RELATIONS

1. INTRODUCTION:

Let A and B be two sets. Then a relation R from A to B is a subset of A ×B. thus, R is a relation from A to B \Leftrightarrow R \subseteq A ×B.

Total Number of Relations : Let A and B be two non-empty finite sets consisting of m and n elements respectively. Then A ×B consists of mn ordered pairs. So total number of subsets of A ×B is 2^{mn} .

Domain and Range of a relation : Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called to domain of R, while the set of all second components or coordinates of the ordered pairs in R is called the range of R.

Thus,	$Domain (R) = \{a : (a, b) \in R\}$
and,	Range (R) = $\{b : (a, b) \in R\}$

It is evident from the definition that the domain of a relation from A to B is a subset of A and its range is a subset of B.

Inverse Relation : Let A, B be two sets and let R be a relation from a set A to a set B. Then the inverse of R, denoted by R^{-1} , is a relation from B to A and is defined by

 $R^{-1} = \{(b, a) : (a, b) \in R\}$

 $Clearly, \quad (a, \, b) \in R \Leftrightarrow (b, \, a) \in R^{-1}$

Also, $Domain(R) = Range(R^{-1})$ and $Range(R) = Domain(R^{-1})$

Note : Relation on a set : If R is a relation from set A to A itself then R is called Relation on set A.

2. TYPES OF RELATIONS :

In this section we intend to define various types of relations on a given set A.

Void Relation : Let A be a set. Then $\phi \subseteq A \times A$ and so it is a relation on A. This relation is called the void or empty relation on A.

Universal Relation : Let A be a set. Then $A \times A \subseteq A \times A$ and so it is a relation on A. This relation is called the universal relation on A.

Identity Relation : Let A be a set. Then the relation $I_A = \{(a, a) : a \in A\}$ on A is called the identity relation on A.

In other words, a relation I_A on A is called the identity relation if every element of A is related to itself only.

Reflexive Relation : A relation R on a set A is said to be reflexive if every element of A is related to itself.

Thus, R on a set A is not reflexive if there exists an element $A \in A$ such that (a , a) $\notin R.$

Every Identity relation is reflexive but every reflexive relation is not identity.

 $\label{eq:symmetric Relation : A relation R on a set A is said to be a symmetric relation iff$

 $(a, b) \in R \Leftrightarrow (b, a) \in R$

i.e. a R b ⇔ bRa

 $\label{eq:constraint} \begin{array}{l} \mbox{Transitive Relation:} Let \ A \ be \ any \ set. \ A \ relation \ R \ on \ A \ is \ said \ to \ be \ a \ transitive \ relation \ iff \end{array}$

 $(a, \, b) \in R \text{ and } (b, \, c) \in R \Longrightarrow (a, \, c) \in R$

i.e. a R b and b R c \Rightarrow a R c

Antisymmetric Relation : Let A be any set. A relation R on set A is said to be an antisymmetric relation iff

(a, b) \in R and (b, a) \in R \Rightarrow a = b

 $\ensuremath{\textit{Equivalence Relation}}$: A relation R on a set A is said to be an equivalence relation on A iff

(i) it is reflexive i.e. (a, a) $\in R$ for all $a \in A$

(ii) it is symmetric i.e. (a, b) $\in R \Rightarrow$ (b, a) $\in R$

(iii) it is transitive i.e. (a, b) $\in R$ and (b, c) $\in R \Rightarrow$ (a, c) $\in R$

It is not necessary that every relation which is symmetric and transitive is also reflexive.