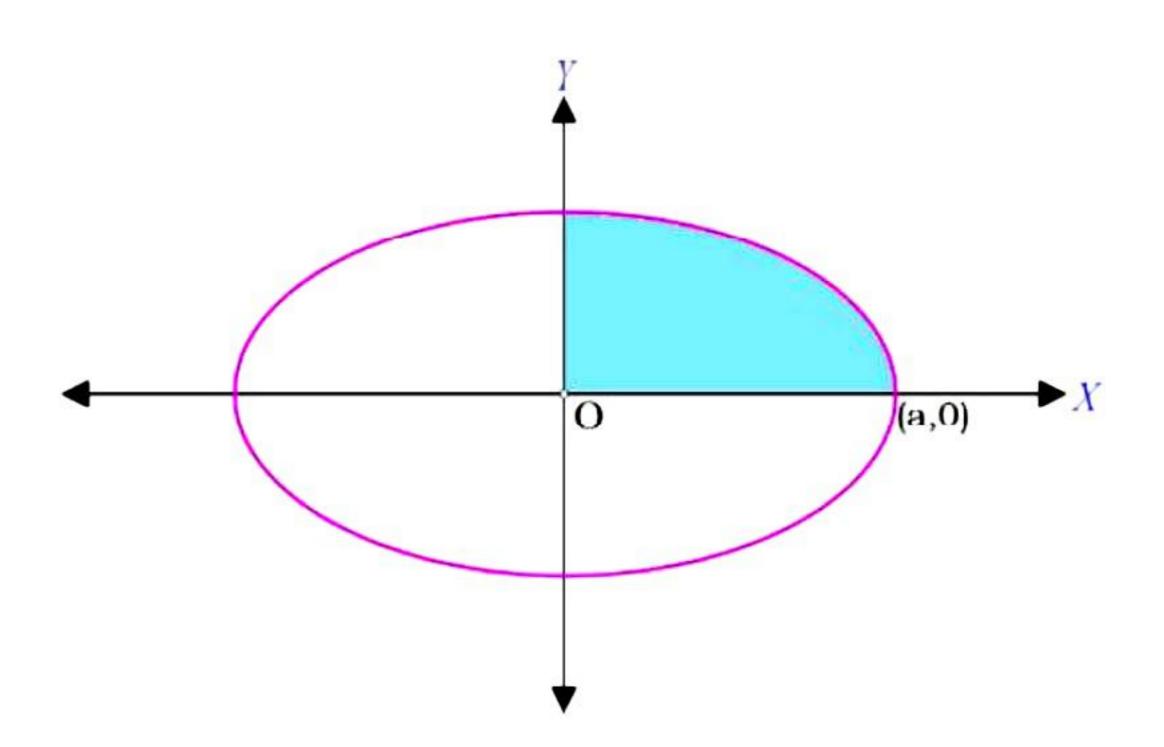


Model Questions

Question:

Find the area of the region bounded by the curves $y = 4 - x^2$, x - axis and the lines x = 0 and x = 2.

Solution:


We have $y = 4 - x^2$ or $x^2 = -(y - 4)$, which represents a parabola

$$I = \int_{0}^{2} y dx$$

$$I = \int_{0}^{2} (4 - x^{2}) dx = \left[4x - \frac{x^{3}}{3} \right]_{0}^{2} = 8 - \frac{8}{3} = \frac{16}{3} \text{ units}$$

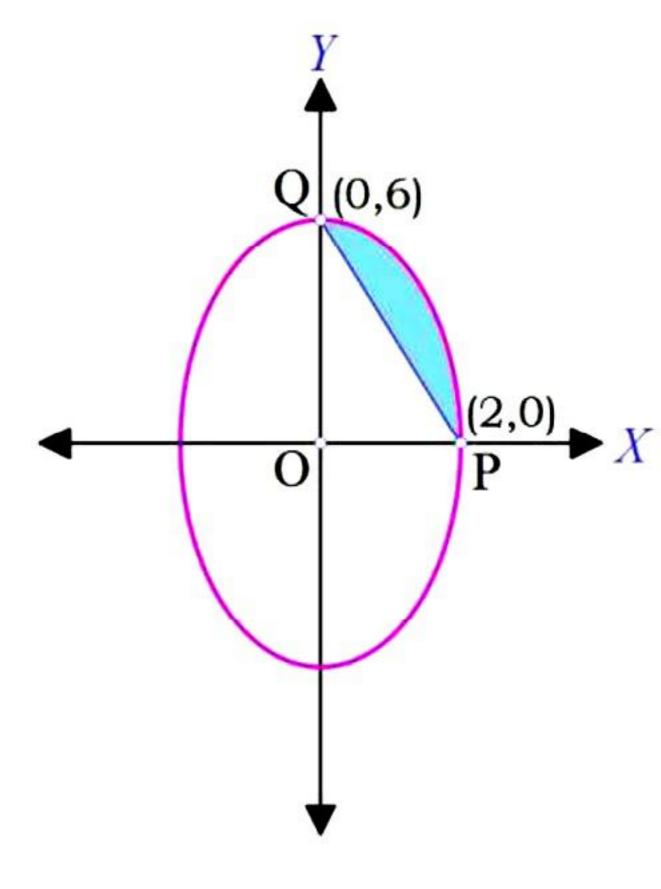
Question:

Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Solution:

Area =
$$4 \times Area$$
 of quadrant = $4 \times I$

We have
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 $I = \int_0^a y dx$ $I = \int_0^a \frac{b}{a} \sqrt{a^2 - x^2}$ $I = \int_0^a \frac{b}{a} \sqrt{a^2 - x^2}$ $I = \int_0^a \frac{b}{a} \sqrt{a^2 - x^2}$ $I = \frac{b}{a} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a$ $I = \frac{b}{a} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a$ $I = \frac{b}{a} \times \frac{a^2}{2} \sin^{-1} \frac{a}{a} = \frac{ba}{2} \sin^{-1} 1 = \frac{\pi ab}{4}$ $I = \frac{b}{a} \times \frac{a^2}{2} \sin^{-1} \frac{a}{a} = \frac{ba}{2} \sin^{-1} 1 = \frac{\pi ab}{4}$ $I = \frac{b}{a} \times \frac{a^2}{2} \sin^{-1} \frac{a}{a} = \frac{ba}{2} \sin^{-1} 1 = \frac{\pi ab}{4}$ Area = $I = \frac{a}{4} \times \frac{ab}{4} = \frac{ab}{4} \times \frac{ab}{4$


Question:

Find the area between the arc PQ and chord PQ of the ellipse $\frac{x^2}{4} + \frac{y^2}{36} = 1$

Solution:

The equation of the chord is

$$y-0 = \frac{6-0}{0-2} \times (x-2)$$
$$y = -3(x-2)$$
$$y = -3x + 2$$

Also the equation of the ellipse is

$$\frac{x^2}{4} + \frac{y^2}{36} = 1$$

$$\frac{y^2}{36} = 1 - \frac{x^2}{4} \quad \text{or} \quad y^2 = 36 \left(1 - \frac{x^2}{4} \right) \quad \text{or} \quad y^2 = 36 \left(\frac{4 - x^2}{4} \right)$$

$$\therefore \quad y = 3\sqrt{4 - x^2}$$

$$\text{Area} = 3 \int_0^2 \sqrt{4 - x^2} \, dx - \int_0^2 (6 - 3x) \, dx$$

$$\text{Area} = 3 \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2 - \left[6x - \frac{3x^2}{2} \right]_0^2$$

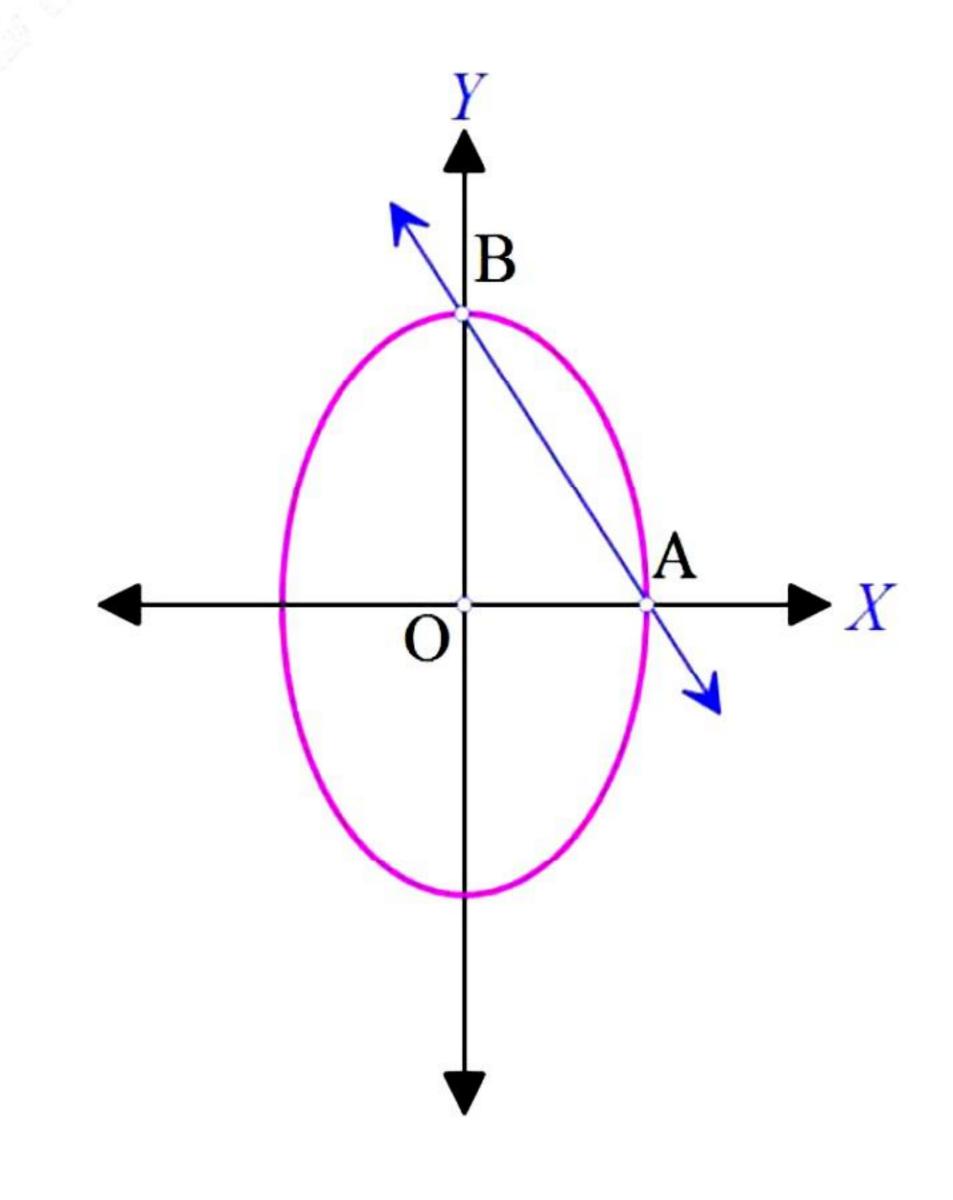
$$= 3 \left(\frac{2}{2} \sqrt{4 - 2^2} + \frac{4}{2} \sin^{-1} \frac{2}{2} \right) - \left(6 \times 2 - \frac{3 \times 2^2}{2} \right)$$

$$= 3 \left(0 + 2\frac{\pi}{2} \right) - 12 + 6 = \underline{3\pi - 6} \text{ units}$$

Question:

Find the area between the arc PQ and line $\frac{x}{3} + \frac{y}{2} = 1$ of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Solution:


The equation of the line is

$$\frac{x}{3} + \frac{y}{2} = 1$$

$$y = 2\left(1 - \frac{x}{3}\right)$$

$$y = \frac{2}{3}(3 - x)$$

When x = 3, y = 2When x = 0, y = 2

Also the equation of the ellipse is

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

$$\frac{y^2}{4} = 1 - \frac{x^2}{9} \quad \text{or} \quad y^2 = 4\left(1 - \frac{x^2}{9}\right) \quad \text{or} \quad y^2 = 4\left(\frac{9 - x^2}{9}\right)$$

$$\therefore \quad y = \frac{2}{3}\sqrt{9 - x^2}$$

$$\text{Area} = \frac{2}{3}\int_0^3 \sqrt{9 - x^2} \, dx - \frac{2}{3}\int_0^2 (3 - x) \, dx$$

$$\text{Area} = \frac{2}{3}\left[\frac{x}{2}\sqrt{9 - x^2} + \frac{9}{2}\sin^{-1}\frac{x}{3}\right]_0^3 - \frac{2}{3}\left[3x - \frac{x^2}{2}\right]_0^3$$

$$= \frac{2}{3}\left(\frac{3}{2}\sqrt{9 - 3^2} + \frac{9}{2}\sin^{-1}\frac{3}{3}\right) - \frac{2}{3}\left(3 \times 3 - \frac{3^2}{2}\right)$$

$$= \frac{2}{3}\left(0 + \frac{9}{2} \times \frac{\pi}{2}\right) - \frac{2}{3}\left(9 - \frac{9}{2}\right)$$

$$= \frac{2}{3}\left(\frac{9\pi}{4}\right) - \frac{2}{3}\left(\frac{9}{2}\right)$$

$$= \frac{2}{3}\left(\frac{9\pi}{4} - \frac{18}{4}\right)$$

$$= \frac{2}{3} \times \frac{9}{4}(\pi - 2) = \frac{3}{2}(\pi - 2) \text{ units}$$

HOME WORK QUESTIONS

Question: (Imp2017)

(a) Area below the curve y = -2x + 3 in the first quadrant.

(b) Draw a rough sketch of the curves

$$x^{2} + y^{2} = 4$$
 and $(x - y)^{2} + y^{2} = 4$

Also find the area between these two curves.

Answer: (a) $\frac{9}{4}$ (b) $\frac{8}{3}\pi - 2\sqrt{3}$

Question:(March2017)

(a) Area bounded by the curves $y = \cos x$, $x = \frac{\pi}{2}$, x = 0, y = 0 is

(b) Find the area between the curves

$$y^2 = 4ax$$
 and $x^2 = 4ay$, $a > 0$

Answer: (a) 1 (b) $\frac{16}{3}a^2$

Question: (Imp2016)

(a) The area bounded by the curves $y = 2\cos x$, the x axis

from
$$x = 0$$
 to $x = \frac{\pi}{2}$ is $(0, 1, 2, -1)$

(b) Find the area of the region bounded by the curves

$$y^2 = 4ax$$
 and $x^2 = 4ay$, $a > 0$

Answer: (a) 2 (b) $\frac{16}{3}a^2$

Question: (March2016)

Find the area of the circle $x^2 + y^2 = 4$ using integration.

Answer: 4π

NCERT TEXT BOOK QUESTIONS

EXERCISE 8.1

- 1. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x axis.

 Ans: $\frac{14}{3}$
- 2. Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x axis in the first quadrant.

 Ans:16 $4\sqrt{2}$
- 3. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y axis in the first quadrant.

 Ans: $\frac{32 84\sqrt{2}}{3}$
- 4. Find the area of the region bounded by the ellipse

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 Ans:12 π

5. Find the area of the region bounded by the ellipse

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
 Ans:6 π

- 6. Find the area of the region in the first quadrant enclosed by x axis, line x = 3y and the circle $x^2 + y^2 = 4$. Ans: $\frac{\pi}{3}$
- 7. Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$ Ans: $\frac{a^2}{2} \left(\frac{\pi}{2} 1\right)$
- 8. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

 Ans: $4^{2/3}$
- 9. Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.

 Ans: $\frac{1}{3}$
- 10. Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y 2
- 11. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.

EXERCISE 8.2

- 1. Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$.

 Ans: $\frac{\sqrt{2}}{6} + \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$
- 2. Find the area bounded by curves

$$(x-1)^2 + y^2 = 1$$
 and $x^2 + y^2 = 1$ Ans: $\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$

3. Find the area of the region bounded by the curves

$$y = x^2 + 2$$
 and $y = x$, $y = 0$ and $x = 3$

Ans:
$$\frac{21}{2}$$

4. Using integration find the area of region bounded by the triangle whose vertices are (-1,0),(1,3) and (3,2)

Ans:4

5. Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Ans:8

EXERCISE

1. Find the area of the region bounded by the curves

$$y^2 = 9x$$
, $y = 3x$ Ans: $\frac{1}{2}$

2. Find the area of the region bounded by the parabola

$$y^2 = 2px$$
, $x^2 = 2py$ Ans: $\frac{4p^2}{3}$

3. Find the area of the region bounded by the curve

$$y = x^3$$
 and $y = x + 6$ and $x = 0$ Ans:10

4. Find the area of the region bounded by the curve

$$y^2 = 4x$$
, $x^2 = 4y$ Ans: $\frac{16}{3}$

5. Find the area of the region bounded by the parabola $y^2 = 2x$ and the straight line x - y = 4

Ans:18

- 6. Find the area of the region bounded by the parabolas $y^2 = 6x$ and $x^2 = 6y$.
- 7. Find the area enclosed by the curve

$$x = 3 \cos t$$
, $y = 2 \sin t$. Ans: 6π

8. Find the area of the region included between the parabola $y = \frac{3}{4}x^2$ and the line 3x - 2y + 12 = 0 Ans:27