CLASS TEST

PHYSICS

CLASS TEST # 54

SECTION-I

Single Correct Answer Type

8 Q. [3 M (-1)]

A frame is rotating about hinge at O in a uniform transverse magnetic field as shown in the figure. Dimensions of various sections of the rod are shown. Some points are marked on the rod C choose the incorrect alternative

- (A) Potential difference between O and A can never be zero
- (B) Potential difference between A and C may be zero
- (C) Potential difference between O and C does not depend on b
- (D) Potential difference between A and B does not depend on a
- 2. A rectangular loop has a sliding connector PQ of length 2 m and resistance 10Ω and it is moving with a speed 5 m/s as shown. The set-up is placed in a uniform magnetic field 3T going into the plane of the paper. The three currents I₁, I₂ and I are:-

(A)
$$I_1 = I_2 = 3A$$
, $I = 1A$

(B)
$$I_1 = I_2 = 5A$$
, $I = 2A$
(D) $I_1 = I_2 = I = 2A$

(C)
$$I_1 = I_2 = 1A$$
, $I = 2A$

(D)
$$I_1 = I_2 = I = 2A$$

The loop shown moves with a constant velocity 'V' in a uniform magnetic field of magnitude 'B' **3.** directed into the paper. The potential difference between P and Q is:-

(A)
$$e = \frac{3}{4}BLV$$
, Q is positive with respect to P

(B)
$$e = \frac{1}{4}BLV$$
, P is positive with respect to Q

(C)
$$e = 0$$

(D)
$$e = \frac{1}{4}BLV$$
, Q is positive with respect to P

4. A thin conducting rod OA of length ℓ is rotated about end O with constant angular frequency ω . The magnetic field in the quadrants are $B_1 = 0$; $B_2 = B_0$; $B_3 = 2B_0$; $B_4 = 4B_0$. B_2 and B_4 are into the plane of the paper whereas B₃ is out of the plane. The average emf induced in one cycle is:

$$(A)\frac{13}{16}\omega B_0\ell^2 \qquad \qquad (B)\,\frac{3}{8}\omega B_0\ell^2$$

(B)
$$\frac{3}{8}\omega B_0 \ell^2$$

(C)
$$\frac{1}{6}\omega B_0 \ell^2$$

(D)
$$\frac{3}{4}\omega B_0 \ell^2$$

- 5. A point charge is moving in clockwise direction in a circle with constant speed. Consider the magnetic field produced by the charge at a point P (not centre of the circle) on the axis of the circle.
 - (A) it is constant in magnitude only
 - (B) it is constant in direction only
 - (C) it is constant in direction and magnitude both
 - (D) it is not constant in magnitude and direction both
- **6.** The magnetic field inside a solid conducting long wire at distance r from its axis is given as $B = B_0 r^3$ where B₀ is constant. Which of the following relations correctly represents current enclosed in the loop of radius r shown in the figure:

$$(B) \; \frac{\pi B_0 r^4}{2\mu_0}$$

$$(C) \; \frac{2\pi B_0 r^2}{\mu_0}$$

$$(D) \; \frac{2\pi B_0 r^4}{\mu_0}$$

7. A wire segment is bent into the shape of an Archimedes spiral (see figure).

The equation that describes the curve in the range $0 \le \theta \le \pi$ is

$$r(\theta) = a + \frac{b}{\pi}\theta$$
, for $0 \le \theta \le \pi$

where θ is the angle from x-axis in radians. Point P is at the origin. I is the current. Magnetic field at point P is

(A)
$$\frac{\mu_0 Ib}{2a}$$

(B)
$$\frac{\mu_0 I}{2\pi} \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$$
 (C) $\frac{\mu_0 I}{4} \left(\frac{1}{a} - \frac{1}{b} \right)$ (D) $\frac{\mu_0 I}{4b} \ln \left(1 + \frac{b}{a} \right)$

$$(C) \; \frac{\mu_0 I}{4} \left(\frac{1}{a} - \frac{1}{b} \right)$$

(D)
$$\frac{\mu_0 I}{4b} ln \left(1 + \frac{b}{a}\right)$$

8. Consider two identical circular loops of same radius, with the second (right side) coil rotated slightly clockwise relative to the first when looked from above as shown in figure (a). A large current is suddenly injected into the left side loop. What happen to the right side loop?

Top view

figure (a)

figure (b)

- (A) Force to the left, torque rotates clockwise (in top view)
- (B) Force to the right, torque rotates clockwise (in top view)
- (C) Force to the right, torque rotates counterclockwise (in top view)
- (D) Can't tell without knowing which direction current injected into left loop

Multiple Correct Answer Type

1 Q. [4 M (-1)]

9. A wire frame is in the shape of a quadrant of a circle of radius a, having resistance R and is free to rotate about O about axis perpendicular to plane of paper. Above line PQ a uniform magnetic field exist having magnitude B and direction out of plane for region I and inside plane for region II. If frame rotates with constant ω. Mark the **CORRECT** options:-

- (A) As frame goes from region I to region II, the thermal energy dissipated is $\frac{B^2\omega\pi a^4}{2R}$
- (B) As frame goes from region I to region II, the thermal energy dissipated is $\frac{B^2\omega\pi a^4}{4R}$
- (C) Total thermal energy dissipated in one cycle is $\frac{3B^2\omega\pi a^4}{8R}$
- (D) Average power is $\frac{3B^2\omega^2a^4}{8R}$

Linked Comprehension Type

 $(1 \text{ Para} \times 2Q.) [3 \text{ M} (-1)]$

(Single Correct Answer Type)

Paragraph for Questions 10 and 11

A non conducting hollow hemisphere of radius R is rotated with constant angular velocity ω about a fixed vertical axis as shown in the figure. The surface charge density on the sphere is varying as $\sigma = \sigma_0 \cos \phi$, ϕ being measured with the vertical axis.

- **10.** The magnetic induction at the centre C is
 - $(A)\left(\frac{\mu_0\sigma_0\omega R}{8}\right)$

 $(B)\left(\frac{\mu_0\sigma_0\omega R}{4}\right)$

 $(C)\left(\frac{3\mu_0\sigma_0\omega R}{8}\right)$

 $(D)\left(\frac{3\mu_0\sigma_0\omega R}{4}\right)$

11. If a small conducting ring of radius a is held co-axially at the centre C, and the hemisphere starts rotating with the constant angular acceleration α , then find the current flowing in the ring. Given that the resistance of the ring is r.

$$(A) \; \frac{\mu_0 \sigma_0 \pi a^2 R \alpha}{4r}$$

(B)
$$\frac{3\mu_0\sigma_0\pi a^2R\alpha}{4r}$$
(D)
$$\frac{\mu_0\sigma_0\pi a^2R\alpha}{8r}$$

$$(C) \; \frac{3\mu_0\sigma_0\pi a^2R\alpha}{8r}$$

$$(D) \frac{\mu_0 \sigma_0 \pi a^2 R \alpha}{8r}$$

SECTION-II

Numerical Answer Type Question (upto second decimal place)

1 Q. [3(0)]

In 1897, J.J. Thomson measured the charge-to-mass ratio (e/m) of an electron by using a device similar 1. to that illustrated in figure. Electrons from the heated filament A are accelerated by a potential difference ΔV through a small opening O. The electrons pass through a region where perpendicular electric and magnetic fields can be applied; these electrons eventually collide with a fluorescent screen kept just after the deflecting plates, where they are observed. Thomson measured the vertical deflection 5 cm at the screen that a certain known electric field 1.6×10^4 N/C produced, and then he applied a magnetic field of strength 10⁻⁴ T that returned the beam to its undeflected position. If 1 m is the length of the deflecting plates, he calculated the charge to mass ratio as $\alpha \times 10^9$ (in S.I. units). Fill the value of α in OMR sheet.

SECTION-III

Numerical Grid Type (Ranging from 0 to 9)

6 Q. [4 M (0)]

Find the magnetic field due to current i flowing in an elliptical loop at it's focus. The equation of ellipse 1. (in polar coordinates as shown) is $\frac{\ell}{r} = (1 + e \cos \theta)$. Here e is eccentricity which is a constant. Take $\ell = 50$ cm, e = 0.8, i = 2A, if your answer is $n\pi \times 10^{-7}$ T, fill n in OMR sheet.

2. A small body of mass m, having a positive charge q begins to slide from the top of a smooth fixed half-cylinder of radius R = 10 m. At what height (in m), measured from the base of the half-cylinder, the body detaches itself from cylinder? Movement occurs in a uniform magnetic field B directed perpendicular

to the plane of the drawing and the observer. Take $B = \frac{m}{2q} \sqrt{\frac{g}{R}}$.

3. A very long straight conductor has a circular cross-section of radius R and carries a current density J. Inside the conductor there is a cylindrical hole of radius a whose axis is parallel to the axis of the conductor and a distance b from it. Let the z-axis be the axis of the conductor, and let the axis of the hole be at x = b. Find the x component of magnetic field on the y-axis at y = 2R. If your answer is

$$B_{_X} = \, \mu_0 JR \bigg(\frac{1}{A} - \frac{a^2}{BR^2 + b^2} \bigg) \, \, \text{fill value of} \, |A| + |B|. \label{eq:BX}$$

4. A non conducting rod of length 2m is hinged at one end and a charge of $\frac{1}{10}$ C is distributed uniformly over it. At t = 0, it is released from the position shown. There exist a uniform magnetic field of $\sqrt{15}$ T inside the plane of motion of rod. If mass of rod is 100 g, then find the value of hinge force (in N) when rod is rotated by $\frac{\pi}{2}$ due to gravity.

released at
$$t = 0$$
 \bigotimes

B

5. A neutral atom of atomic mass number 100 which is stationary at the origin in gravity free space emits an α-particle (A) in z-direction. The product ion is P. A uniform magnetic field exists in the x-direction. Disregard the electro magnetic interaction between A and P. If the angle of rotation of A

after which A and P will meet for the first time is $\frac{12n\pi}{25}$ radians, what is the value of n?

A particle has a charge of 4nC. When it moves with a velocity $v_1 = 3 \times 10^4$ m/s at 45° above y axis in yz plane, a uniform magnetic field exerts a force of F_1 along –ve x axis on it. When it moves with a velocity of $v_2 = 2 \times 10^4$ m/s along x axis, the same magnetic field exerts a force F_2 of 16×10^{-5} N along y axis. What is the magnitude of the magnetic field (in T)?

SECTION-IV

Matrix Match Type (4×5)

1 Q. [8 M (for each entry +2(0)]

1. In all the situations current in loop-I is i₁ and current in loop-II is i₂. Consider the infinite wire as the side of infinite large loop. Column-II describes the variation in current i₁ in different arrangements and column-I describes the various effects.

Column I

(A) Current is clockwise in loop-II.

Column-II

(P) Current i₁ is clockwise and decreasing at constant rate.

- (B) Current is anticlockwise in loop-II.
- (Q) Current i_1 is clockwise and

decreasing at constant rate.

- (C) Flux of current i₁ through loop-II is less than flux of current i₁ through loop-I
- (R) Current in infinite wire is i₁ and decreasing at constant rate.
 The wire is perpendicular to plane of loop.

- (D) Loop-II tends to reduce its area due to magnetic force applied by magnetic field of i₁
- (S) Loop-I having constant current in clockwise direction moving upward with retardation.Both loops are co-axial.

(T) Current in infinite wire is i₁ upward and decreasing at constant rate. The wire is parallel to the plane of loop.

CLASS TEST # 54			ANSWER KEY	
	S	ECTION-I		
Single Correct Answer Type			8 Q. [3 M (-1)]	
1. Ans. (B)	2. Ans. (C)	3. Ans. (B)	4. Ans. (B)	
5. Ans. (A)	6. Ans. (D)	7. Ans. (D)	8. Ans. (B)	
Multiple Correct Answer Type			1 Q. [4 M (-1)]	
9. Ans. (A, D)	• •			
Linked Comprehension Type (1 Para × 2Q			.) [3 M (-1)]	
(Single Correct	· -	,	, - , , -	
10. Ans. (A)	11. Ans. (D)			
	SI	ECTION-II		
Numerical Answer Type Question			1 Q. [3(0)]	
(upto second decimal place)			-	
1. Ans. 160	• /			
	SE	CCTION-III		
Numerical Grid Type (Ranging from 0 to 9)			6 Q. [4 M (0)]	
1. Ans. 8	2. Ans. 5	3. Ans. 8	4. Ans. 4	
5. Ans. 4	6. Ans. 2			
	SE	CCTION-IV		
Matrix Match T	ype (4×5)	1 Q. [8 M (fo	1 Q. [8 M (for each entry +2(0)]	
	PS (C) PQRST (D) QS	2 - \	•	