	CHEMICAL	. BOI	NDING	
1. 2.	COVALENT BONDThe strength of bonds by $2s - 2s$, $2p - 2p$ and $2p - 2s$ overlapping has the order :- $(1) s - s > p - p > s - p$ $(2) s - s > p - s > p - p$ $(3) p - p > s - p > s - p$ $(2) s - s > p - s > p - p$ $(3) p - p > s - p > s - s$ $(4) p - p > s - s > p - s$ Which is not characteristic of π -bond:- $(1) \pi$ - bond is formed when a sigma bond already formed $(2) \pi$ - bond are formed from hybrid orbitals $(3) \pi$ - bond may be formed by the overlapping of p-orbitals $(4) \pi$ -bond results from lateral overlap of atomic	8.9.10.	 Which of the following set is not correct:- (1) SO₃, O₃, NH₄⁺ all have coordinate bonds (2) H₂O, NO₂, ClO₂⁻, all are 'V' shape molecule (3) I₃⁻, ICl₂⁻, NO₂⁺ ; all are linear molecules (4) SF₄, SiF₄, XeF₄ are tetrahedral in shape The shape of XeO₂F₂ will be :- (1) Square planar (2) Tetrahedral (3) Pentagonal bipyramidal (4) See saw A σ bonded molecule MX₃ is T-shaped. The number of non-bonding pairs of electrons is 	
3.	 (1) π contailed is non-interval overlap of atomic orbitals Which compound of xenon is not possible (1) XeF₂ (2) XeF₄ (3) XeF₅ (4) XeF₆ Similarity of fluorine and oxygen may not be attributed to- (1) Their atomic and ionic radii are closely similar (2) The atom of both elements attain an octet of electrons in their valence shell (3) Both of them are highly electronegative elements (4) Both form stable pπ - pπ multiple bonds with themselves 	11. 12.	number of non-bonding pairs of electrons is (1) 0 (2) 2 (3) 1 (4) Can be predicted if atomic number of M is known The structure and hybridization of Si(CH ₃) ₄ is : (1) bent, sp (2) trigonal, sp ² (3) octahedral, sp ³ d (4) tetrahedral, sp ³ When the hybridization state of carbon atom changes from sp ³ , sp ² and sp, the angle between the hybridized orbitals. (1) decrease considerably (2) increase progressively (3) decrease gradually	
5.	HYBRIDISATIONAmong the following species identify the isostructural pairs:-NF3, NO3, BF3, H3O, HN3(1) [NF3, NO3] and [BF3, H3O](2) [NF3, HN3] and $[NO3, BF3]$ (3) [NF3, H3O] and $[NO3, BF3]$ (4) [NF3, H3O] and $[HN3, BF3]$ Which of the set of species have same hybridisation state but different shapes:-(1) $NO2, NO2, NO2^{-}$ (2) $CIO4, SF4, XeF4$	13. 14.	 (4) all of these Molecular shapes of SF₄, CF₄ and XeF₄ are (1) The same, with 2, 0 and 1 lone pairs of electrons respectively (2) The same, with 1,1 and 1 lone pairs of electrons respectively (3) Different, with 0,1 and 2 lone pairs of electrons respectively (4) Different, with 1,0 and 2 lone pairs of electrons respectively (4) Different, with 1,0 and 2 lone pairs of electrons respectively (5) Select the correct matching : List I List II A : XeF₄ A Pyramidal 	
7.	(3) NH_4^+ , H_3O^+ , OF_2 (4) SO_4^{-2} , PO_4^{-3} , CIO_4^- Which of the following elements can not exhibit sp ³ d hybridisation state:- (a) C (b) P (c) Cl (d) B Correct answer is:- (1) a, c (2) a, d (3) b, c (4) b, d		B : XeF ₆ 2. T-shapeC : XeO ₃ 3. Distorted octahedralD : XeOF ₂ 4. Square planarABCD1(1) 431(2) 1234(3) 2132	

15. The dipole moment of NH₃ is:-(1) Less than dipole moment of NCl₃ (2) Higher than dipole moment of NCl, (3) Equal to the diple moment of NCl₃ (4) None of these **16.** Which set of molecules is polar :-(2) PCl_5 , C_6H_6 , SF_6 (1) XeF_4 , IF_7 , SO_3 (4) CO₂, CS₂, C₂H₂ (3) SnCl₂, SO₂, NO₂ 17. Species having zero dipole moment :-(1) XeF₄ (2) 1,2,4 trichloro benzene (3) SF₄ $(4) CH_{2}Cl_{2}$ **18.** PCl_5 is non polar because :-(1) P – Cl bond is non-polar (2) Its dipole moment is zero (3) P - Cl bond is polar (4) P & Cl have equal electronegativity **19.** The correct order of dipole moment is : (1) $CH_4 < NF_3 < NH_3 < H_2O$ (2) $NF_3 < CH_4 < NH_3 < H_2O$ (3) $NH_3 < NF_3 < CH_4 < H_2O$ (4) $H_2O < NH_3 < NF_3 < CH_4$ 20. Which of the following has the highest value of dipole moment : (2) HF (3) HI (1) HCl **MOLECULAR ORBITAL THEORY** 21. The ion that is isoelectronic with CO and having same bond order is :-(1) CN-(2) O_2^+ $(3) O_2^{-}$ 22. Which of the following is paramagnetic:-(2) CN-(3) CO (1) O_2^- The no. of antibonding electron pair in O_2^{-} is 23. (1) 4(2)3(3) 824. Which of the following ion has not bond order of 2.5? $(1) O_{2}^{-}$ (2) O_2^+ (3) N_{2}^{+} 25. In a homonuclear molecule which of the following set of orbitals are degenerate ? (2) $\pi_{_{\rm 2p_x}}$ and $\pi_{_{\rm 2p_x}}$ (1) σ_{2s} and σ_{1s}

- (4) σ_{2p} and π^*_{2p} (3) π_{2p} and σ_{2p}

COORDINATE BOND 26. In Co-ordinate bond, the acceptor atoms must essentially contain in its valency shell an orbital:-(1) With paired electron (2) With single electron (3) With no electron (4) With three electron 27. The bonds present in N_2O_5 are :-(1) Only ionic (2) Covalent & coordinate (3) Only covalent (4) Covalent & ionic 28. Which of the following has no coordinate bond? (2) $P_{0}H_{c}^{+2}$ (3) $P_{0}H_{c}^{\oplus}$ (1) PH_a (4) PH₄⁺ WEAK FORCES 29. In dry ice the bond present between two molecules is (1) Ionic bond (2) Covalent bond (3) Hydrogen bond (4) Vander Waal 30. Intermolecular hydrogen bonds are not present in:-(1) CH₃CH₂OH (2) CH₃COOH $(3) C_2 H_5 N H_2$ (4) CH₃OCH₃ In which of the following molecule, the shown 31. (4) HBr hydrogen bond is not possible:-(4) N_2^+ (4) NO+ ·H (2)(4) 10(3) $(4) N_0^{-1}$

(4) Cl-

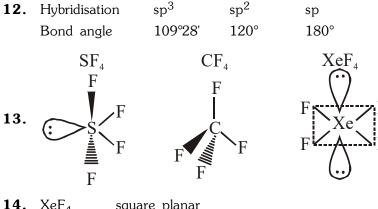
32.	The incorrect order of decreasing boiling points			IONIC B	OND
	is		38.	Conditions for ionic bo	
	(1) $NH_3 > AsH_3 > PH_3$.) $NH_3 > AsH_3 > PH_3$		(a) Small cation, large anion	
	(2) $H_2O > H_2Se > H_2S$				n electron affinity of anion
	(3) $Br_2 > Cl_2 > F_2$			(c) Large cation, small a	anion and less charge
	(4) $CH_4 > GeH_4 > SiH_4$			(d) Less lattice enrgy	
33.	Acetic acid exists as dimer	in benzene due to:-		Correct answer is :	
	(1) Condensation reaction			(1) a, d	(2) b, c and d
	(2) Hydrogen bonding		39.	(3) b and c	(4) a, b ⁺ B⁻ is most likely to be
	(3) Presence of carboxyl g	roup	07.	formed when -	
	(4) None of the above			(1) Ionization energy of A is low	
34.	Maximum no. of hydrogen bonds formed by a			(2) Electron affinity of B is high	
	water molecule in ice is			(3) Electron affinity of B is low	
	(1) 4 (2)) 3	40.	(4) Both (1) and (2)	nt compounds electrova-
	(3) 2 (4)) 1	40.	lent compounds genera	•
35.	Density of ice is less than that of water because of (1) presence hydrogen bonding (2) crystal modification of ice (3) open porous structure of ice due to hydrogen bonding			(1) High m.p. and high b.p.	
				(2) Low m.p. and low b.p.	
				(3) Low m.p. and high b.p.	
			41	(4) high m.p. and low b.p. The most stable carbonate is	
			41.	(1) Li_2CO_3	(2) BeCO ₃
	(4) different physical states	of these		(3) CaCO ₃	(4) BaCO ₃
36.	Which of the following compounds show in-		42.	 CCl₄ is more covalent than LiCl because : (1) There is more polarization of Cl in CCl₄ (2) There is more polarization of Cl in LiCl (3) CCl₄ has more weight 	
	tramolecular hydrogen bonding : (A) o - nitrophenol				
	(B) p - nitrophenol			(4) None of above	
	(C) phenol			43. The correct order of decreasing polarisable io	creasing polarisable ions
	(D) salicylaldehyde			is:	
	(1) A & B (2)) A & C		(1) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻	
	(3) A & D (4)) B & C	44 .	(3) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻	(4) I ⁻ , Br ⁻ , CI ⁻ , F ⁻ hydrated M ⁺ ions are in
37.	The pair of molecules forming strongest hydro- gen bonds are : (1) SiH ₄ and SiF ₄ (2) CH ₃ —C—CH ₃ and CHCl ₃ 0			the order –	
				$ \begin{array}{l} (1) \ Li^{+}(aq) > Na^{+}(aq) > K^{+}(aq) > Rb^{+}(aq) > Cs^{+}(aq) \\ (2) \ Li^{+}(aq) > Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq) \\ (3) \ Li^{+}(aq) > Na^{+}(aq) > K^{+}(aq) > Rb^{+}(aq) < Cs^{+}(aq) \\ \end{array} $	
				(4) $Li^{+}(aq) < Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq)$	
			45.		halides has the highest
				melting point –	-
	Ö			(1) NaCl	(2) KCl
	(4) H_2O and H_2			(3) NaBr	(4) NaF
		I			

SOLUTION

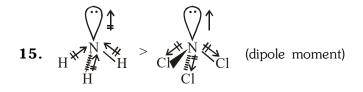
CHEMICAL BONDING

1. Bond strength order

 $2s \; - \; 2s \; < \; 2s \; - \; 2p \; < \; 2p \; - \; 2p$


- **2.** Hybrid orbital does not form π -bond.
- **3.** XeF₅ does not formed

5.


- NF_3 Pyramidal $\mathrm{H}_3\mathrm{O}^+$ Pyramidal shape
- NO_3^- Trigonal planar HN_3 bent shape

BF₃ - Trigonal planar

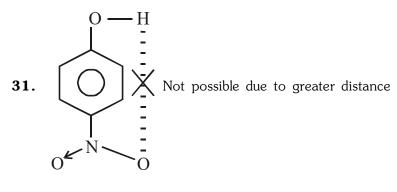
- 7. C & B does not show $sp^{3}d$ hybridisation due to non avalibility of 'd' orbital
- **8.** SF_4 is see saw
- **9.** XeO_2F_2 sp³d see saw
- 10. T- Shaped species is formed when two lone pair and 3σ bond is formed.
- **11.** Si(CH₃)₄ sp³, Td $H_3C CH_3$ H₃C CH₃ CH₃

14.	XeF ₄	square planar
	XeF ₆	distorted octahedral
	XeO_3	Pyramidal
	XeOF ₂	T-shape

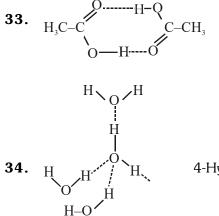
- 16. $SnCl_2$, SO_2 , NO_2 are polar and other molecules in options are non-polar.
- 17. XeF₄ having zero dipole moment
- 18. In non-polar species the net dipole moment is zero
- **19.** $CH_4 < NF_3 < NH_3 < H_2O$
- 20. In HX, electronegativity difference increases dipole moment also increases.

21. CO $CN^ O_2^+$ $O_2^ N_2^+$ Bond order 3 3 2.5 1.5 2.5

22. CN⁻ , CO, NO⁺ \rightarrow No unpaired e⁻ is present


: Diamagnatic

- **23.** O_2^- , bonding e⁻ in BMO = 10 e⁻ in AMO = 7 (3 pair and 1 singe)
- **24.** O_2 $O_2^ O_2^+$ N_2^+ N_2^- Bond order 1.5 2.5 2.5 2.5
- **25.** π_{2px} and π_{2py} having same energy.
- 26. In co-ordinate bond formation the acceptor atom must have vacant orbital.


$$\mathbf{27.} \quad \mathbf{\mathbf{0}}_{\mathbf{\mathbf{2}}}^{\mathbf{0}} \mathbf{\mathbf{N}}^{\mathbf{0}} \mathbf{\mathbf{N}}_{\mathbf{\mathbf{2}}_{\mathbf{0}}}^{\mathbf{0}}$$

28. $H \xrightarrow{P}_{H} H$ co-ordiante bond is not present.

29. dry ice $CO_2(solid)$ vander waal forces exist between CO_2 molecules **30.** CH₃OCH₃ – No hydrogen bonding

32. $CH_4 < SiH_4 < GeH_4$

4-Hydrogen bond / Water molecules.

- **35.** Ice having open cage like structure and having large voids.
- 36. p-nitrophenol and phenol show intermolecular H-bonding.
- **37.** Hydrogen bond exist between HCOOH & CH₃COOH
- **38.** Condition favour ionic bond formation.
 - (1) How IP of atom forming cation
 - (2) High EA of atom forming anion
 - (3) Greater LE of formed product
 - (4) Greater cation and small anion
- 39. See solution of 89
- 40. Electrovalent compound generally having high mp & bp.
- **41.** Ionic Character \uparrow Thermal stability \uparrow
- **43.** $F^- < Cl^- < Br^- < I^-$ (polarizibility)
- 44. If the charges are constant then greater the ionic mobility greater will be conductance
- **45.** NaF having greater ionic character among given species : greater m.p.