Current Electricity

DPP-07

1. Kirchhoff's first law i.e. $\Sigma i = 0$ at a junction is based on the law of conservation of _____.

- (1) Charge
- (2) Energy
- (3) Momentum
- (4) Angular momentum

2. The figure below shows currents in a part of electric circuit. The current *i* is _____.

- (1) 1.7 amp
- (2) 3.7 amp
- (3) 1.3 amp
- (4) 1 amp

3. Consider the circuit shown in the figure. The current I_3 is equal to _____.

- (1) 5 amp
- (2) 3 amp
- (3) -3 amp
- (4) 5/6 amp

4. Two resistances R_1 and R_2 are joined as shown in the figure to two batteries of e.m.f. E_1 and E_2 . If E_2 is short-circuited, the current through R_1 is _____.

- (1) E_1/R_1
- (2) E_2/R_1
- (3) E_2/R
- (4) $E_1/(E_2+R_1)$

5. If $V_{AB} = 4V$ in gives figure, then resistance X will be

- (1) 5Ω
- (2) 10Ω
- (3) 15 Ω
- (4) 20Ω

6. In the given circuit the current $I_{1 \text{ is}}$ _____.

- (1) 0.4 A
- (2) -0.4 A
- (3) 0.8 A
- (4) -0.8 A

7. Two batteries of e.m.f. 4 V and 8 V with internal resistances 1Ω and 2Ω are connected in a circuit with a resistance of 9Ω as shown in figure. The current and potential difference between the points P and Q are

- (1) $\frac{1}{3}$ A and 3 V
- (2) $\frac{1}{6}$ A and 4 V
- (3) $\frac{1}{9}$ A and 9 V
- (4) $\frac{1}{2}$ A and 12 V

In the circuit, the reading of the ammeter is (assume 8. internal resistance of the battery be zero)

- (1)
- $\frac{10}{9}A$ (2)
- (3)
- 2A(4)
- 9. Find out the value of current through 2Ω resistance for the given circuit

- 5 A (1)
- 2A(2)
- (3) Zero
- (4) 4A

For the following circuits, the potential difference **10.** between x and y is volt is

- $\frac{2}{3}$ $\frac{8}{9}$ (1)
- $\frac{4}{3}$ $\frac{5}{3}$ (2)
- (3)
- (4)

Answer Key

- 1. (1)
- 2. (1)
- 3. (4)
- 4. (1)
- 5. (4)
- **6.** (2)
- 7. (1)
- 8. (4)
- 9. (3)
- 10. (1)