed, it produces the following result:
Length of line : 6
Length of line : 10

6.3.2 The private members:
A private member variable or function cannot be accessed, or even viewed from
outside the class. Only the class and friend functions can access private
members.
By default all the members of a class would be private, for example in the following
class width is a private member, which means until you label a member, it will
be assumed as a private member:

class Box
{
 double width;
 public:

86

 double length;
 void setWidth(double wid);
 double getWidth(void);
};

Practically, we define data in private section and related functions in public section
so that they can be called from outside of the class as shown in the following
program.

#include <iostream>
using namespace std;

class Box
{
 public:
 double length;
 void setWidth(double wid);
 double getWidth(void);

 private:
 double width;
};

// Member functions definitions
double Box::getWidth(void)
{
 return width ;
}

void Box::setWidth(double wid)
{
 width = wid;
}

// Main function for the program
int main()
{

 Box box;

 // set box length without member function
 box.length = 10.0; // OK: because length is public
 cout << “Length of box : “ << box.length <<endl;

 // set box width without member function
 // box.width = 10.0; // Error: because width is private
 box.setWidth(10.0); // Use member function to set it.
 cout << “Width of box : “ << box.getWidth() <<endl;
 return 0;
}

87

When the above code is compiled and executed, it produces the following result:
Length of box : 10
Width of box : 10

6.3.3 The protected members:
A protected member variable or function is very similar to a private member but
it provided one additional benefit that they can be accessed in child classes
which are called derived classes.
You will learn derived classes and inheritance in next chapter. For now you can
check following example where I have derived one child class SmallBox from a
parent class Box.
Following example is similar to above example and here width member will be
accessible by any member function of its derived class SmallBox.

#include <iostream>
using namespace std;

class Box
{
 protected:
 double width;
};

class SmallBox:Box // SmallBox is the derived class.
{
 public:
 void setSmallWidth(double wid);
 double getSmallWidth(void);
};

// Member functions of child class
double SmallBox::getSmallWidth(void)
{
 return width ;
}

void SmallBox::setSmallWidth(double wid)
{
 width = wid;
}

88

// Main function for the program
int main()
{
 SmallBox box;

 // set box width using member function
 box.setSmallWidth(5.0);
 cout << “Width of box : “<< box.getSmallWidth() << endl;

 return 0;
}

When the above code is compiled and executed, it produces the following result:
Width of box : 5

6.4 Member Functions
A member function of a class is a function that has its definition or its prototype within the
class definition like any other variable. It operates on any object of the class of which it is
a member, and has access to all the members of a class for that object.
Let us take previously defined class to access the members of the class using a member
function instead of directly accessing them:

class Box
{
 public:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
 double getVolume(void);// Returns box volume
};

Member functions can be defined within the class definition or separately using scope
resolution operator, ::. Defining a member function within the class definition declares
the function inline, even if you do not use the inline specifier. So either you can
define Volume() function as below:

class Box
{
 public:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box

 double getVolume(void)
 {
 return length * breadth * height;
 }
};

89

If you like you can define same function outside the class using scope resolution operator,
:: as follows:

double Box::getVolume(void)
{
 return length * breadth * height;
}

Here, only important point is that you would have to use class name just before :: operator.
A member function will be called using a dot operator (.) on a object where it will manipulate
data related to that object only as follows:

Box myBox; // Create an object

myBox.getVolume(); // Call member function for the object
Let us put above concepts to set and get the value of different class members in a class:

#include <iostream>

using namespace std;

class Box
{
 public:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box

 // Member functions declaration
 double getVolume(void);
 void setLength(double len);
 void setBreadth(double bre);
 void setHeight(double hei);
};

// Member functions definitions
double Box::getVolume(void)
{
 return length * breadth * height;
}

void Box::setLength(double len)

90

{
 length = len;
}

void Box::setBreadth(double bre)
{

 breadth = bre;
}

void Box::setHeight(double hei)
{

 height = hei;
}

// Main function for the program
int main()
{
 Box Box1; // Declare Box1 of type Box
 Box Box2; // Declare Box2 of type Box
 double volume = 0.0; // Store the volume of a box here

 // box 1 specification
 Box1.setLength(6.0);
 Box1.setBreadth(7.0);
 Box1.setHeight(5.0);

 // box 2 specification
 Box2.setLength(12.0);
 Box2.setBreadth(13.0);
 Box2.setHeight(10.0);

 // volume of box 1
 volume = Box1.getVolume();
 cout << “Volume of Box1 : “ << volume <<endl;

 // volume of box 2
 volume = Box2.getVolume();
 cout << “Volume of Box2 : “ << volume <<endl;
 return 0;
}

When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560

91

6.5 Data hiding & encapsulation
All C++ programs are composed of the following two fundamental elements:

Program statements (code): This is the part of a program that performs actions
and they are called functions.
Program data: The data is the information of the program which affected by the
program functions.

Encapsulation is an Object Oriented Programming concept that binds together the data
and functions that manipulate the data, and that keeps both safe from outside interference
and misuse. Data encapsulation led to the important OOP concept of data hiding.
Data encapsulation is a mechanism of bundling the data, and the functions that use
them and data abstraction is a mechanism of exposing only the interfaces and hiding
the implementation details from the user.
C++ supports the properties of encapsulation and data hiding through the creation of
user-defined types, called classes. We already have studied that a class can
contain private, protected and publicmembers. By default, all items defined in a class
are private. For example:

class Box
{
 public:
 double getVolume(void)
 {
 return length * breadth * height;
 }
 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

The variables length, breadth, and height are private. This means that they can be
accessed only by other members of the Box class, and not by any other part of your
program. This is one way encapsulation is achieved.
To make parts of a class public (i.e., accessible to other parts of your program), you
must declare them after the public keyword. All variables or functions defined after the
public specifier are accessible by all other functions in your program.
Making one class a friend of another exposes the implementation details and reduces
encapsulation. The ideal is to keep as many of the details of each class hidden from all
other classes as possible.

6.6 Inline Functions
C++ inline function is powerful concept that is commonly used with classes. If a function
is inline, the compiler places a copy of the code of that function at each point where the
function is called at compile time.

92

Any change to an inline function could require all clients of the function to be recompiled
because compiler would need to replace all the code once again otherwise it will continue
with old functionality.
To inline a function, place the keyword inline before the function name and define the
function before any calls are made to the function. The compiler can ignore the inline
qualifier in case defined function is more than a line.
A function definition in a class definition is an inline function definition, even without the
use of the inlinespecifier.
Following is an example, which makes use of inline function to return max of two numbers:

#include <iostream>

using namespace std;

inline int Max(int x, int y)
{
 return (x > y)? x : y;
}

// Main function for the program
int main()
{

 cout << “Max (20,10): “ << Max(20,10) << endl;
 cout << “Max (0,200): “ << Max(0,200) << endl;
 cout << “Max (100,1010): “ << Max(100,1010) << endl;
 return 0;
}

When the above code is compiled and executed, it produces the following result:
Max (20,10): 20
Max (0,200): 200
Max (100,1010): 1010

6.7 Nesting of Member Functions
A member function of a class can be called only by an object of that class using a dot
operator. However, there is an exception to this. A member function can be called by
using its name inside another member function of the same class. This is known as
nesting of member functions.

93

Nesting of Member Function
#include
using namespace std;
class set
{
int m,n;
public:
void input(void);
void display(void);
void largest(void);
};
int set :: largest(void)
{
if(m >= n)
return(m);
else
return(n);
}
void set :: input(void)
{
cout << “Input value of m and n”<<“\n”;
cin >> m>>n;
}
void set :: display(void)
{
cout << “largest value=” << largest() <<“\n”;
}

int main()
{
set A;
A.input();
A.display();

return 0;
}

The output of program would be:
Input value of m and n
25 18
Largest value=25

94

6.8 Array within a Class
The array can be used as member variables in a class. The following class definition is
valid.

const int size=10;
class array
{
int a[size];
public:
void setval(void);
void display(void);
};

The array variable a[] declared as private member of the class array can be used in the
member function, like any other array variable. We can perform any operations on it. For
instance, in the above class definition, the member function setval() sets the value of
element of the array a[], and display() function displays the values. Similarly, we may
use other member functions to perform any other operation on the array values.
6.8.1 Array of objects

Arrays of variables of type “class” is known as “Array of objects”. The
“identifier” used to refer the array of objects is an user defined data type.
Example:

#include <iostream.h>
 const int MAX =100;
 class Details
 {
 private:
 int salary;
 float roll;
 public:
 void getname()
 {
 cout << “\n Enter the Salary:”;
 cin >> salary;
 cout << “\n Enter the roll:”;
 cin >> roll;
 }
 void putname()
 {
 cout << “Employees” << salary <<

95

 “and roll is” << roll << ‘\n’;
 }
 };
 void main()
 {
 Details det[MAX];
 int n=0;
 char ans;
 do{
 cout << “Enter the Employee Number::” << n+1;
 det[n++].getname;
 cout << “Enter another (y/n)?: “ ;
 cin >> ans;
 } while (ans != ‘n’);
 for (int j=0; j<n; j++)
 {
 cout << “\nEmployee Number is:: “ << j+1;
 det[j].putname();
 }
 }

Result:
 Enter the Employee Number:: 1
 Enter the Salary:20

 Enter the roll:30
 Enter another (y/n)?: y
 Enter the Employee Number:: 2
 Enter the Salary:20

 Enter the roll:30
 Enter another (y/n)?: n

In the above example an array of object “det” is defined using the user defined data type
“Details”. The class element “getname()” is used to get the input that is stored in this
array of objects and putname() is used to display the information.

96

6.8.2 OBJECTS AS FUNCTION ARGUMENTS
Similar to variables, objects can be passed on to functions. There are three
methods to pass an argument to a function as given below:
(a) Pass-by-value—In this type a copy of an object (actual object) is sent to

function and assigned to object of callee function (Formal object). Both
actual and formal copies of objects are stored at different memory
locations. Hence, changes made in formal objects are not reflected to
actual objects.

(b) Pass-by-reference — Address of object is implicitly sent to function.
(c) Pass-by-address — Address of the object is explicitly sent to function.
In pass by reference and address methods, an address of actual object is passed
to the function. The formal argument is reference pointer to the actual object.
Hence, changes made in the object are reflected to actual object. These two
methods are useful because an address is passed to the function and duplicating
of object is prevented.

Static members of a C++ class
We can define class members static using static keyword. When we declare a member
of a class as static it means no matter how many objects of the class are created, there
is only one copy of the static member.
A static member is shared by all objects of the class. All static data is initialized to zero
when the first object is created, if no other initialization is present. We can’t put it in the
class definition but it can be initialized outside the class as done in the following example
by redeclaring the static variable, using the scope resolution operator :: to identify which
class it belongs to.
Let us try the following example to understand the concept of static data members:

#include <iostream>

using namespace std;

class Box
{
 public:
 static int objectCount;
 // Constructor definition
 Box(double l=2.0, double b=2.0, double h=2.0)
 {
 cout <<“Constructor called.” << endl;
 length = l;
 breadth = b;
 height = h;
 // Increase every time object is created

97

 objectCount++;
 }
 double Volume()
 {
 return length * breadth * height;
 }
 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

// Initialize static member of class Box
int Box::objectCount = 0;

int main(void)
{
 Box Box1(3.3, 1.2, 1.5); // Declare box1
 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects.
 cout << “Total objects: “ << Box::objectCount << endl;

 return 0;
}
When the above code is compiled and executed, it produces the following result:
Constructor called.
Constructor called.
Total objects: 2

6.9 Static Function Members:
By declaring a function member as static, you make it independent of any particular
object of the class. A static member function can be called even if no objects of the class
exist and the static functions are accessed using only the class name and the scope
resolution operator ::.
A static member function can only access static data member, other static member
functions and any other functions from outside the class.

98

Static member functions have a class scope and they do not have access to
the this pointer of the class. You could use a static member function to determine whether
some objects of the class have been created or not.
Let us try the following example to understand the concept of static function members:

#include <iostream>

using namespace std;

class Box
{
 public:
 static int objectCount;
 // Constructor definition
 Box(double l=2.0, double b=2.0, double h=2.0)
 {
 cout <<“Constructor called.” << endl;
 length = l;
 breadth = b;
 height = h;
 // Increase every time object is created
 objectCount++;
 }
 double Volume()
 {
 return length * breadth * height;
 }
 static int getCount()
 {
 return objectCount;
 }
 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

// Initialize static member of class Box

99

int Box::objectCount = 0;

int main(void)
{

 // Print total number of objects before creating object.
 cout << “Inital Stage Count: “ << Box::getCount() << endl;

 Box Box1(3.3, 1.2, 1.5); // Declare box1
 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects after creating object.
 cout << “Final Stage Count: “ << Box::getCount() << endl;

 return 0;
}

 When the above code is compiled and executed, it produces the following result:
Inital Stage Count: 0
Constructor called.
Constructor called.
Final Stage Count: 2

POINTS TO REMEMBER
A class is used to specify the form of an object and it combines data representation and
methods for manipulating that data into one neat package.
An object is an instantiation of a class.
The scope resolution operator (::) specifies the class to which the member being declared
belongs, granting exactly the same scope properties as if this function definition was
directly included within the class definition.
The access restriction to the class members is specified by the labeled public,
private, and protected sections within the class body.
Public member is accessible from anywhere outside the class but within a program.
A private member variable or function cannot be accessed, or even viewed from outside
the class. Only the class and friend functions can access private members.
A protected member variable or function is very similar to a private member but it
provided one additional benefit that they can be accessed in child classes which are
called derived classes.
Arrays of variables of type “class” is known as “Array of objects”.
By declaring a function member as static, you make it independent of any particular
object of the class.

100

EXERCISE

1. Fill in the blanks:
1. A static member is shared by all ___________ of the class.
2. class_name is a valid __________ for the class.
3. ____________________ specifies the class to which the member being

declared belongs,
4. __________ member is accessible from anywhere outside the class but within

a program.
5. _______________ is an instantiation of a class.

2. True/False
a. Classes have no similarities with data structure.
b. An object is an instantiation of a class.
c. A static member function can only access static data member.
d. Member functions cannot be defined within the class definition.
e. A class can have multiple public, protected, or private labeled sections.

3. Short Answer type Questions:
1. What is a class? How we Define it?
2. What is array of objects? Explain.
3. Is it possible to do the nesting of member function ?if yes,explain.
4. What is inline functions?
5. Define encapsulation.

4. Long Answer type Questions
a. What is access specifiers? Explain
b. Explain the working of public members with an example.

101

Chapter 7

CONSTRUCTORS , DESTRUCTORS AND
FUNCTION OVERLOADING

7.1 Need for constructors
Suppose you are working on 100’s of objects and the default value of a data member is
0. Initialising all objects manually will be very tedious. Instead, you can define a constructor
which initialises that data member to 0. Then all you have to do is define object and
constructor will initialise object automatically. These types of situation arises frequently
while handling array of objects. Also, if you want to execute some codes immediately
after object is created, you can place that code inside the body of constructor
7.1.1 Declaration and Definition of Constructors

Constructors are the special type of member function that initialises the object
automatically when it is created Compiler identifies that the given member function
is a constructor by its name and return type. Constructor has same name as
that of class and it does not have any return type.

.....
class temporary
 {
 private:
 int x;
 float y;
 public:
 temporary(): x(5), y(5.5) /* Constructor */
 {
 /* Body of constructor */
 }

 }
 int main()
 {
 Temporary t1;

 }

7.1.2 Working of Constructor
In the above pseudo code, temporary() is a constructor. When the object of
class temporary is created, constructor is called and x is initialized to 5 and y is
initialized to 5.5 automatically.

102

You can also initialise data member inside the constructor’s function body as
below. But, this method is not preferred.

temporary(){
 x=5;
 y=5.5;
}
/* This method is not preferred. /*
.

Constructor Example
/*Source Code to demonstrate the working of constructor in C++

Programming */
/* This program calculates the area of a rectangle and displays it. */
#include <iostream>
using namespace std;
class Area
{
 private:
 int length;
 int breadth;

 public:
 Area(): length(5), breadth(2){ } /* Constructor */
 void GetLength()
 {
 cout<<“Enter length and breadth respectively: “;
 cin>>length>>breadth;
 }
 int AreaCalculation() { return (length*breadth); }
 void DisplayArea(int temp)
 {
 cout<<“Area: “<<temp;
 }
};
int main()
{
 Area A1,A2;

103

 int temp;
 A1.GetLength();
 temp=A1.AreaCalculation();
 A1.DisplayArea(temp);
 cout<<endl<<“Default Area when value is not taken from user”<<endl;
 temp=A2.AreaCalculation();
 A2.DisplayArea(temp);
 return 0;
}

Explanation
In this program, a class of name Area is created to calculate the area of a rectangle.
There are two data members length and breadth. A constructor is defined which
initialises length to 5 andbreadth to 2. And, we have three additional member
functions GetLength(), AreaCalculation() and DisplayArea() to get length from user,
calculate the area and display the area respectively.
When, objects A1 and A2 are created then, the length and breadth of both objects are
initialized to 5 and 2 respectively because of the constructor. Then the member
function GetLength() is invoked which takes the value of length and breadth from user
for object A1. Then, the area for the objectA1 is calculated and stored in variable temp by
calling AreaCalculation() function. And finally, the area of object A1 is displayed. For
object A2, no data is asked from the user. So, the value of lengthwill be 5 and breadth will
be 2. Then, the area for A2 is calculated and displayed which is 10.
Output

Enter length and breadth respectively: 6
7
Area: 42
Default Area when value is not taken from user
Area: 10

7.2 Default Constructors
In computer programming languages the term default constructor can refer to
a constructor that is automatically generated by the compiler in the absence of any
programmer-defined constructors and is usually a nullary constructor. In other languages
(e.g. in C++) it is a constructor that can be called without having to provide any arguments,
irrespective of whether the constructor is auto-generated or used-defined. Note that a
constructor with formal parameters can still be called without arguments if
default arguments were provided in the constructor’s definition.
In C++, the standard describes the default constructor for a class as a constructor that
can be called with no arguments (this includes a constructor whose parameters all have
default arguments) For example:

104

class MyClass
{
public:
 MyClass(); // constructor declared

private:
 int x;
};

MyClass :: MyClass() // constructor defined
{
 x = 100;
}

int main()
{
 MyClass m; // at runtime, object m is created, and the default constructor is

called
}
When allocating memory dynamically, the constructor may be called by adding

parenthesis after the class name. In a sense, this is an explicit call to the
constructor:

int main()
{
 MyClass * pointer = new MyClass(); // at runtime, an object is created, and

the
 // default constructor is called
}
If the constructor does have one or more parameters, but they all have default

values, then it is still a default constructor. Remember that each class
can have at most one default constructor, either one without parameters,
or one whose all parameters have default values, such as in this case:

class MyClass
{
public:
 MyClass (int i = 0, std::string s = “”); // constructor declared

private:
 int x;
 int y;
 std::string z;
};

MyClass :: MyClass(int i, std::string s) // constructor defined
{
 x = 100;
 y = i;
 z = s;
}

105

In C++, default constructors are significant because they are automatically invoked in
certain circumstances; and therefore, in these circumstances, it is an error for a class
to not have a default constructor:

7.3 Parameterized Constructor:
A default constructor does not have any parameter, but if you need, a constructor can
have parameters. This helps you to assign initial value to an object at the time of its
creation as shown in the following example:

#include <iostream>

using namespace std;

class Line
{
 public:
 void setLength(double len);
 double getLength(void);
 Line(double len); // This is the constructor

 private:
 double length;
};

// Member functions definitions including constructor
Line::Line(double len)
{
 cout << “Object is being created, length = “ << len << endl;
 length = len;
}

void Line::setLength(double len)
{
 length = len;
}

double Line::getLength(void)
{
 return length;

106

}
// Main function for the program
int main()
{
 Line line(10.0);

 // get initially set length.
 cout << “Length of line : “ << line.getLength() <<endl;
 // set line length again
 line.setLength(6.0);
 cout << “Length of line : “ << line.getLength() <<endl;

 return 0;
}
When the above code is compiled and executed, it produces the following result:
Object is being created, length = 10
Length of line : 10
Length of line : 6

7.4 Default Copy Constructor
A object can be initialized with another object of same type. Let us suppose the above
program. If you want to initialise a object A3 so that it contains same value as A2. Then,
this can be performed as:

....
int main() {
 Area A1,A2(2,1);
 Area A3(A2); /* Copies the content of A2 to A3 */
 OR,
 Area A3=A2; /* Copies the content of A2 to A3 */
}

You might think, you may need some constructor to perform this task. But, no additional
constructor is needed. It is because this constructor is already built into all classes.

7.5 DYNAMIC INITIALIZATION USING CONSTRUCTORS
After declaration of the class data member variables, they can be initialized at the time of
program execution using pointers. Such initialization of data is called as dynamic
initialization. The benefit of dynamic initialization is that it allows different initialization
modes using overloaded constructors. Pointer variables are used as argument for
constructors. The following example explains dynamic initialization using overloaded
constructor.

107

Write a program to initialize member variables using pointers and constructors.
include <iostream.h>
include <conio.h>
include <string.h>

class city
{
 char city[20];
 char state[20];
 char country[20];

public:

city() { city[0]=state[0]=country[0]=NULL; }

void display(char *line);

city(char *cityn)
{

strcpy(city, cityn);
state[0]=NULL;
}

city(char *cityn,char *staten)
{
 strcpy(city,cityn);
 strcpy(state,staten);
 country[0]=NULL;
}

city(char *cityn,char *staten, char *countryn)
{
 _fstrcpy(city,cityn);
 _fstrcpy(state,staten);
 _fstrcpy(country,countryn);
}

108

};

void city:: display (char *line)
{
 cout <<line<<endl;
 if (_fstrlen(city)) cout<<“City : ”<<city<<endl;
 if (strlen(state)) cout <<“State : ”<<state <<endl;
 if (strlen(country)) cout <<“Country : ”<<country <<endl;
}

void main()
{
 clrscr();
 city c1(“Mumbai”),
 c2(“Nagpur”,”Maharashtra”),
 c3(“Nanded”,”Maharashtra”,”India”),
 c4(‘\0’,’\0',’\0');

 c1.display(“=========*=============”);
 c2.display(“=========*============”);
....

7.6 The Class Destructor:
7.6.1 Definition and characteristics

A destructor is a special member function of a class that is executed whenever
an object of it’s class goes out of scope or whenever the delete expression is
applied to a pointer to the object of that class.
A destructor will have exact same name as the class prefixed with a tilde (~) and
it can neither return a value nor can it take any parameters. Destructor can be
very useful for releasing resources before coming out of the program like closing
files, releasing memories etc.
Following example explains the concept of destructor:

#include <iostream>

using namespace std;

class Line
{

109

 public:
 void setLength(double len);
 double getLength(void);
 Line(); // This is the constructor declaration
 ~Line(); // This is the destructor: declaration

 private:
 double length;
};

// Member functions definitions including constructor
Line::Line(void)
{
 cout << “Object is being created” << endl;
}
Line::~Line(void)
{
 cout << “Object is being deleted” << endl;
}

void Line::setLength(double len)
{
 length = len;
}

double Line::getLength(void)
{
 return length;
}
// Main function for the program
int main()
{
 Line line;

 // set line length
 line.setLength(6.0);
 cout << “Length of line : “ << line.getLength() <<endl;

110

 return 0;
}
When the above code is compiled and executed, it produces the following

result:
Object is being created
Length of line : 6
Object is being deleted

7.7 Function overloading in C++:
An overloaded declaration is a declaration that had been declared with the same name
as a previously declared declaration in the same scope, except that both declarations
have different arguments and obviously different definition (implementation).
You can have multiple definitions for the same function name in the same scope. The
definition of the function must differ from each other by the types and/or the number of
arguments in the argument list. You can not overload function declarations that differ
only by return type.
Following is the example where same function print() is being used to print different
data types:

#include <iostream>
using namespace std;

class printData
{
 public:
 void print(int i) {
 cout << “Printing int: “ << i << endl;
 }

 void print(double f) {
 cout << “Printing float: “ << f << endl;
 }

 void print(char* c) {
 cout << “Printing character: “ << c << endl;
 }
};

int main(void)

111

{
 printData pd;

 // Call print to print integer
 pd.print(5);
 // Call print to print float
 pd.print(500.263);
 // Call print to print character
 pd.print(“Hello C++”);

 return 0;
}
When the above code is compiled and executed, it produces the following result:
Printing int: 5
Printing float: 500.263
Printing character: Hello C++

7.8 Steps involved in finding the best match
The process of creating and deleting objects in C++ is not a trivial task. Every time an
instance of a class is created the constructor method is called. The constructor has the
same name as the class and it doesn’t return any type, while the destructor’s name it’s
defined in the same way, but with a ‘~’ in front:
Even if a class is not equipped with a constructor, the compiler will generate code for
one, called the implicit default constructor. This will typically call the default constructors
for all class members, if the class is using virtual methods it is used to initialize the
pointer to the virtual table, and, in class hierarchies, it calls the constructors of the base
classes. Both constructors in the above example use initialization lists in order to initialize
the members of the class.
The construction order of the members is the order in which they are defined, and for
this reason the same order should be preserved in the initialization list to avoid confusion.
To master developing and debugging C++ applications, more insight is required regarding
the way constructors and destructors work.

112

POINTS TO REMEMBER:

Constructors are the special type of member function that initializes the object
automatically when it is created Compiler identifies that the given member function is a
constructor by its name and return type.
Default constructor can refer to a constructor that is automatically generated by the
compiler in the absence of any programmer-defined constructors.
The constructor has the same name as the class and it doesn’t return any type, while
the destructor’s name it’s defined in the same way, but with a ‘~’ in front:
You can have multiple definitions for the same function name in the same scope.
A destructor is a special member function of a class that is executed whenever an
object of it’s class goes out of scope or whenever the delete expression is applied to a
pointer to the object of that class.
A object can be initialized with another object of same type.

113

EXERCISE

1. Fill in the blanks:
a. Constructors are the special type of member function that __________ the object

automatically.
b. _________can refer to a constructor that is automatically generated by the

compiler in the absence of any programmer-defined constructors.
c. When allocating memory dynamically, the constructor may be called by adding

______________ after the class name.
d. ______________ of the members is the order in which they are defined.
e. __________allows different initialization modes using overloaded constructors.

2. True/False
a. A destructor will have exact same name as the class prefixed with a tilde (~).
b. default constructor can refer to a constructor that is automatically generated by

the compiler in the absence of any programmer-defined constructors.
c. We cannot have multiple definitions for the same function name in the same

scope.
d. Pointer variables cannot be used as argument for constructors.
e. A object can be initialized with another object of same type.

3. Short Answer type Questions :
a) What do you mean by constructors?
b) Explain parameterized constructors.
c) What do you mean by dynamic initialization of constructors.
d) What are Destructors?
e) What do you mean by Function overloading?

4. Long Answer type questions:
a. What do you mean by constructors? What is the need for defining a constructor

in a class?
b. Describe the process of dynamic initialization of constructors.

114

Chapter 8

INHERITANCE

8.1 Inheritance:Extending Classes
This lesson discusses about inheritance, the capability of one class to inherit properties
from another class as a child inherits some properties from his/her parents. The most
important advantage of inheritance is code reusability. Once a base class is written and
debugged, it can be used in various situations without having to redefine it or rewrite it.
Reusing existing code saves time, money and efforts of writing the code again. Without
redefining the old class, you can add new properties to desired class and redefine an
inherited class member function.

8.2 Need for Inheritance
Inheritance is one of the important concepts of object-oriented language. There are
several reasons why this concept was introduced in object oriented language. Some
major reasons are:
(i) The capability to express the inheritance relationship which ensures the

closeness with the real world model.
(ii) Idea of reusability, i.e., the new class can use some of the features of old class.
(iii) Transitive nature of inheritance, i.e., it can be passed on further.

8.3 Defining Derived Class
A derived class is defined by specifying its relationship with the base class using visibility
mode.
The general form of defining a derived class is:

class derived_class : visibility_mode base_class
{

_________________ // members of derived class.
};
 (inherits some property) from base_class.

The base class(es) name(s) follow(s) the colon (:). The names of all the base classes
of a derived class follow : (colon) and are separated by comma. The visibility-mode can
be either private or public or protected. If no visibility mode is specified, then by default
the visibility mode is considered as private.
Following are some examples of derived class definitions:

class Marksheet : public student / / public derivation
{
// members of derived class
};
class Marksheet : private student / / private derivation
// members of derived class

115

};
class Marksheet : protected student // protected derivation
{
// members of protected class
};

In the above definitions, Marksheet is the derived class of student base class. The
visibility mode public indicates that student is a public base class. Similarly, the visibility
modes private or protected indicates that student is private base class or protected
base class respectively. When we say that members of a class are inheritable, it means
that the derived class can access them directly. However, the derived class has access
privilege only to the non-private members of the base class. Although the private members
of the base class cannot be accessed directly, yet the objects of derived class are able
to access them through the non-private inherited members.

8.4 Different Forms of Inheritance
The mechanism of deriving a new class from an old one is called inheritance (or
derivation). The old class is referred to as the base class and new one is called the
derived class. There are various forms of inheritance.
8.4.1 Single inheritance — A derived class with only one base class is called single
inheritance.

 A

B

Example:
#include <iostream.h>

class Value
 {
 protected:
 int val;
 public:
 void set_values (int a)
 { val=a;}
 };
class Cube: public Value
 {
 public:

116

 int cube()
 { return (val*val*val); }
 };
int main ()
 {
 Cube cub;
 cub.set_values (5);
 cout << "The Cube of 5 is::" << cub.cube() << endl;
 return 0;
 }

Result:
The Cube of 5 is:: 125
In the above example the derived class “Cube” has only one base class “Value”. This is
the single inheritance OOP’s concept.
8.4.2 Multiple inheritance

A derived class with several base classes is called
multiple inheritance.

 A B

c

 8.4.3 Multilevel inheritance
The mechanism of deriving a class from another derived class is called multilevel
inheritance.

 A

B

c

117

Example:

#include <iostream.h>

class mm
 {
 protected:
 int rollno;
 public:
 void get_num(int a)
 { rollno = a; }
 void put_num()
 { cout << “Roll Number Is:\n”<< rollno << “\n”; }
 };
class marks : public mm
 {
 protected:
 int sub1;
 int sub2;
 public:
 void get_marks(int x,int y)
 {
 sub1 = x;
 sub2 = y;
 }
 void put_marks(void)
 {
 cout << “Subject 1:” << sub1 << “\n”;
 cout << “Subject 2:” << sub2 << “\n”;
 }
 };
class res : public marks
 {
 protected:
 float tot;
 public:
 void disp(void)
 {
 tot = sub1+sub2;
 put_num();
 put_marks();

118

 cout << “Total:”<< tot;
 }
 };
int main()
 {
 res std1;
 std1.get_num(5);
 std1.get_marks(10,20);
 std1.disp();
 return 0;
 }

Result:

 Roll Number Is:
 5
 Subject 1: 10
 Subject 2: 20
 Total: 30

In the above example, the derived function “res” uses the function “put_num()” from
another derived class “marks”, which just a level above. This is the multilevel
inheritance OOP’s concept in C++.
8.4.4 Hierarchical inheritance —

One class may be inherited by more than one classes. This process is known
as hierarchical inheritance.

 A

B C D

8.4.5 Hybrid inheritance —
It is a combination of hierarchical and multiple
inheritance.

 A

B

C

D

119

8.5 Visibility Modes
It can be public, private or protected. The private data of base class cannot be inherited.
(i) If inheritance is done in public mode, public members of the base class become

the public members of derived class and protected members of base class
become the protected members of derived class.

(ii) In inheritances is done in a private mode, public and protected members of base
class become the private members of derived class.

(iii) If inheritance is done in a protected mode, public and protected members of
base class become the protected members of derived class.

The following table shows the three types of inheritance:

Base class
Access specifier

Derived class

public private protected

public public private protected

private Not

inherited
Not
inherited

Not
inherited

protected protected protected protected

8.5.1 The Public Visibility mode
The following example and figure illustrate the public derivation in classes. class student

{
private :
int x;
void getdata ();
public:
int y;
void putdata ();
protected:
int z;
void check ();
};
class marks : public student
{
private :
int a ;
void readdata ();
public :
int b;
void writedata ();
protected :
int c;
void checkvalue ();
};

120

Class student class marks

Private section

 x getdata ()

Public section

 y putdata ()

Protected section

 z check()

Private section

 a readdata()

Public section

 b writedata()

Protected section

 c checkvalue()

y putdata()

z check()

Fig. public derivation of a class

The public derivation does not change the access specifiers for inherited
members in the derived class. The private data of base class student cannot be
inherited.

8.5.2 The Private Visibility Mode
We are using the same example, but the derivation is done in private mode.

Class student
{
// same as in previous example
};
class marks : private student
{
//
};

Inherited from base class student

121

The following figure illustrates the private derivation in the classes.

Protected Section

Public Section

Private section

Private section

 x getdata ()

Public section

 y putdata ()

Protected section

 z check()

a readdata()

b writedata()

c

putdata()

z check()

y

Checkvalue()

Fig .Private derivation of a class

As it is clear from the figure that the data present in public and protected section of base
class become the private members of derived class. The data in private section of base
class cannot be inherited.

8.5.3 The Protected visibility mode We are using the same example but the
derivation is done in protected mode.

class student

{

// same as in previous example

};

class marks : protected student

{

};

 Inherited from class student

122

The following figure illustrates the protected derivation in the classes.

Protected Section

Public section

Private section

Private section

 x getdata ()

Public section

 y putdata ()

Protected section

 z check()

a readdata()

b writedata()

c

putdata()

z check()

y

Checkvalue()

Fig .Protected derivation of a class

The data present in private section of base class cannot be inherited. The difference
between private and protected section is that data present in protected section can be
inherited. Otherwise both the section cannot be accessed by the object of the class.

8.6 Inherit private members of base class
C++ inheritance is very similar to a parent-child relationship. When a class is
inherited all the functions and data member are inherited, although not all of them will
be accessible by the member functions of the derived class. But there are some
exceptions to it too.
Some of the exceptions to be noted in C++ inheritance are as follows.
1. The constructor and destructor of a base class are not inherited
2. The assignment operator is not inherited
3. The friend functions and friend classes of the base class are also not inherited.

Inherited from class student

123

There are some points to be remembered about C++ inheritance. The protected and
public variables or members of the base class are all accessible in the derived class.
But a private member variable not accessible by a derived class.
It is a well known fact that the private and protected members are not accessible outside
the class. But a derived class is given access to protected members of the base class.

POINTS TO REMEMBER

C++ inheritance is very similar to a parent-child relationship.
A derived class is defined by specifying its relationship with the base class using
visibility mode.
The private and protected members are not accessible outside the class.
The old class is referred to as the base class and new one is called the derived class.
 A derived class with several base classes is called multiple inheritance.
The public derivation does not change the access specifiers for inherited members in
the derived class

124

EXERCISE

1. Fill in the blanks:
(a) The base class is also called
(b) The derived class can be derived from base class in or
 way.
(c) By default base class is visible as mode in derived class.
(d) When a derived class is derived from more than one base class then

the inheritance is called inheritance.
2. True or False.

(a) Inheritance means child receiving certain traits from parents.
(b) The default base class is visible as public mode in derived class.
(c) When a derived class is derived from more than one base class then

the inheritance is called hierarchical inheritance.
(d) Private data of base class can be inherited

3. Short Answer Type Questions:
1. What is inheritance?
2. Name the different forms of inheritance?
3. What are the three modes of inheritance?
4. What is the difference between private and protected sections ?
5. What are the needs of inheritance?

4. Long Answer Type Questions:
1. What is base class and derived class? Explain with example.
2. Explain the different forms of Inheritance
3. What do you mean by visibility modes?. Explain each.

125

CHAPTER 9

INFORMATION TECHNOLOGY

9.1 Introduction to Information Technology
Information Technology is made up of both information and technology.
What is Information? This is processed data with a meaning or an organized, meaningful and
useful interpretation of data.
What is Technology? Technology is humans using objects (tools, machines, systems, and
materials) to change the natural and human-made environment.
What are the characteristics of good Information?

● It has to be accurate
● Must be relevant to basic purposes

● Complete in respect to the key elements of the problem
● It has to be Timely (should be communicated in time to be used)
● It has to be consistent and reliable
● It has to be Up-to-date

● Easy to understand
● It has to be tailored to the needs of managers and end users

What are the characteristics of Technology?
● Technology is human knowledge

● Technology uses tools, materials and systems.
● Its application will result into artifacts (human-made things)
● Technology is developed by people to modify their environment.

Thus "Information Technology," pronounced "I.T." refers to anything related to computing tech-
nology, such as networking, hardware, software, the Internet, or the people that work with these
technologies. Many companies now have IT departments for managing the computers, net-
works, and other technical areas of their businesses. IT jobs include computer programming,
network administration, computer engineering, Web development, technical support, and many
other related occupations. Since we live in the "information age," information technology has
become a part of our everyday lives. That means the term "IT," already highly overused, is here
to stay.

9.1.1 Need of Information Technology
Information technology has become a major driving force in many organizations. These organi-
zations are seeking to get IT applications which can help them sell their products or services
effectively. For example, by use of Internet, organizations or businesses are moving informa-
tion faster and they also coordinate multiple activities to achieve efficiency. They also use the
internet to sell their services or products. Information technology has changed businesses,
education so many other sectors. In the business world it has helped in creating a "networked

126

economy" where businesses are linked with their suppliers, customers, manufacturers and
business partners in real time. So in this case we look at Information Technology as an enabler
and as an industry for the economic development.
9.2 Computer Network
A computer network or data network is a telecommunications network that allows computers to
exchange data. In computer networks, networked computing devices pass data to each other
along data connections. The connections (network links) between nodes are established using
either cable media or wireless media. The best-known computer network is the Internet.
Network computer devices that originate, route and terminate the data are called network nodes.
Nodes can include hosts such as personal computers, phones, servers as well as networking
hardware. Two such devices are said to be networked together when one device is able to
exchange information with the other device, whether or not they have a direct connection to
each other.
Computer networks support applications such as access to the World Wide Web, shared use
of application and storage servers, printers, and fax machines, and use of email and instant
messaging applications. Computer networks differ in the physical media used to transmit their
signals, the communications protocols to organize network traffic, the network's size, topology
and organizational intent.
9.2.1 Need of Network

Computer networks help users on the network to share the resources and in communication.
Can you imagine a world now without emails, online newspapers, blogs, chat and the other
services offered by the internet?

The following are the important benefits of a computer network.

File sharing: Networking of computers helps the users to share data files.

Hardware sharing: Users can share devices such as printers, scanners, CD-ROM drives,
hard drives etc.

Application sharing: Applications can be shared over the network, and this allows to imple-
ment client/server applications

User communication: Networks allow users to communicate using e-mail, newsgroups, and
video conferencing etc.

Network gaming: A lot of network games are available, which allow multi-users to play from
different locations.

9.2.2 Parts or Components of Network
Computer network components include the major parts that are needed to install a network
both at the office and home level. Before exploring into the installation process, you should be
familiar with each part so that you could choose and buy the right component that fits with your
network system.
These hardware components include cable, Hub, Switch, NIC (network interface card), mo-
dem and router. Depending on the type of network you are going to install, some of the parts
can be eliminated. For example, in a wireless network you don't need cables, hubs so on.

127

Major computer network components
Computer network requires the following devices (some of them are optional):-

● Network Interface Card (NIC)
● Hub
● Switches
● Cables and connectors
● Router
● Modem

9.3 Network Topology
A Network Topology is the way computer systems or network equipment connected to each
other. Topologies may define both physical and logical aspect of the network. Both logical and
physical topologies could be same or different in a same network.

9.3.1 Point-to-point
Point-to-point networks contains exactly two hosts (computer or switches or routers or serv-
ers) connected back to back using a single piece of cable. Often, the receiving end of one host
is connected to sending end of the other end and vice-versa.

Fig 9.1 Point -to point Topology

If the hosts are connected point-to-point logically, then may have multiple intermediate devices.
But the end hosts are unaware of underlying network and see each other as if they are con-
nected directly.

9.3.2 Bus Topology
In contrast to point-to-point, in bus topology all device share single communication line or cable.
All devices are connected to this shared line. Bus topology may have problem while more than
one hosts sending data at the same time. Therefore, the bus topology either uses CSMA/CD
technology or recognizes one host has Bus Master to solve the issue. It is one of the simple
forms of networking where a failure of a device does not affect the others. But failure of the
shared communication line make all other devices fail.

Fig 9.2 Bus Topology

128

Both ends of the shared channel have line terminator. The data is sent in only one direction and
as soon as it reaches the extreme end, the terminator removes the data from the line.

9.3.3 Star Topology
All hosts in star topology are connected to a central device, known as Hub device, using a point-
to-point connection. That is, there exists a point to point connection between hosts and Hub.
The hub device can be Layer-1 device (Hub / repeater) or Layer-2 device (Switch / Bridge) or
Layer-3 device (Router / Gateway).

Fig 9.3 Star Topology

As in bus topology, hub acts as single point of failure. If hub fails, connectivity of all hosts to all
other hosts fails. Every communication happens between hosts, goes through Hub only. Star
topology is not expensive as to connect one more host, only one cable is required and configu-
ration is simple.

9.3.4 Ring Topology
In ring topology, each host machine connects to exactly two other machines, creating a circular
network structure. When one host tries to communicate or send message to a host which is
not adjacent to it, the data travels through all intermediate hosts. To connect one more host in
the existing structure administrator may need only one more extra cable.

Fig 9.4 Ring Topology

129

Failure of any host results in failure of the whole ring. Thus every connection in the ring is point
of failure. There exists methods which employs one more backup ring.

9.3.5 Mesh Topology

In this type of topology, a host is connected to one or two or more than two hosts. This topology
may have hosts having point-to-point connection to every other hosts or may also have hosts
which are having point to point connection to few hosts only.

Fig 9.5 : Full Mesh Topology

Hosts in Mesh topology also work as relay for other hosts which do not have direct point-to-
point links. Mesh technology comes into two flavors:

" Full Mesh: All hosts have a point-to-point connection to every other host in the
network. Thus for every new host n(n-1)/2 cables (connection) are required. It
provides the most reliable network structure among all network topologies.

" Partially Mesh: Not all hosts have point-to-point connection to every other host.
Hosts connect to each other in some arbitrarily fashion. This topology exists
where we need to provide reliability to some host whereas others are not as
such necessary.

9.3.6 Tree Topology
Also known as Hierarchical Topology is the most common form of network topology in use
present day. This topology imitates as extended Star Topology and inherits properties of Bus
topology.

This topology divides the network in to multiple levels/layers of network. Mainly in LANs, a network
is bifurcated into three types of network devices. The lowest most is access-layer where user's
computer are attached. The middle layer is known as distribution layer, which works as mediator
between upper layer and lower layer. The highest most layer is known as Core layer, and is
central point of the network, i.e. root of the tree from which all nodes fork.

130

Fig 9.6 : Tree Topology

All neighboring hosts have point-to-point connection between them. Like bus topology, if the
root goes down, the entire network suffers. Though it is not the single point of failure. Every
connection serves as point of failure, failing of which divides the network into unreachable
segment and so on.

9.4 Advantages and Disadvantages of Network
9.4.1 Advantages of network
9.4.1.1File Sharing
The major advantage of a computer network is that it allows file sharing and remote file access.
A person sitting at one workstation that is connected to a network can easily see files present
on another workstation, provided he is authorized to do so. This saves him/her the hassle of
carrying a storage device every time data needs to be transported from one system to another.
Further, a central database means that anyone on that network can access a file and/or update
it. If files are stored on a server and all of its clients share that storage capacity, then it becomes
easier to make a file available to multiple users.

9.4.1.2 Resource Sharing
Resource sharing is another important benefit of a computer network. For example, if there are
twelve employees in an organization, each having their own computer, they will require twelve
modems and twelve printers if they want to use the resources at the same time. A computer
network, on the other hand, provides a cheaper alternative by the provision of resource sharing.
All the computers can be interconnected using a network, and just one modem and printer can
efficiently provide the services to all twelve users.

9.4.1.3 Inexpensive Set-Up
Shared resources mean reduction in hardware costs. Shared files mean reduction in memory
requirement, which indirectly means reduction in file storage expenses. A particular software
can be installed only once on the server and made available across all connected computers at
once. This saves the expense of buying and installing the same software as many times for as
many users.

131

9.4.1.4 Flexible Handling

A user can log on to a computer anywhere on the network and access his files. This offers
flexibility to the user as to where he should be during the course of his routine. A network also
allows the network administrator to choose which user on the network has what specific
permissions to handle a file. For example, the network administrator can allot different permissions
to User A and User B for File XYZ. According to these permissions, User A can read and modify
File XYZ, but User B cannot modify the file. The permission set for User B is read-only. This
offers immense flexibility against unwarranted access to important data.

9.4.1.5 Increased Storage Capacity

Since there is more than one computer on a network which can easily share files, the issue of
storage capacity gets resolved to a great extent. A standalone computer might fall short of
storage memory, but when many computers are on a network, the memory of different computers
can be used in such a case. One can also design a storage server on the network in order to
have a huge storage capacity.

9.4.2 Disadvantages of Networks

9.4.2.1Security Concerns

One of the major drawbacks of computer networks is the security issues that are involved. If a
computer is a standalone computer, physical access becomes necessary for any kind of data
theft. However, if a computer is on a network, a hacker can get unauthorized access by using
different tools. In case of big organizations, various network security software need to be used
to prevent theft of any confidential and classified data.

9.4.2.2 Virus and Malware

If even one computer on a network gets affected by a virus, there is a possible threat for the
other systems getting affected too. Viruses can spread on a network easily, because of the
inter-connectivity of workstations. Moreover, multiple systems with common resources are the
perfect breeding ground for viruses that multiply. Similarly, if malware gets accidentally installed
on the central server, all clients in the network that are connected to that server will get affected
automatically.

9.4.2.3 Lack of Robustness

If the main file server of a computer network breaks down, the entire system becomes useless.
If there is a central linking server or a bridging device in the network, and it fails, the entire
network will come to a standstill. In case of big networks, the file server should be a powerful
computer, which often makes setting up and maintaining the system doubly expensive.

9.4.2.4 Needs An Efficient Handler

The technical skills are required to operate and administer a computer network . Any user with
just the basic skills cannot do this job. Also, the responsibility that comes with such a job is
high, since allotting username-passwords and permissions to users in the network are also the
network administrator's duties. Similarly, network connection and configuration is also a tedious
task, and cannot be done by an average user who does not have advanced knowledge of
computers and/or networking.

132

9.4.2.5 Lack of Independence
Since most networks have a centralized server and dependent clients, the client users lack any
freedom whatsoever. Centralized decision making can sometimes hinder how a client user
wants to use his own computer.

Computer networks have had a profound effect on the way we communicate with each other
today, and have made our life easier. From the World Wide Web to your local office LAN,
computers have become indispensable in daily life, and networks have become a norm in most
businesses. If networks are designed and configured keeping in mind its pros and cons, they
are the best piece of facility you could ever have.

9.5 Data Communication
Data communication refers to the exchange of data between a source and a receiver. Data
communication is said to be local if communicating devices are in the same building or a
similarly restricted geographical area. The meanings of source and receiver are very simple.
The device that transmits the data is known as source and the device that receives the transmitted
data is known as receiver. Data communication aims at the transfer of data and maintenance
of the data during the process but not the actual generation of the information at the source and
receiver. Data can exist in a variety of forms such as numbers, text, bits and bytes. The Figure
is an illustration of a simple data communication system.

Fig 9.7

9.5.1Components of Data Communication
The five major components of a data communication system are a Message, a Sender, a
Receiver, a Transmission Medium and Protocol.

1. Message - It is the information to be communicated. Popular forms of information
include text, pictures, audio, video etc. Text is converted to binary, number doesn't
get converted, image is converted to pixels, etc.

2. Sender - It is a device which sends the data messages. It can be a computer,
workstation, telephone handset etc.

3. Receiver - It is a device which receives the data messages. It can be a computer,
workstation, telephone handset etc.

4. Transmission Medium - It is the physical path by which a message travels
from sender to receiver. Some examples include twisted-pair wire, coaxial cable,
radio waves etc.

5. Protocol - It is a set of rules that governs the data communications. It represents
an agreement between the communicating devices. Without a protocol, two
devices may be connected but not communicating.

133

9.5.2 Method or Mode of Data Transmission
The term Transmission Mode defines the direction of the flow of information between two
communication devices i.e. it tells the direction of signal flow between the two devices.

There are three ways or modes of data transmission: Simplex, Half duplex (HDX), Full duplex
(FDX)

Fig 9.8 Mode of Transmission

Simplex: In Communication Networks, Communication can take place in one direction
connected to such a circuit are either a send only or receive only device. There is no mechanism
for information to be transmitted back to the sender. Communication is unidirectional. TV
broadcasting is an example. Simplex transmission generally involves dedicated circuits. Simplex
circuits are analogous to escalators, doorbells, fire alarms and security systems:

Examples of Simplex mode:
1. A Communication between a computer and a keyboard involves simplex duplex

transmission. A television broadcast is an example of simplex duplex
transmission.

2. Another example of simplex transmission is loudspeaker system. An announcer
speaks into a microphone and his/her voice is sent through an amplifier and
then to all the speakers.

3. Many fire alarm systems work the same way.

Fig 9.9 Simplex Transmission

134

Half Duplex: A half duplex system can transmit data in both directions, but only in one direction
at a time that mean half duplex modes support two-way traffic but in only one direction at a time.
The interactive transmission of data within a time sharing system may be best suited to half-
duplex lines. Both the connected devices can transmit and receive but not simultaneously.
When one device is sending the other can only receive and vice-versa. Data is transmitted in
one direction at.a time, for example. a walkie-talkie.

This is generally used for relatively low-speed transmission, usually involving two-wire, analog
circuits. Due to switching of communication direction, data transmission in this mode requires
more time and processes than under full duplex mode. Examples of half duplex application
include line printers, polling of buffers, and modem communications (many modems can support
full duplex also).

Fig 9.10 Half Duplex Mode

Example of half duplex mode:

A walkie-talkie operates in half duplex mode. It can only send or receive a transmission at any
given time. It cannot do both at the same time.

As shown in fig. computer A sends information to computer B. At the end of transmission,
computer B sends information to computer A. Computer A cannot send any information to
computer B, while computer B is transmitting data.

Full Duplex: A full duplex system can transmit data simultaneously in both directions on
transmission path. Full-duplex method is used to transmit the data over a serial communication
link. Two wires needed to send data over a serial communication link layer. Full-duplex
transmission, the channel capacity is shared by both communicating devices at all times.

Both the connected devices can transmit and receive at the same time. Therefore it represents
truly bi-directional system. The link may contain two separate transmission paths one for sending
and another for receiving.

Example of Full duplex mode:

Telephone networks operate in full duplex mode when two persons talk on telephone line, both
can listen and speak simultaneously.

135

Fig 9.11 Full duplex mode

9.6 Transmission channel or media

Transmission channel or media are the physical pathways that connect computers, other
devices, and people on a network-the highways and byways that comprise the information
superhighway. Each transmission medium requires specialized network hardware that has to
be compatible with that medium.

It would be convenient to construct a network of only one medium. But that is impractical for
anything but an extremely small network. In general, networks use combinations of media types.

Traditional Transmission Media Characteristics

9.6.1 Twisted Pair Cable

A twisted pair cable is made of two plastic insulated copper wires twisted together to form a
single media. Out of these two wires only one carries actual signal and another is used for
ground reference. The twists between wires is helpful in reducing noise (electro-magnetic
interference) and crosstalk.

Fig 9.12 Twisted Pairs

Media Type Bandwidth Performance: Typical Error Rate

Twisted-pair for analog voice applications 1MHz Poor to fair (10–5)

Coaxial cable 1GHz Good (10–7 to 10–9)

Microwave 100GHz Good (10–9)

Satellite 100GHz Good (10–9)

Fiber 75THz Great (10–11 to 10–13)

136

There are two types of twisted pair cables available:

● Shielded Twisted Pair (STP) Cable

● Unshielded Twisted Pair (UTP) Cable

STP cables comes with twisted wire pair covered in metal foil. This makes it more indifferent to
noise and crosstalk.

UTP has seven categories, each suitable for specific use. In computer networks, Cat-5, Cat-5e
and Cat-6 cables are mostly used. UTP cables are connected by RJ45 connectors.

9.6.2 Coaxial Cable

Coaxial cables has two wires of copper. The core wire lies in center and is made of solid
conductor. Core is enclosed in an insulating sheath. Over the sheath the second wire is wrapped
around and that too in turn encased by insulator sheath. This all is covered by plastic cover.

Fig 9. 13 :Coaxial Cable

Because of its structure coax cables are capable of carrying high frequency signals than that of
twisted pair cables. The wrapped structure provides it a good shield against noise and cross
talk. Coaxial cables provide high bandwidth rates of up to 450 mbps.

There are three categories of Coax cables namely, RG-59 (Cable TV), RG-58 (Thin Ethernet)
and RG-11 (Thick Ethernet. RG stands for Radio Government.

Cables are connected using BNC connector and BNC-T. BNC terminator is used to terminate
the wire at the far ends.

9.6.3 Fiber Optics

Fiber Optic works on the properties of light. When light ray hits at critical angle it tends to
refracts at 90 degree. This property has been used in fiber optic. The core of fiber optic cable is
made of high quality glass or plastic. From one end of it light is emitted, it travels through it and
at the other end light detector detects light stream and converts it to electric data form.

Fiber Optic provides the highest mode of speed. It comes in two modes, one is single mode
fiber and second is multimode fiber. Single mode fiber can carries single ray of light whereas
multimode is capable of carrying multiple beams of light.

137

Fig 9.14 Fiber Optics

Fiber Optic also comes in unidirectional and bidirectional capabilities. To connect and access
Fiber Optic special type of connectors are used. These can be SC (Subscriber Channel), ST
(Straight Tip) or MT-RJ.

9.6.4 Microwave Transmission

Electromagnetic waves above 100 MHz tend to travel in a straight line and signals over them
can be sent by beaming those waves towards one particular station. Because Microwaves
travels in straight lines, both sender and receiver must be aligned to be strictly in line-of-sight.

Microwaves can have wavelength ranging from 1 mm - 1 meter and frequency ranging from
300 MHz to 300 GHz.

Fig 9.15 Microwave Transmission

Microwave antennas concentrate the waves making a beam of it. As shown in picture above
multiple antennas can be aligned to reach farther. Microwaves are higher frequencies and do
not penetrate wall like obstacles.

Microwaves transmission depends highly upon the weather conditions and the frequency it is
using.

9.6.5 Satellite

Satellite micro wave transmission is used to transmit signals throughout the world. These
system use satellites in orbit about 50,000 Km above the earth. Satellite dishes are used to
send the signals to the satellite where it is again send back down to the receiver satellite. These
transmissions also use directional parabolic antenna' within line of side.

138

In satellite communication micro wave signals at 6 GHz is transmitted from a transmitter on the
earth through the satellite position in space. By the time signal reaches the satellites becomes
weaker due to 50,000 Km distance. The satellite amplifies week signals and transmits it back
to the earth at the frequency less than 6 GHz.

Fig 9.16 Satellite

9.7 Types Of Networks

There are several different types of computer networks. Computer networks can be
characterized by their size as well as their purpose.

The size of a network can be expressed by the geographic area they occupy and the number of
computers that are part of the network. Networks can cover anything from a handful of devices
within a single room to millions of devices spread across the entire globe.

Some of the different networks based on size are:

● Personal area network, or PAN

● Local area network, or LAN

● Metropolitan area network, or MAN

● Wide area network, or WAN

In terms of purpose, many networks can be considered general purpose, which means they
are used for everything from sending files to a printer to accessing the Internet. Some types of
networks, however, serve a very particular purpose. Some of the different networks based on
their main purpose are:

● Storage area network, or SAN

● Enterprise private network, or EPN

● Virtual private network, or VPN

Let's look at some of these in a bit more detail.

Local Area Network

A local area network, or LAN, consists of a computer network at a single site, typically an
individual office building. A LAN is very useful for sharing resources, such as data storage and
printers. LANs can be built with relatively inexpensive hardware, such as hubs, network adapters
and Ethernet cables.

139

The smallest LAN may only use two computers, while larger LANs can accommodate thousands
of computers. A LAN typically relies mostly on wired connections for increased speed and
security, but wireless connections can also be part of a LAN. High speed and relatively low cost
are the defining characteristics of LANs.

LANs are typically used for single sites where people need to share resources among themselves
but not with the rest of the outside world. Think of an office building where everybody should be
able to access files on a central server or be able to print a document to one or more central
printers. Those tasks should be easy for everybody working in the same office, but you would
not want somebody just walking outside to be able to send a document to the printer from their
cell phone! If a local area network, or LAN, is entirely wireless, it is referred to as a wireless
local area network, or WLAN.

Metropolitan Area Network

A metropolitan area network, or MAN, consists of a computer network across an entire city,
college campus or small region. A MAN is larger than a LAN, which is typically limited to a single
building or site. Depending on the configuration, this type of network can cover an area from
several miles to tens of miles. A MAN is often used to connect several LANs together to form a
bigger network. When this type of network is specifically designed for a college campus, it is
sometimes referred to as a campus area network, or CAN.

Wide Area Network

A wide area network, or WAN, occupies a very large area, such as an entire country or the
entire world. A WAN can contain multiple smaller networks, such as LANs or MANs. The Internet
is the best-known example of a public WAN.

POINTS TO REMEMBER:
● "Information Technology," refers to anything related to computing technology,

such as networking, hardware, software, the Internet, or the people that work
with these technologies.

● A computer network or data network is a telecommunications network that allows
computers to exchange data.

● Networking of computers helps the users to share data files.

● Computer networks can be characterized by their size as well as their purpose.

● Transmission channel or media are the physical pathways that connect
computers, other devices, and people on a network Transmission channel or
media are the physical pathways that connect computers, other devices, and
people on a network.

● A Network Topology is the way computer systems or network equipment
connected to each other.

140

EXERCISE

1. Fill in the blanks:
a. ______________ between nodes are established using either cable media or

wireless media.
b. Networking of computers helps the users to _________ data files.
c. ____________ are the physical pathways that connect computers Transmission

channel or media are the physical pathways that connect computers.
d. _________ is public or privately owned communication system that typically

covers a complete city.
e. The core of fiber optic cable is made of_______________.
f. A _________ can transmit data simultaneously in both directions on transmission

path.
g. The term ______________ defines the direction of the flow of information between

two communication devices.
2. True/False

a. Information must be relevant to basic purposes.
b. The connections (network links) between nodes cannot be established using

wireless media.
c. If the hosts are connected point-to-point logically, then may not have multiple

intermediate devices.
d. A metropolitan area network, or MAN, consists of a computer network across an

entire city, college campus or small region.
e. Transmission channel or media are the physical pathways that connect

computers, other devices, and people on a network.
3. Short Answer type Questions:

1. What is term Information Technology?.
2. What is computer network?
3. Explain the components of data communication.
4. What are the advantages of network?
5. Name the modes of Data transmission.

4. Long Answer type Questions:
a. What do you understand by the term Information Technology? Explain its need.
b. Explain the types of computer network.
c. Explain the mode of Data Transmission.
d. What are the advantages and disadvantages of computer network.

5. Give Differences
1. LAN and WAN
2. Bus Topology and Ring Topology
3. Twisted pair and Coaxial cable

	title Pages
	book

