The general form of a quadratic equation in x is, $ax^2 + bx + c = 0$, where a, b, c $\in \mathbb{R}$ & $a \neq 0$.

RESULTS:

1. The solution of the quadratic equation,

$$ax^2 + bx + c = 0$$
 is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The expression $b^2 - 4ac = D$ is called the discriminant of the quadratic equation.

2. If $\alpha \& \beta$ are the roots of the quadratic equation $ax^2 + bx + c = 0$, then;

(i)
$$\alpha + \beta = -b/a$$
 (ii) $\alpha \beta = c/a$

(iii)
$$\alpha - \beta = \sqrt{D} / a$$
.

3. NATURE OF ROOTS:

- (A) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, $c \in R$ & $a \neq 0$ then ;
 - (i) D > 0 ⇔ roots are real & distinct (unequal).
 - (ii) $D = 0 \Leftrightarrow$ roots are real & coincident (equal).
 - (iii) $D < 0 \Leftrightarrow$ roots are imaginary.
 - (iv) If p + i q is one root of a quadratic equation, then the other must be the conjugate p-iq & vice versa. $(p, q \in R$ & $i = \sqrt{-1}$).

- (B) Consider the quadratic equation $ax^2 + bx + c$ = 0 where a, b, c $\in Q$ & a \neq 0 then;
 - (i) If D > 0 & is a perfect square, then roots are rational & unequal.
 - (ii) If $\alpha = p + \sqrt{q}$ is one root in this case, (where p is rational & \sqrt{q} is a surd) then the other root must be the conjugate of it i.e. $\beta = p - \sqrt{q}$ & vice versa.
- 4. A quadratic equation whose roots are $\alpha \& \beta$ is $(x-\alpha)(x-\beta) = 0$ i.e. $x^2 - (\alpha+\beta)x + \alpha\beta = 0$ i.e. $x^2 - (\text{sum of roots})x$ + product of roots = 0.
- 5. Remember that a quadratic equation cannot have three different roots & if it has, it becomes an identity.
- 6. Consider the quadratic expression, $y = ax^2 + bx + c$, $a \neq 0$ & $a, b, c \in R$ then ;
 - (i) The graph between x, y is always a parabola
 . If a > 0 then the shape of the parabola is concave upwards & if a < 0 then the shape of the parabola is concave downwards.
 - (ii) $\forall x \in \mathbb{R}$, y > 0 only if a > 0 & $b^2 4ac < 0$ (figure 3).
 - (iii) $\forall x \in R, y < 0 \text{ only if } a < 0 \& b^2 4ac < 0 \text{ (figure 6)}.$

Carefully go through the 6 different shapes of the parabola given below.

7. SOLUTION OF **QUADRATIC INEQUALITIES:**

 $ax^2 + bx + c > 0$ (a $\neq 0$).

(i) If D > 0, then the equation $ax^2 + bx + c = 0$ has two different roots $x_1 < x_2$. Then $a > 0 \implies x \in (-\infty, x_1) \cup (x_2, \infty)$ $a < 0 \implies x \in (x_1, x_2)$

$$a < 0 \implies x \in (x_1, x_2)$$

(ii) If D = 0, then roots are equal, i.e. $x_1 \le x_2$. In that case

$$\begin{array}{rcl} a > 0 & \Rightarrow & x \in (-\infty, x_1) \cup (x_1, \infty) \\ & a < 0 & \Rightarrow & x \in \phi \end{array}$$

(iii) Inequalities of the form $\frac{P(x)}{O(x)} = 0$ can be quickly solved using the method of

intervals.

c occurs at x = -(b/2a) according as ;

$$a < 0 \text{ or } a > 0 . y \in \left[\frac{4 a c - b^2}{4 a}, \infty\right] \text{ if } a > 0 \& y$$
$$\in \left(-\infty, \frac{4 a c - b^2}{4 a}\right] \text{ if } a < 0.$$

9. COMMON ROOTS OF 2 QUADRATIC EQUATIONS [ONLY ONE COMMON ROOT :

Let α be the common root of $ax^2 + bx + c = 0$ & $a'x^2 + b'x + c' = 0$. Therefore

$$a \alpha^2 + b\alpha + c = 0$$
; $a'\alpha^2 + b'\alpha + c' = 0$. By

Cramer's Rule
$$\frac{\alpha^2}{bc'-b'c} = \frac{\alpha}{a'c-ac'} = \frac{1}{ab'-a'b}$$

Therefore, $\alpha = \frac{ca'-c'a}{a'c-b'c} = \frac{bc'-b'c}{a'c-b'c}$.

ab'-a'b a'c-ac' So the condition for a common root is (ca'-

 $c'a)^{2} = (ab' - a'b)(bc' - b'c).$

10. The condition that a quadratic function f(x, y) $= ax^{2} + 2 hxy + by^{2} + 2 gx + 2 fy + c$ may be resolved into two linear factors is that ; $abc + 2 fgh - af^2 - bg^2 - ch^2 = 0$

$$\mathbf{OR} \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = \mathbf{0}.$$

11. THEORY OF EQUATIONS :

If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the equation; $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0$ where a_0, a_1, \dots, a_n are all real & $a_0 \neq 0$ then,

$$\sum \alpha_{1} = -\frac{a_{1}}{a_{0}}, \ \sum \alpha_{1} \alpha_{2} = +\frac{a_{2}}{a_{0}}, \ \sum \alpha_{1} \alpha_{2} \alpha_{3} = -\frac{a_{3}}{a_{0}}, \dots, \alpha_{1} \alpha_{2} \alpha_{3} \dots \alpha_{n} = (-1)^{n} \frac{a_{n}}{a_{0}}$$

Note :

- (i) If α is a root of the equation f(x) = 0, then the polynomial f(x) is exactly divisible by $(x - \alpha)$ or $(x - \alpha)$ is a factor of f(x) and conversely.
- (ii) Every equation of nth degree $(n \ge 1)$ has exactly n roots & if the equation has more than n roots, it is an identity.
- (iii) If the coefficients of the equation f(x) = 0 are all real and $\alpha + i\beta$ is its root, then $\alpha - i\beta$ is also a root. i.e. imaginary roots occur in conjugate pairs.
- (iv) If the coefficients in the equation are all rational & $\alpha + \sqrt{\beta}$ is one of its roots, then $\alpha - \sqrt{\beta}$ is also a root where $\alpha, \beta \in Q \& \beta$ is not a perfect square.
- (v) If there be any two real numbers 'a' & 'b' such that f(a) & f(b) are of opposite signs, then f(x) = 0 must have atleast one real root between 'a' and 'b'.
- (vi) Every equation f(x) = 0 of degree odd has atleast one real root of a sign opposite to that of its last term.

12. LOCATION OF ROOTS:

Let $f(x) = ax^2 + bx + c$, where a > 0 & a, b, c ∈ R.

- (i) Conditions for both the roots of f(x) = 0 to be greater than a specified number 'd' are $b^2 - 4ac \ge 0$; f(d) > 0 & (-b/2a) > d.
- (ii) Conditions for both roots of f(x) = 0 to lie on either side of the number 'd' (in other words the number 'd' lies between the roots of f(x) = 0 is f(d) < 0.
- (iii) Conditions for exactly one root of f(x) = 0to lie in the interval (d, e) i.e. d < x < e are $b^2 - 4ac > 0 \& f(d) . f(e) < 0.$
- (iv) Conditions that both roots of f(x) = 0 to be

confined between the numbers p & q are $(p < q). \ b^2 - 4ac \ge 0; \ f(p) > 0; \ f(q) > 0 \ \& p < (-b/2a) < q.$

13. LOGARITHMIC INEQUALITIES

- (i) For a > 1 the inequality $0 < x < y \& \log_a x < \log_a y$ are equivalent.
- (ii) For $0 \le a \le 1$ the inequality $0 \le x \le y \& \log_a x \ge \log_a y$ are equivalent.
- (iii) If a > 1 then $\log_a x$
- (iv) If a > 1 then $\log_a x > p \implies x > a^p$
- (v) If 0 < a < 1 then $\log_a x a^p$
- (vi) If 0 < a < 1 then $\log_a x > p \implies 0 < x < a^p$

1. If the roots of the quadratic equation $x^2 + px + q =$ 1 0 are tan 30° and tan 15° respectively, then the value of 2 + q - p is

16.

17.

(A) 3 (B) 0 (D) 2 (C) 1

2.

The roots of the equation $(b-c) x^{2} + (c-a) x + (a-b) = 0$ are

(A)
$$\frac{c-a}{b-c}$$
,1
(B) $\frac{a-b}{b-c}$,1
(C) $\frac{b-c}{a-b}$,1
(D) $\frac{c-a}{a-b}$,1

- 3. (1 - p) = 0, then its roots are (A) 0, 1 (B) -1, 1 (C) 0, -1(D) - 1.2
- 4. If the roots of the equation $x^2 + 2ax + b = 0$ are real and distinct and they differ by at most 2m, then b lies in the interval (A) $(a^2 - m^2, a^2)$ (B) $[a^2 - m^2, a^2)$ (C) $(a^2, a^2 + m^2)$ (D) None of these
- The value of a for which the sum of the squares of 5. the roots of the equation $x^2 - (a - 2)x - a - 1 = 0$ assume the least value is (A) 2(B) 3

$(11)^{2}$	(\mathbf{D}) 5
(C) 0	(D) 1

- Let a > 0, b > 0 and c > 0. Then both the roots of 6. the equation $ax^2 + bx + c = 0$ (A) are real and negative (B) have negative real parts (C) are rational numbers
 - (D) have positive real parts
- 7. q = 0 and γ , δ are the roots of $x^2 + px - r = 0$, then $(\alpha - \gamma)$. $(\alpha - \delta)$ is equal to (A) q + r(B) q – r (D) - (p + q + r)(C) - (q + r)
- 8. Let a, b and c are real numbers such that 4a + 2b +c = 0 and ab > 0. Then the equation $ax^2 + bx + c =$ 0 has (B) imaginary roots (A) real roots (C) exactly one root (D) None of these
- 9. The expression $y = ax^2 + bx + c$ has always the same sign as of 'a' if (A) $4ac < b^2$ (B) $4ac > b^2$ (C) ac $< b^2$ (D) ac $> b^2$

10.	If $a, b \in R, a \neq 0$ bx + 1 = 0 has in (A) positive (C) zero	 and the quadratic equation ax²-haginary roots then a + b + 1 is (B) negative (D) depends on the sig
11.	If both roots of th 1) = p are distinct interval (A) $(2, \infty)$ (C) $(-\infty-2)$	the quadratic equation $(2 - x) (x + x \otimes positive)$, then p must lie in the (B) $(2, 9/4)$ (D) $(-\infty, \infty)$
12.	If the equation k ($(2x^2 + 1) + px + q)$ mon, then the val (A) 0 (C) 1	(6x2+3) + rx + 2x2 - 1 = 0 and 6k 4x2 - 2 = 0 have both roots com- lue of (2r - p) is (B) 1/2 (D) None of these
13.	If the quadratic $2x^2 + bx + 1 = 0$ value of the expression (A) 0 (C) -1	equations $3x^2 + ax + 1 = 0$ and) have a common root, then the ession $5ab - 2a^2 - 3b^2$ is (B) 1 (D) None of these
14.	The equations x^{3} px + r = 0 have to root of each equa respectivley, then (A) (-5, -7) (C) (-1, 1)	+ $5x^2 + px + q = 0$ and $x^3 + 7x^2 + 5x^2 + px + q = 0$ and $x^3 + 7x^2 + 5x^2 + 5$

15. If α , β , γ , δ are the roots of the equation $x^4 - Kx^3 +$ $Kx^2 + Lx + M = 0$, where K, L & M are real numbers, then the minimum value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ is (A) 0 (B) - 1(C) 1 (D) 2

- If $\frac{6x^2 5x 3}{x^2 2x + 6} \le 4$, then least and the highest values of $4x^2$ are (A) 0 & 81 (B) 9 & 81 (C) 36 & 81 (D) None of these
- Which of the following graph represents expression $f(x) = ax^2 + bx + c$ (a $\neq 0$) when a > 0, b < 0 & c < 0?

- 19. If α,β are the roots of the quadratic equation $x^2 2p(x-4) 15 = 0$, then the set of values of p for which one roots is less than 1 & the other root is greater than 2 is (A) $(7/3, \infty)$ (B) $(-\infty, 7/3)$ (C) $x \in \mathbb{R}$ (D) None of these
- 20. If α , β be the roots of $4x^2 16x + \lambda = 0$, where $\lambda \in \mathbb{R}$ such that $1 < \alpha < 2$ and $2 < \beta < 3$, then the number of integral solutions of λ is (A) 5 (B) 6
 - (C) 2 (D) 3

18.

- 21. Number of values 'p' for which the equation $(p^2 3p + 2) x^2 (p^2 5p + 4)x + p p^2 = 0$ possess more than two roots, is (A) 0 (B) 1 (C) 2 (D) None of these
- 22. If product of roots of the equation $mx^2 + 6x + (2m 1) = 0$ is 1, then m equals (A) - 1 (B) 1
 - (C) 1/3 (D) 1/3

23. If α , β are roots of the equation $2x^2 - 35x + 2 = 0$, then the value of $(2\alpha - 35)^3$. $(2\beta - 35)^3$ is equal to-(A) 1 (B) 8 (C) 64 (D) None of these

24. Let α , β , γ be the roots of (x - a)(x - b)(x - c) = d, $d \neq 0$ then the roots of the eduation $(x - \alpha)(x - \beta)$ $(x - \gamma) + d = 0$ are (A) a + 1, b + 1, c + 1 (B) a, b, c

(C)
$$1 - 1$$
, $b - 1$, $c - 1$ (D) $\frac{a}{b}, \frac{b}{c}, \frac{c}{a}$

- 25. Consider the equation $x^2 + 2x n = 0$, where $n \in N$ and $n \in [5, 100]$. Total number of different values of 'n' so that the given equation has integral roots, is (A) 4 (B) 6
 - (A) 4 (B) 6 (C) 8 (D) 3

26.

27.

30.

- If roots of the equation $ax^2 + 2 (a + b) x + (a + 2b + c) = 0$ are imaginary, then roots of the equation $ax^2 + 2bx + c = 0$ are -(A) rational (B) irrational
 - (C) equal (D) complex
- Roots of the equation $(a+b-c) x^2-2ax+(a-b+c)=0, (a,b,c \in Q)$ are (A) rational (B) irrational (C) complex (D) None of these If coefficients of the equation $ax^2 + bx + c = 0, a \neq 0$
- 28. If coefficients of the equation $ax^2 + bx + c = 0$, $a \neq 0$ are real and roots of the equation are non- real complex and a + c + b < 0, then (A) 4a + c > 2b (B) 4a + c < 2b(C) 4a + c = 2b (D) None of these
- 29. If one of the factors of $ax^2 + bx + c$ and $bx^2 + cx + a$ is common, then-(A) a = 0(B) $a^3 + b^3 + c^3 = 3$ abc (C) a = 0 or $a^3 + b^3 + c^3 = 3$ abc
 - (D) None of these

The condition for $a^2x^4 + bx^3 + cx^2 + dx + f^2$ may be perfect square is (A) $2a^2c = a^3f$ (B) $4a^2c - b^2 = 8a^3f$ (C) $4a^3c = 8a^3f$ (D) None of these

31. If y = -2x² - 6x + 9, then
(A) maximum value of y is -11 and it occurs at x = 2
(B) minimum value of y is -11 and it occurs at x = 2
(C) maximum value of y is 13.5 and it occurs at x = -1.5
(D) minimum value of y is 13.5 and it occurs at x = -1.5

32. Consider $y = \frac{2x}{1+x^2}$, where x is real, then the range of expression $y^2 + y - 2$ is (A) [-1, 1] (B) [0, 1] (C) [-9/4, 0] (D) [-9/4, 1]

33. The diagram shows the graph of $y = ax^2 + bx + c$. Then -

34. Let a, b, c be real, if $ax^2 + bx + c = 0$ has two real roots α and β , where $\alpha < -2$ and $\beta > 2$, then

(A)
$$4 + \frac{2b}{a} + \frac{c}{a} = 0$$
 (B) $4 - \frac{2b}{a} + \frac{c}{a} = 0$
(C) $4 + \frac{2b}{a} - \frac{c}{a} < 0$ (D) $4 - \frac{2b}{a} + \frac{c}{a} < 0$

35. If both roots of the quadratic equation $x^2 + x + p = 0$ exceed p, where $p \in R$, then p must lie in the interval (A) (∞ 1) (B) (∞ 2)

(A)
$$(-\infty, 1)$$
 (B) $(-\infty, -2)$
(C) $(-\infty, -2) \cup (0, 1/4)$ (D) $(-2, 1)$

36. If $a^2 + b^2 + c^2 = 1$, then ab + bc + ca lies in the interval

(A)
$$\left[\frac{1}{2}, 2\right]$$
 (B) $\left[-1, 2\right]$
(C) $\left[-\frac{1}{2}, 1\right]$ (D) $\left[-1, \frac{1}{2}\right]$

37. The quadratic equations $x^2 - 6x + a = 0$ and $x^2 - cx + 6 = 0$ have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is [AIEEE-2008] (A) 4 (B) 3

(A) 4	(D) 3
(C) 2	(D) 1

38. If α and β are the roots of the equation $x^2 - x + 1 = 0$, then $\alpha^{2009} + \beta^{2009} = [AIEEE - 2010]$ (A) -2 (B) -1 (C) 1 (D) 2 Let α and β be the roots of equation $px^2 + qx + r = 0$, $p \neq 0$. If p, q, r are in A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$ then the value of $|\alpha - \beta|$ is [AIEEE - 2014] (A) $\frac{\sqrt{61}}{9}$ (B) $\frac{2\sqrt{17}}{9}$ (C) $\frac{\sqrt{34}}{9}$ (D) $\frac{2\sqrt{13}}{9}$ Let α and β be the roots of equation $x^2 - 6x - 2 = 0$.

If $a_n = \alpha^n - \beta^n$, then the value of $\frac{a_{10} - 2a_8}{2a_9}$ is equal to: [AIEEE -2015] (A) 3 (B) -3 (C) 6 (D) -6

41. The roots of the quadratic equation $(a + b - 2c) x^2$ - (2a - b - c) x + (a - 2b + c) = 0 are -(A) a + b + c & a - b + c(B) 1/2 & a - 2b + c(C) a - 2b + c & 1/(a + b - 2c)(D) none of these

If the A.M. of the roots of a quadratic equation is $\frac{8}{5}$ and A.M. of their reciprocals is $\frac{8}{7}$, then the quadratic equation is -(A) $5x^2 - 8x + 7 = 0$ (B) $5x^2 - 16x + 7 = 0$ (C) $7x^2 - 16x + 5 = 0$ (D) $7x^2 + 16x + 5 = 0$

A quadratic equation with rational coefficients one

of whose roots is $tan\left(\frac{\pi}{12}\right)$ is -(A) $x^2 - 2x + 1 = 0$ (B) $x^2 - 2x + 4 = 0$ (C) $x^2 - 4x + 1 = 0$ (D) $x^2 - 4x - 1 = 0$

44. If x, y are rational number such that x + y + (x - x)

- $2y) \sqrt{2} = 2x y + (x y 1) \sqrt{6}$, then (A) x and y connot be determined (B) x = 2, y = 1(C) x = 5, y = 1(D) none of these
- 45.

39.

40.

42.

43.

The smallest integer x for which the inequality

$$\frac{x-5}{x^2+5x-14} > 0 \text{ is satisfied is given by -}$$
(A) -7 (B) -5
(C) -4 (D) -6

46.	The number	of positive	integral	solutions	of the	55.
-----	------------	-------------	----------	-----------	--------	-----

inequation
$$\frac{x^2(3x-4)^3 (x-2)^4}{(x-5)^5 (2x-7)^6} \le 0$$
 is -
(A) 2 (B) 0
(C) 3 (D) 4

The expression $\frac{x^2 + 2x + 1}{x^2 + 2x + 7}$ lies in the interval ; 47. $(x \in R)$ -(A) [0, -1](B) (-∞, 0]∪[1,∞)

- (C) [0, 1) (D) none of these
- 48. If the roots of the equation $x^2 - 2ax + a^2 + a - 3 = 0$ are real & less than 3 then -

(A) $a < 2$	(B) $2 \le a \le 3$
(C) $3 < a < 4$	(D) $a > 4$

- 49. The number of integral values of m, for which the roots of $x^2 - 2mx + m^2 - 1 = 0$ will lie between -2and 4 is -(A) 2 (B) 0 (C) 3 (D) 1
- 50. If the roots of the equation, $x^3 + Px^2 + Qx - 19 = 0$ are each one more than the roots of the equation, $x^3 - Ax^2 + Bx - C = 0$, where A, B, C, P & Q are constants then the value of A + B + C =(A) 18 (B) 19 (C) 20 (D) none
- Number of real solutions of the equation $x^4 + 8x^2$ 51. $+ 16 = 4x^2 - 12x + 9$ is equal to -(A) 1 (B) 2 (C) 3 (D) 4

(One question multiple - 52)

- If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are 52. equal in magnitude and opposite in sign, then -
 - (A) p + q = r
 - (B) p + q = 2r
 - (C) product of roots = $-\frac{1}{2}(p^2 + q^2)$ (D) sum of roots = 1
- 53. If a, b, c are real distinct numbers satisfying the condition a + b + c = 0 then the roots of the quadratic equation $3ax^2 + 5bx + 7c = 0$ are -(A) positive
 - (B) negative
 - (C) real and distinct
 - (D) imaginary
- 54. If $x^2 + Px + 1$ is a factor of the expression $ax^3 + bx$ + c then -(A) $a^2 + c^2 = -ab$ (B) $a^2 - c^2 = -ab$

(C) $a^2 - c^2 = ab$ (D) none of these

The set of values of 'a' for which the inequality $(x - x)^2$ 3a)(x-a-3) < 0 is satisfied for all x in the interval $1 \le x \le 3$ (A)(1/3,3)(B) (0, 1/3)

(C)
$$(-2, 0)$$
 (D) $(-2, 3)$

If the quadratic equation $ax^2 + bx + 6 = 0$ does not have two distinct real roots, then the least value of 2a + b is -(A) 2(B) - 3

$$(C) - 6$$
 (D) 1

56.

57.

58.

59.

60.

62.

If p & q are distinct reals, then 2 $\{(x-p)(x-q) +$ $(p-x)(p-q) + (q-x)(q-p) = (p-q)^2 + (x-p)^2$ + $(x - q)^2$ is satisfied by -(A) no value of x

(B) exactly one value of x

(C) exactly two values of x

(D) infinite values of x

The value of 'a' for which the expression $y = x^2 + x^2$

2a
$$\sqrt{a^2 - 3} x + 4$$
 is perfect square, is -
(A) 4
(B) $\pm \sqrt{3}$
(C) ± 2

(D) $a \in (-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$

Set of values of 'K' for which roots of the quadratic $x^{2} - (2K - 1)x + K(K - 1) = 0$ are -

(A) both less than 2 is $K \in (2, \infty)$

- (B) of opposite sign is $K \in (-\infty, 0) \cup (1, \infty)$
- (C) of same sign is $K \in (-\infty, 0) \cup (1, \infty)$
- (D) both greater than 2 is $K \in (2, \infty)$

(One question multiple -60)

If
$$\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 < \alpha_5 < \alpha_6$$
, then the equation (x
 $-\alpha_1$)(x $-\alpha_3$)(x $-\alpha_5$)+3(x $-\alpha_2$)(x $-\alpha_4$)(x $-\alpha_6$)=0 has

- (A) three real roots
- (B) no real root in $(-\infty, \alpha_1)$
- (C) one real root in (α_1, α_2)
- (D) no real root in (α_5, α_6)

The value(s) of 'b' for which the equation, $2\log_1$ 61. $_{25}(bx + 28) = -\log_5(12 - 4x - x^2)$ has coincident roots, is/are -(A) b = -12(B) b = 4(C) b = 4 or b = -12(D) b = -4 or b = 12For every $x \in R$, the polynomial $x^8 - x^5 + x^2 - x$ + 1 is -(A) positive

- (B) never positive
- (C) positive as well as negative
- (D) negative

1.	А	2. B	3. C	4. B	5. D	6. B	7. C	8. A 9. B	10. A	11. B	12. A	13. B
14.	А	15. B	16. A	17. B	18. B	19. B	20. D	21. B 22. C	23. C	24. B	25. C	26. D
27.	А	28. B	29. C	30. B	31. C	32. C	33. C	34. D 35. B	36. C	37. C	38. C	39. D
40.	А	41. D	42. B	43. C	44. B	45. D	46. C	47. C 48. A	49. C	50. A	51. A	52. BC
53.	С	54. C	55. B	56. B	57. D	58. C	59. C	60. ABC61. B	62. A			