

Semiconductor & Digital Electronics

Properties	Conductor	Semiconductor	Insulator
Resistivity	10-2 – 10-8 Ωm	$10^{-5} - 10^6 \Omega m$	$10^{11} - 10^{19} \ \Omega m$
Conductivity	10² – 10 ⁸ mho/m	10 ⁻⁶ – 10 ⁵ mho/m	10 ⁻¹⁹ – 10 ⁻¹¹ mho/m
Temp. Cœfficient of resistance (α)	Positive	Negative	Negative
Current	Due to free electrons	Due to electrons and holes	No current
Energy band diagram	Electron Energy Conduction Band No deab Annual Country Conductor	Conduction Band Forbidden Gap E _g ≤ 3eV Valence Band Semi conductor	Conduction Band Eq > 3eV Forbidden Gap Valence Band Insulator
Forbidden energy gap	$\cong 0 eV$	≤ 3eV	> 3eV
Example	Pt, Al, Cu, Ag	Ge, Si, GaAs, GaF ₂	Wood, plastic, Diamond, Mica

• Number of electrons reaching from valence band to conduction band : $n = AT^{3/2}e^{-\frac{\Delta Eg}{2kT}}$

CLASSIFICATION OF SEMICONDUCTORS :

• **MASS-ACTION LAW** : $n_i^2 = n_e \times n_h$

D For N-type semiconductor $n_e \simeq N_D$

 $\square \quad \text{For P-type semiconductor} \qquad n_{h} \simeq N_{A}$

CONDUCTION IN SEMICONDUCTOR	
CONDUCTION IN SLUICONDUCTOR	

Intrinsic semiconductor	P – type	N - type
$n_e = n_h$	$n_{h} >> n_{e}$	$n_e >> n_h$
$J = ne [v_e + v_h]$ (Current density)	$J \;\cong e \; n_h^{} v_h^{}$	$J \; \cong e \; n_{_{e}} v_{_{e}}$
$\sigma = \frac{1}{\rho} = en \left[\mu_e + \mu_h\right]$ (Conductivity)	$\sigma = \frac{1}{\rho} \cong e n_h \mu_h$	$\sigma = \frac{1}{\rho} \cong e n_e \mu_e$

Intrinsic Semiconductor	N-type (Pentavalent impurity)	P-type (Trivalent impurity)	
CB x VB o o	CB * * * * donor impurity level	CB acceptor impurity level	
• •	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Current due to electron and hole	Mainly due to electrons	Mainly due to holes	
$n_e = n_h = n_i$	$n_{h} << n_{e} (N_{D} \approx n_{e})$	$n_h >> n_e (N_A \approx n_h)$	
$I = I_e + I_h$	$I \approx I_e$	$I \approx I_h$	
Entirely neutral	Entirely neutral	Entirely neutral	
Quantity of electrons and holes are equal	Majority Electrons Minority Holes	Majority Holes Minority - Electrons	

P-N JUNCTION (At equilibrium condition)

If there is no biasing then diffusion current = drift current. So total current is zero

In junction N side is at high potential relative to the P side. This potential difference tends to prevent the movement of electron from the N region into the P region. This potential difference called a **barrier potential**.

COMPARISON BETWEEN FORWARD BIAS AND REVERSE BIAS

BREAKDOWN ARE OF TWO TYPES				
Zener Break down	Avalanche Break down			
Where covalent bonds of depletion layer, itself	Here covalent bonds of depletion layers are broken			
break, due to high electric field of very high	by collision of "Minorities" which aquire high kinetic			
Reverse bias voltage.	energy from high electric field of very-very high reverse bias voltage.			
This phenomena take place in	This phenomena takes place in			
(i) P – N junction having "High doping"	(i) P – N junction having "Low doping"			
(ii) P – N junction having thin depletion layer	(ii) $P - N$ junction having thick depletion layer			
Here P – N junction does not damage permanently	Here P – N junction damages permanentaly			
"In D.C voltage stabilizer zener phenomena is used".	due to abruptly increment of minorities			
	during repeatative collisions.			

APPLICATION OF DIODE

LED

- **Zener diode** : It is highly doped p-n junction diode used as a voltage regulator.
- **Photo diode** : A p-n junction diode use to detect light signals operated in reverse bias.
 - : A p-n junction device that emits optical radiation under forward bias conditions
- **Solar cell** : Generates emf of its own due to the effect of sun radiations.

COMPARATIVE STUDY OF TRANSISTOR CONFIGURATIONS

1. Common	Base	e (CB))

2. Common Emitter (CE) 3. Common Collector (CC)

	СВ	CE	СС	
	$E \rightarrow CB \rightarrow C$ B B B B B B B B B B B B B B B B B B B	$B \rightarrow CE \rightarrow CE \rightarrow CE \rightarrow E$	$B \rightarrow CC \rightarrow E$ $C \rightarrow C$ $B \rightarrow I_{B} \rightarrow I_{C} \rightarrow C$	
Input Resistance	Low (100 Ω)	High (750 Ω)	Very High $\cong 750 \ k\Omega$	
Output resistance	Very High	High	Low	
	$(A_1 \text{ or } \alpha)$	$(A_1 \text{ or } \beta)$	$(A_{I} \text{ or } \gamma)$	
Current Gain	$\alpha = \frac{I_{\rm C}}{I_{\rm E}} < 1$	$\beta = \frac{I_{\rm C}}{I_{\rm B}} > 1$	$\gamma = \frac{I_{\rm E}}{I_{\rm B}} > 1$	
Voltage Gain	$A_{\rm V} = \frac{V_{\rm o}}{V_{\rm i}} = \frac{I_{\rm C}R_{\rm L}}{I_{\rm E}R_{\rm i}}$	$A_{\rm V} = \frac{V_{\rm o}}{V_{\rm i}} = \frac{I_{\rm C}R_{\rm L}}{I_{\rm B}R_{\rm i}}$	$A_{v} = \frac{V_{o}}{V_{i}} = \frac{I_{E}R_{L}}{I_{B}R_{i}}$	
vonage Gam	$A_{v} = \alpha \frac{R_{L}}{R_{i}} \cong 150$	$A_v = \beta \frac{R_L}{R_i} \cong 500$	$A_{\rm v} = \gamma \frac{R_{\rm L}}{R_{\rm i}} < 1$	
Power Gain	$A_{\rm p} = \frac{P_{\rm o}}{P_{\rm i}} = \alpha^2 \frac{R_{\rm L}}{R_{\rm i}}$	$A_{\rm p} = \frac{P_{\rm o}}{P_{\rm i}} = \beta^2 \frac{R_{\rm L}}{R_{\rm i}}$	$A_{\rm p} = \frac{P_{\rm o}}{P_{\rm i}} = \gamma^2 \frac{R_{\rm L}}{R_{\rm i}}$	
Phase difference (between output and input)	same phase	opposite phase	same phase	
Application	For High Frequency Amplifier	For Audible frequency Amplifier	For Impedance Matching	

SUMMARY OF LOGIC GATES

Names	Symbol	Boolean Expression	Truth table	Electrical analogue	Circuit diagram (Practical Realisation)
OR	A B	Y = A + B	A B Y 0 0 0 0 1 1 1 0 1 1 1 1		
AND	A B	Y = A. B	A B Y 0 0 0 0 1 0 1 0 0 1 1 1		
NOT or Inverter		$Y = \overline{A}$	A Y 0 1 1 0		
NOR (OR +NOT)	A B	$Y = \overline{A + B}$	A B Y 0 0 1 0 1 0 1 0 0 1 1 0		
NAND (AND+NOT)	A B	$Y = \overline{A.B}$	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	S_B_	
XOR (Exclusive OR)	$A \longrightarrow Y$ B	$Y = \underset{\text{or}}{A} \oplus B$ $Y = \overline{A}.B + A\overline{B}$	A B Y 0 0 0 0 1 1 1 0 1 1 1 0	$\frac{\mathbf{DE}\mathbf{MO}}{\overline{\mathbf{A}}+\mathbf{B}}$	RGAN'S THEOREM = $\overline{A} \cdot \overline{B}$, $\overline{A} \cdot \overline{B} = \overline{A} + \overline{B}$
XNOR (Exclusive NOR)		$Y = A \odot B$ or $Y = A \cdot B + \overline{A} \cdot \overline{B}$ $Y = \overline{A \oplus B}$	A B Y 0 0 1 0 1 0 1 0 0 1 1 1	A + 0 = A $A + 1 = 1$ $A + A = A$	A. $0 = 0$ $A + \overline{A} = 1$ A. $1 = A$ $A \cdot \overline{A} = 0$ A. $A = A$ $\overline{\overline{A}} \cdot A = A$