Electric Current and Basic Quantities

DPP - 01 CLASS - 12th

TOPIC - Electric Current and Basic Quantities

- Q.1 It is found that 10^{20} electrons, each having a charge of 1.6×10^{-19} C, pass from a point X towards another point Y in 0.1 s. What is the current and its direction?
- **Q.2** What is conventional current?
- Q.3 Define the term drift velocity of charge carriers in conductor and write its relationship with the current flowing through it.
- **Q.4** How does the drift velocity of electrons in a metallic conductor vary with increase in temperature?
- **Q.5** The potential difference across a given copper wire is increased. What happens to the drift velocity of the charge carriers?
- **Q.6** How many electrons pass through a lamp in 2 minutes, if the current is 300 mA? Given, charge on electron = 1.6×10^{-19} C.
- Q.7 Calculate the average drift velocity of conduction electrons in a copper wire of cross-section 10^{-7} m² carrying a current of 1 A. Assume that each copper atom contributes one conduction electron. Given that density of copper = 9×10^{3} kg m⁻³ and its atomic mass = 63.5.
- Q.8 The number density of electrons in copper is 8.5×10^{28} m⁻³. Find the current flowing through a copper wire of length 0.2m, area of cross-section 1 mm², when connected to a bettery of 3 V. Given that electron mobility = 4.5×10^{-6} m² V⁻¹ s⁻¹ and charge on electron = 1.6×10^{-19} C.
- Q.9 A current of 1.8 A flows through a wire of area of cross-section 0.5mm^2 . Find the current density in the wire. If the number density of electrons in the wire is $8.8 \times 10^{28} \text{ m}^{-3}$, find the drift velocity of electrons.

Electric Current and Basic Quantities

Q.10 When a potential difference of 1.5 V is applied across a wire of length 0.2 m and area of cross-section 0.3 mm², a current of 2.4 A flows through the wire. If the number density of free electrons in the wire is 8.4×10^{28} m⁻³, calculate the average relaxation time. Given that mass of electron = 9.1×10^{-31} kg and charge on electron = 1.6×10^{-19} C.

Electric Current and Basic Quantities

TOPIC - Electric Current and Basic Quantities

Sol.1 Here $q = n e = 10^{20} \times 1.6 \times 10^{-19} = 16 C$

t = 0.1 s

 $I = \frac{q}{t}$

0.1

The direction of conventional current is from the point Y to X.

- **Sol.2** The current that flows from positive pole to negative pole of a cell in the external circuit is called conventional current.
- **Sol.3** The drift velocity is defined as the average velocity with which free electrons in a conductor get drifted under the influence of an external electric field applied across the conductor.
- **Sol.4** The drift velocity of electrons in a metallic conductor decrease with increase in tempreture of the conductor.

For details, refer to note of section 1.11.

Sol.5 we know, $v_d = \frac{eE}{m}\tau$

If *l* is length of the copper wire and V, the potential difference across it, then

$$v_{\rm d} = \frac{e}{m} \left(\frac{V}{l} \right) \tau$$

Thus, $v_d \propto V$ i.e. if potential difference is increased, drift velocity of the electrons will increase.

Sol.6 Here, I = 300 mA = 300 m A = 300 × 10^{-3} A; e = 1.6×10^{-19} C;

t = 2 minutes = 120 s

The charge passing through lamp in 2 minutes,

$$q = I \times t = 300 \times 10^{-3} \times 120 C$$

Suppose that n electrons pass through lamp in 2 minutes. If e is charge on an electron, then

$$q = ne$$

or

$$n = \frac{q}{e} = \frac{300 \times 10^{-3} \times 120}{1.6 \times 10^{-19}} = 2.25 \times 10^{20}$$

Sol.7 Here $A = 10^{-7} \text{ m}^2$; I = 1 A

Now, 63.5 g of copper contains atoms equal to Avogadro number i.e. 6.02×10^{23}

Therefore, the number of atoms in 1 kg of copper

$$= \frac{6.02 \times 10^{23} \times 1,000}{63.5} \times 9 \times 10^{3} = 8.53 \times 10^{28}$$

As one copper atom contributes one conduction electron, the number density of electron in copper is equal to number of atoms in 1 m³ of copper i.e.

$$n = 8.53 \times 10^{28}$$

Hence, the drift velocity of electrons,

$$\upsilon_{d} = \frac{1}{\text{neA}}$$

$$= \frac{1}{8.53 \times 10^{28} \times 1.6 \times 10^{-19} \times 10^{-7}}$$

$$= 7.33 \times 10^{-4} \text{ m s}^{-1}$$

Sol.8 Here, V = 3 volt; l = 0.2; A = 1 mm² = 10^{-6} m²;

n =
$$8.5 \times 10^{28}$$
 m⁻³; $\mu = 4.5 \times 10^{-6}$ m² V⁻¹ s⁻¹

and
$$e = 1.6 \times 10^{-19} \, \text{C}$$

The electric field set up across the conductor,

$$E = \frac{V}{l} = \frac{3}{0.2} = 15 \text{ V m}^{-1}$$

Now, the current through the wire,

$$I = n A \mu E e$$

$$= 8.5 \times 10^{28} \times 10^{-6} \times 4.5 \times 10^{-6} \times 15 \ 1.6 \times 10^{-19}$$

$$= 0.92A$$

Sol.9 Here, I = 1.8; $A = 0.5 \text{ mm}^2 = 0.5 \times 10^6 \text{ m}^2$

And $n = 8.8 \times 10^{28} \text{ m}^{-3}$

Now, the current density,

$$j = \frac{1}{A} = \frac{1.8}{0.5 \times 10^{-6}} = 3.6 \times 10^{6} \,\text{A}\,\text{m}^{-2}$$

Also, $j = n \upsilon d e$

$$\sigma_{d} = \frac{1}{ne} = \frac{3.6 \times 10^{6}}{8.8 \times 10^{28} \times 1.6 \times 10^{-19}}$$

$$= 2.56 \times 10^{-4} \text{ m s}^{-1}$$

Sol.10 Here, V = 1.5 V; $n = 8.4 \times 10^{28} \text{ m}^{-3}$; l = 0.2 m;

$$A = 0.3 \text{ mm}^2 = 0.3 \times 10^{-6} \text{ m}^2$$
, $I = 2.4 \text{ A}$;

$$m = 9.1 \times 10^{-31} \text{ kg}$$
 and $e = 1.6 \times 10^{-19} \text{ C}$

The electric field set up across the conductor,

$$E = \frac{V}{l} = \frac{1.5}{0.2} = 7.5 V \, \text{m}^{-1}$$

The current density in the wire,

$$j = \frac{1}{A} = \frac{2.4}{0.3 \times 10^{-6}} = 8 \times 10^{6} \text{ A m}^{-2}$$

Now,
$$j = \frac{ne^2\tau}{m}E$$

Therefore, the average relaxation time,

$$\tau = \frac{mj}{ne^2 E} = \frac{9.1 \times 10^{-31} \times 8 \times 10^6}{8.4 \times 10^{28} \times 1.6 \times 10^{-19}} \times 7.5$$

$$=4.51 \times 10^{-16} \text{ s}$$