DPP -	Daily	Practice	Problems	
			Dette -	

Name :	Date :
Start Time :	End Time :
CHEMI	STRY (27)
SYLLABUS : Hydroca	arbons-3-(Alkynes)

Max. Marks: 120

Time : 60 min.

GENERAL INSTRUCTIONS

- The Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.
- You have to evaluate your Response Grids yourself with the help of solution booklet.
- Each correct answer will get you 4 marks and 1 mark shall be deduced for each incorrect answer. No mark will be given/ deducted if no bubble is filled. Keep a timer in front of you and stop immediately at the end of 60 min.
- The sheet follows a particular syllabus. Do not atlempt the sheet before you have completed your preparation for that syllabus. Refer syllabus sheet in the starting of the book for the syllabus of all the DPP sheets.
- After completing the sheet check your answers with the solution booklet and complete the Result Grid. Finally spend time to analyse your performance and revise the areas which emerge out as weak in your evaluation.

DIRECTIONS (Q.1-Q.21) : There are 21 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE choice is correct.

Q.1 The product formed by the addition of HBr to propyne in the presence of H_2O_2 is –

- (a) $CH_3CH_2CH -Br$ (b) $CH_2 CH_2 CH_2$ Br Br Br Br(c) $CH_3 - CH - Br$ (d) All of these CH_3Br
- Q.2 On passing vinyl acetylene into conc. HCl in the presence of cuprous and ammonium chlorides, the following is produced-
 - (a) Neoprene (b) Isoprene
 - (c) Chloroprene (d) None of these

- **Q.3** Chloroform is heated with Ag powder in laboratory what will be the product ?
 - (a) Acctylene (b) Ag_2O
 - (c) CH_2Cl_2 (d) CH_4
- Q.4 What happens when 2- butyne reacts with H₂ in presence of LiAlH₄?
 - (a) $CH_3 C H$ H - C - H(b) $CH_3 - C - H$ $H - C - CH_3$ (c) $CH_3 - CH_2 - CH_2 - CH_3$ (d) $CH_2 = CH$ $CH = CH_2$

 Response Grid
 1.
 abcd
 2.
 abcd
 3.
 abcd
 4.
 abcd

- Space for Rough Work -

EBD_7157

106	——————————————————————————————————————
Q.5 What happens when 2- buty nercacts with Na+ Liq. NH_3 ?	СН
(a) $CH_3 - C - H$ (b) $CH_3 - C - H$	Q.12 reacts with acetic acid in presence of Hg^{2+} to give : CH
$CH_3 - C - H$ $H - C - CH_3$	(a) CH_2 (b) $CH(CH_2COO)$.
(c) $CH_3 - CH_2 - CH_2 - CH_3$ (d) $CH_2 = CH_1$	
$CH = CH_2$	$(a) \qquad (b) \qquad (c) $
of Nickle boride or Lindlar's catalyst (Pd/CaCO ₃ -PbO) ?	(c) CH_3 (d) none of the above
(a) $CH_3 - C - H$ (b) $CH_3 - C - H$	CH ₂ (CH ₃ COO)
$CH_3 - C - H$ $H - C - CH_3$	Q.13 What is the chief product of reaction between β-butylene chloride and ale. KOH/NaNH ₂ ?
(c) $CH_3 - CH_2 - CH_2 - CH_3(d)$ $CH_2 = CH$	(a) 1,2-butadiene (b) 1,3-butadiene
CH=CH ₂	Q.14 Acetylene magnesium chloride reacts with ethyl bromide,
Q.7 What will be the product of chlorine water and acetylene?	what will be the product ?
(a) Dichloropropanol (b) Dichloroethanal	(a) 1-butyne (b) 2-butyne
(c) Propanol (d) 2-Chloroethanol	O.15 When sodium fumarate is electrolysed which alkyne is
Q.8 $CH_3 - C \equiv CH + dil. H_2SO_4 + Hg^{+2} \rightarrow X$, what is the 'X'?	formed at anode?
(a) Acetal	(a) Propyne (b) Butyne (c) Ethyne (d) None
(b) Acetone	Q.16 Order of acidity of H_2O , NH_3 and acetylene is-
(c) Bulanone	(a) $H_3 > CH \equiv CH > H_2O$ (b) $H_2O > NH_2 > HC \equiv CH$
(a) Propyname hydrogen surprise 0.9 Product formed by the oxidation of acetylene in the	(c) $H_2O > HC \equiv CH > NH_3$
presence of alkaline $KMnO_4$ is	(d) $NH_3 > H_2O > HC \equiv CH$
(a) Glyoxal (b) Oxyrane	Q.17 Westrosol has the following formula
(c) $CO_2 + H_2O$ (d) Oxalic acid	(a) $CHCl_2$ (b) $CHCl_2$
Q.10 When acetylene and sulphur react in the presence of hot	CHCl ₂ CH ₂ Cl
iron pyrite, product formed is	
(a) Pyrrole (b) Benzene	(c) CHCI (d) CHCI
(c) Ioluene (d) Ihiophene	CHCl CCl ₂
two moles of HCHO in the presence of Cu is -	O 18 CH = CCOOH H_2O . Droduct in
(a) $HOCH_2 - C = C - CH_2OH$	$\mathbf{Q}_{\mathbf{H}} \stackrel{\text{\tiny CO}}{\longrightarrow} \operatorname{Product} \operatorname{Is}$
(b) $H_2C=CH-C=C-CH_2OH$	(a) $CH_2 = C - COOH$ (b) $CH_3 - C - COOH$
(c) $HC = C - CH_2OH$	ÓН Ö
(d) None of these	(c) OHC-CH ₂ -COOH (d) OH-CH=CH-COOH
5. abcd 6. abcd	7. abcd 8. abcd 9. abcd
Response 10. (a) (b) (c) (d) 11. (a) (b) (c) (d)	12.abcd 13.abcd 14.abcd
GRID 15.abcd 16.abcd	17.abcd 18.abcd

_____ Space for Rough Work _____

DPP/ C (27)

- Q.19 When acetylene is passed into methanol at 160-200°C in the presence of a small amount of potassium methoxide under pressure, the following is formed-
 - (a) Polyvinyl alcohol (b) Divinyl ether
 - (c) Dimethyl ether (d) Methyl vinyl ether
- Q.20 Acetylene and ethylene react with alk KMnO₄ to give respectively
 - (a) Oxalicacid and formic acid
 - (b) Acetic acid and ethylene glycol
 - (c) Ethyl alcohol and ethylene glycol
 - (d) None
- Q.21 Which is the most suitable reagent among the following to distinguish compound (3) from the rest of the compounds?
 - (1) $CH_3C \equiv CCH_3$ (2) $CH_3CH_2-CH_2CH_3$ (3) $CH_3CH_2C \equiv CH$ (4) $CH_3CH = CH_2$ (a) $Br_2 \text{ in } CCl_4$ (b) $Br_2 \text{ in } CH_3COOH$ (c) Alkaline KMnO₄ (d) Tollen's reagent

DIRECTIONS (Q.22-Q.24): In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes:

Codes:

(a)

(c)

- 1, 2 and 3 are correct (b) 1 and 2 are correct
- 2 and 4 are correct (d) 1 and 3 are correct
- Q.22 The triply bonded carbon atoms -
 - (1) Arc sp hybridised
 - (2) Are sp^3 hybridised
 - (3) Have two pi bonds and one sigma bonds
 - (4) Have three sigma bonds and one pi bond

Q.23 Acetylene can be prepared from -

- (1) Potassium funarate (2) Calcium carbide
- (3) Ethylene bromide (4) Aluminium carbide

Q.24 ln the given reaction

$$CH = CH + H_2O \xrightarrow{H_2SO_4 / HgSO_4} A \xrightarrow{[O]} B$$

Which are correct ?
(1) A = Acetaldehyde (2) B = acetic acid
(3) A = Acetone (4) B = ethyl alcohol

DIRECTIONS (Q.25-Q.27): Read the passage given below and answer the questions that follows :

Acetylene and other terminal alkynes (1-alkynes) are weakly acidic in character. The acetylenic hydrogen of such alkynes can be replaced by copper (1) and silver (I) ions. They react with ammonical solutions of cuprous chloride and silver nitrate to form the corresponding copper and silver alkynides.

$$CH \equiv CH + 2([Cu(NH_3)_2]Cl \rightarrow Cu - C \equiv C - Cu + Diceoper activitie (Red ppt))$$

 $2NH_4Cl + 2NH_3$

$$CH \equiv CH + 2[Ag(NH_3)_2]NO_3 \rightarrow Ag - C \equiv C - Ag + Disilver acetylide (white ppt)$$

2NH₄NO₃

This reaction can be used to distinguish between 2-alkynes and 1-alkynes. 1-Alkynes will give this test while 2-alkynes, will not give this test.

Q.25 Which of the following acid is dibasic ?

- (a) $CH_3 CH = CH CH_3$ (b) $(CH_3)_2 C = CH_2$
- (c) $CH_3 C \equiv CH$ (d) $CH \equiv CH$
- Q.26 Acetylenic hydrocarbons are acidic because-
 - (a) Sigma electron density of C H bond in acetylene is nearer a carbon which has 50% s-character
 - (b) Acctylene has only one hydrogen atom at each carbon atom
 - (c) Acetylene contains least number of hydrogen atoms among the possible acetylenic hydrocarbons
 - (d) Acetylene belongs to the class of alk ynes with formula $C_n H_{2n-2}$

Response Grid	19.@b©d 24.@b©d	20.@bCd 25.@bCd	21. abcd 26. abcd	22. abcd	23. (a)(b)(c)(d)
------------------	--------------------	--------------------	----------------------	----------	------------------

- Space for Rough Work -

107

EBD_7157

DPP/C(27)

108

- Q.27 Acctylene gives -
 - (a) White ppt with $AgNO_3$ and red ppt with Cu_2Cl_2
 - (b) White ppt with Cu_2Cl_2 and red ppt with AgNO₃
 - (c) White ppt with both
 - (d) Red ppt with both

DIRECTIONS (Q. 28-Q.30): Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.

- (c) Statement-l is False, Statement-2 is True.
- (d) Statement-I is True, Statement-2 is False.
- 28. Statement 1 : Acctylene racts with somamide to evolve H₂ gas.

Statement-2: Acctylene is a weaker acid than ammonia.

29. Statement-1 : The reaction rates of alkynes with electrophiles are slower than those of alkenes.

Statement-2: The steric and electronic factors play their part in diminishing the reactivity of alkynes towards electrophiles.

30. Statement-1 : I-Alkynes are considered as weak acids.

Statement-1: Hydrogen atom attached to the triply bonded carbon atom can be easily removed by strong base.

 Response Grid
 27.abcd
 28.abcd
 29.abcd
 30.abcd

DAILY PRACTICE PROBLEM SHEET 27 - CHEMISTRY				
Total Questions	30	Total Marks	120	
Attempted		Correct		
Incorrect		Net Score		
Cut-off Score	32	Qualifying Score	56	
Success Gap = Net Score – Qualifying Score				
Net Score = (Correct × 4) – (Incorrect × 1)				

Space for Rough Work

DPP/ C (27)

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

(

(1)

(27)

CCH₃

(1) (c) The product formed by the addition of HBr to propyne in the presence of H_2O_2 is $CH_3CH(Br)CH_2Br$, contrary to Markownikoff's rule.

$$CH_3 - C \equiv CH \xrightarrow{HBr} CH_3 - CH = CHBr$$

$$\xrightarrow{\text{HBr}} \text{CH}_3 - \underset{|}{\text{CHBr}} \text{CH}_2\text{Br}$$

(2) (c) On passing vinyl acetylene into cone. HCl in the presence of cuprous and ammounium chlorides, chloroprene is formed and the reaction proceeds by 1, 4-addition followed by rearrangement under the influence of the catalyst.

$$CH_2 = CH - C = CH + HCl \rightarrow [CH_2Cl - CH = C = CH_2]$$
$$\rightarrow CH_2 = C - CH = CH_2$$
$$|_Cl$$

Chloroptene (2-chlorobuta-1, 3-diene)

(3) (a)
$$HCCl_3 + 6Ag + Cl_3HC \xrightarrow{-6AgCl} HC \equiv CH$$

acetylene

- (4) (b) 2-Butyne mainly forms trans-2-butene on hydrogenation with $LiAlH_4$.
- (5) (b) Reaction is called as 'Birch reduction'.
- (6) (a) 2-Butyne forms cis-2-butene with Lindlar's catalyst.
- (7) (b) Chlorine water $(HO^{\Theta} Cl^{\oplus})$ reacts with acetylene and gives dichloroethanal

$$\begin{array}{c} H-C & \Theta & \oplus & | \\ \parallel H-C & H-C & H-C \\ H-C & \parallel & H-C \\ H-C & H-C & | \\ H-C & H-C \\ C \\ \end{array}$$

$$\xrightarrow[HO-C]{\Theta \oplus HO-C1} \xrightarrow[H-C-OH]{} H-C=O \\ \xrightarrow[HO-C1]{} H-C-OH \xrightarrow[-H_2O]{} H-C-C1 \\ H-C-C1 \\ C1 \\ C1 \\ H-C-C1 \\$$

- (8) (b) In dil H₂SO₄ alkyne is hydrolysed to form ketone, here acetone will be the main product.
- (9) (d) This is the exceptional case of oxidation in which triple bonded carbon is not separated. The product is oxalic acid.

(10) (d) In the presence of hot iron pyrite, thiophene is formed as a product, when NH₃ is taken in place of sulphur, pyrrole is formed.

11) (a)
$$CH_2 = O + H - C \equiv C - H + CH_2 = O \xrightarrow{Cu} HOCH_2 - C \equiv C - CH_2OH$$

2) (a)
$$\begin{array}{c} CH \\ CH \\ CH \\ CH \\ CH \\ \end{array} + CH_3COOH \xrightarrow{Hg^{2+}} \\ CH_2 \\ \parallel \\ CH(CH_3COO) \\ \end{array} \xrightarrow{CH_3COOH \\ Hg^{2+}} \begin{array}{c} CH_3 \\ | \\ CH(COOCH_3)_2 \end{array}$$

(13) (c) 2-Butyne is the chief product according to Saytzeff's rule.

$$CH_{3}CH(CI)CH(CI)CH_{3} \longrightarrow CH_{3}C \equiv$$
$$HC = C - MgCI + C + Br \longrightarrow$$

(14) (a)
$$HC \equiv C - MgCl + C_2H_5Br \longrightarrow$$

 $HC \equiv C - C_2H_5 + Mg(Cl)Br$

- (15) (c) In Kolbe's synthesis, sodium or potassium salt of maleic acid or fumaric acid on electrolysis gives acetylene or ethyne at anode.
- (16) (c) The order of acidity of H_2O , NH_3 and acetylene depends upon the relative basicity of OH^- , NH_2^- and $HC \equiv C^-$. The decreasing nature of basic character is $NH_2^- > HC \equiv C^- > OH^-$, hence the decreasing order of acidity is $H_2O > HC \equiv CH > NH_3$.
- (17) (d) Acetylene adds up two molecules of chlorine to give tertachlorocthanc, known as westron industrially. This on dchydrochlorination with lime water gives trichloroethene, commerically called westrosol

$$\begin{array}{ccc} H - C \\ H - C \\ H - C \end{array} \xrightarrow{H - C - Cl} H \xrightarrow{H - C - Cl} & H \\ H - C - Cl \\ H - C - Cl \\ Cl \\ Cl \\ Westron \end{array} \xrightarrow{H - C - Cl} Cl - Cl \\ H - C - Cl \\ H - C - Cl \\ H - C \\ Cl \\ Westrosol \end{array}$$

(18) (c)
$$CH = C \rightarrow COOH \xrightarrow{H^{+} - OH^{-}}$$

 $CH = CH - COOH \xrightarrow{\bullet} OHC - CH_{2} - COOH$
 $OH(Enol form)$ (Keto form)

(d) When acctylene is passed into methanol at 160-200°C in the presence of a small amount (1-2%) of potassium methoxide and under pressure just high enough to prevent boiling, methyl vinyl ether is formed. The mechanism is believed to involve nucleophildic attack in the first step.

HC = CH + CH₃ O⁻
$$\rightarrow$$
 C⁻H = CHOCH₃
 $\xrightarrow{\text{CH}_3\text{OH}}$ CH₂ = CHO CH₃ + CH₃O⁻
Methyl vinyl ether

57

DPP/C [27]

(20) (a) Acctylene and ethylene react with alk. KMnO₄ to give oxalic acid and formic acid respectively.

$$\begin{array}{c} CH\\ \parallel \\ CH \end{array} + 4 [O] \xrightarrow{alk. KMn \bullet_4} \begin{array}{c} COOH\\ \mid\\ COOH \end{array}$$

acetylene

58

$$\begin{array}{c} CH_2 \\ \parallel \\ CH_2 \end{array} + 4[O] \xrightarrow{alk. \ KMnO_4} 2HCOOH \end{array}$$

ethylene formic acid

oxalic acid

- (21) (d) Terminal alkynes (\equiv C–H) give white precipitate with Tollen's reagent (ammoniacal AgNO₃)
- (22) (d) Each triply bonded carbon is *sp* hybridised & has 2π & 1σ bonds.
- (23) (a) Potassium fumarate on electrolysis, CaC₂ on hydrolysis and ethylene bromide on elimination give acetylene. Aluminium carbide on hydrolysis produces methane.

(24) (b)
$$CH \equiv CH \xrightarrow{H_2SO_4.H_8SO_4} CH_3CHO_A$$

 $\xrightarrow{[O]} CH_3COOH_B$

(25) (d) Acetylene contains two acidic hydrogen atoms.

(27) (a) AgC = CAg is white and CuC = CCu is red.

(28) (d)

- (29) (a) The low reactivity of alkynes towards electrophilic addition reactions is believed to be due to following two factors.
 - The bridged intermediate cation formed by the initial attack of electrophile on the triple bond is less stable because it is a highly strained system.
 - (2) In acetylenic carbon atoms, the π electrons are more tightly held by the carbon nuclei and hence they are less easily available for reaction with electrophiles.

Thus both the above factors, steric and electronic, play their part in diminishing the reactivity of alkynes towards electrophiles.

(30) (a)