ELECTROCHEMISTRY

DPP - 09 CLASS -12th **TOPIC - PRACTICE QUESTIONS**

Q.1	Salts of A (atomic mass 7), B (atomic mass 27) and C (atomic mass 48) were electrolyzed using
	the same amount of charge. It was found that when 2.1 g of A was deposited, the mass of B and
	C deposited were 2.7g and 7.2g. The valencies of A, B and C respectively.

Q.1	Salts	s of A (atomic mass 7), B (atomic mass 27) and C (atomic mass 48) were electrolyzed using	
	the s	same amount of charge. It was found that when 2.1 g of A was deposited, the mass of B and	
	C de	posited were 2.7g and 7.2g. The valencies of A, B and C respectively.	
	(A)	2, 3 and 2	
	(B)	1, 3 and 2	
	(C)	2, 6 and 3	
	(D)	3, 1 and 2	
Q.2	A cı	rrent of 3 A was passed for 2 h through a solution of CuSO4, 3 g of Cu2+ ions were	
	disc	harged at cathode. The current efficiency is	
	(A)	21.5%	
	(B)	42.2%	
	(C)	10%	
	(D)	40.01%	
Q.3	How many faradays are required to reduce one mol of MnO4 ⁻ to Mn2+:-		
	(A)	1	
	(B)	2	
	(C)	3	
	(D)	5	
Q.4	Thre	e faradays of electricity was passed through an aqueous solution of iron (II) bromide. The	
	mas	s of iron metal (at. mass 56) deposited at the cathode is -	
	(A)	56 g	
	(B)	84 g	
	(C)	112 g	
	(D)	168 g	

ELECTROCHEMISTRY

DPP - 09 CLASS -12th TOPIC - PRACTICE QUESTIONS

Sol.1 $An_1^+ + n_1e^- \rightarrow A$

$$Bn_2^+ + n_2^- \rightarrow B$$

$$Cn_3^+ + n_3e^- \rightarrow C$$

Since charged is same

∴Eq wt is same

$$\therefore \frac{2.1}{\frac{7}{n_1}} = \frac{2.7}{\frac{2.7}{n_2}} = \frac{7.2}{\frac{48}{n_3}}$$

$$\therefore \frac{3 \times n_1}{10} = \frac{1 \times n_2}{10} = \frac{3 \times n_3}{2 \times 10}$$

$$\therefore n_1 \frac{n_2}{3} = \frac{n_3}{2}$$

$$\therefore n_1 = 1$$

$$\therefore n_2 = 3$$

$$\therefore n_3 = 2$$

Option B is correct.

Sol.2 According to law of electrolysis, Mass deposited = Zit

Or
$$i = \frac{m \times 96500}{t \times Eq.wt}$$
;

$$Z = \frac{Eq.wt}{96500};$$

$$Eq.wt = \frac{At.wt}{oxidation number};$$

$$\therefore i = \frac{3 \times 96500 \times 2}{63.5 \times 7200};$$

1.266 A

Efficiency of current is given by,

$$= \frac{Current\,used}{TotalCurrent\,passed} \times 100$$

$$=\frac{1.255}{3}\times100=42.22\%$$

Hence, option B is correct

Sol.3 Correct option

$$MnO_4^- + 8H^+ 5e^- \rightarrow Mn^{2+} + 5H_2O$$

1 mole of MnO_4^- requires 5 mole of electrons = 5 faradays.

Sol.4 correct option is B

3 Faradays of electricity was passed through an aqueous solution of iron (II) bromide.

3 F of electricity = 3 moles of electrons

$$Fe^{2+} + 2e^{-} \rightarrow Fe$$

2 moles of electrons gives 1 mole of Fe

3 moles of electrons gives = $\frac{3}{2}$ moles of Fe

$$=\frac{3}{2}\times 56 = 84g$$

Hence, 84 g of iron metal is deposited at the cathode.