	Contents	
Particular		Page No
Theory	:	01 – 29
Exercise # 1 Part - I :Subjective Questions Part - II:Objective Questions Part - III:Match the Column		30 – 36
Exercise # 2 Part - I : Only one option correct ty Part - II : Numerical Type Part - III : One or More than one op Part - IV : Comprehension		37 – 42
Exercise # 3 Part - I : Previous Years JEE Adva Part - II: Previous Years AIEEE &		43 – 46
Answers	:	47 – 48
Reliable Ranker Problems	:	49 – 51
Answers	:	51
Self Assessment Paper	:	52 – 54
Answers	:	54

JEE (Advanced) Syllabus

Solution of Triangle : Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle.

SOLUTION OF TRIANGLE

The process of calculating the sides and angles of triangle using given information is called solution of triangle. In a ΔABC , in general the angles are denoted by capital letters A, B and C and the length of the sides opposite these angle are denoted by small letter a, b and c respectively.

1. SINE FORMULAE :

In any triangle ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

where R is circumradius and Δ is area of triangle.

SOLVED EXAMPLE

Example 1 : Angles of a triangle are in 4 : 1 : 1 ratio, then find the ratio between its greatest side and perimeter.

Solution : Angles are in ratio 4 : 1 : 1.

 \Rightarrow angles are 120°, 30°, 30°.

If sides opposite to these angles are a, b, c respectively, then a will be the greatest side. Now from

sine formula
$$\frac{a}{\sin 120^\circ} = \frac{b}{\sin 30^\circ} = \frac{c}{\sin 30^\circ}$$

$$\Rightarrow \qquad \frac{a}{\sqrt{3}/2} = \frac{b}{1/2} = \frac{c}{1/2} \qquad \qquad \Rightarrow \qquad \frac{a}{\sqrt{3}} = \frac{b}{1} = \frac{c}{1} = k \text{ (say)}$$

then $a = \sqrt{3}k$, perimeter = $(2 + \sqrt{3})k$

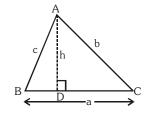
$$\therefore \qquad \text{required ratio} = \frac{\sqrt{3}k}{(2+\sqrt{3})k} = \frac{\sqrt{3}}{2+\sqrt{3}}$$

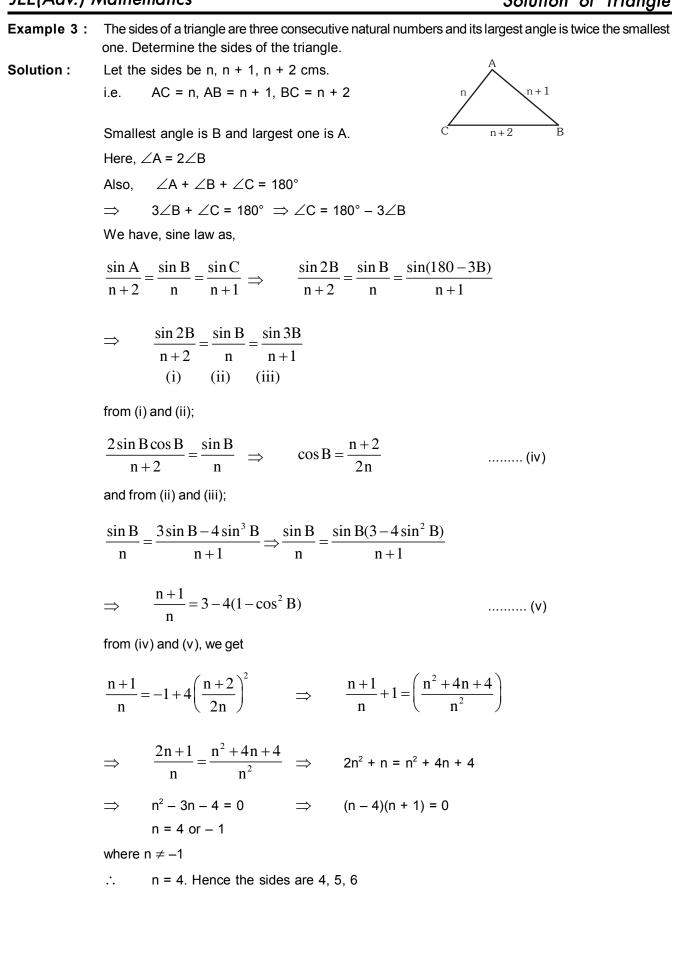
Example 2 : In triangle ABC, if b = 3, c = 4 and $\angle B = \pi/3$, then find the number of such triangles.

Solution : Using sine formulae $\frac{\sin B}{b} = \frac{\sin C}{c}$

$$\Rightarrow \quad \frac{\sin \pi/3}{3} = \frac{\sin C}{4} \Rightarrow \frac{\sqrt{3}}{6} = \frac{\sin C}{4} \Rightarrow \text{ sin } C = \frac{2}{\sqrt{3}} > 1 \text{ which is not possible.}$$

Hence there exist no triangle with given elements.





Example 4 : In any
$$\triangle ABC$$
, prove that $\frac{a+b}{c} = \frac{\cos\left(\frac{A-B}{2}\right)}{\sin\frac{C}{2}}$

Solution : Since $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k$ (let)

 \Rightarrow a = k sinA, b = k sinB and c = k sinC

$$\therefore \qquad \text{L.H.S.} = \frac{a+b}{c} = \frac{k(\sin A + \sin B)}{k \sin C}$$

$$= \frac{\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)}{\sin\frac{C}{2}\cos\frac{C}{2}} = \frac{\cos\frac{C}{2}\cos\left(\frac{A-B}{2}\right)}{\sin\frac{C}{2}\cos\frac{C}{2}} = \frac{\cos\left(\frac{A-B}{2}\right)}{\sin\frac{C}{2}} = R.H.S.$$

Hence L.H.S. = R.H.S.

Example 5 : In any $\triangle ABC$, prove that $(b^2 - c^2) \cot A + (c^2 - a^2) \cot B + (a^2 - b^2) \cot C = 0$

Solution: Since
$$a = k \sin A$$
, $b = k \sin B$ and $c = k \sin C$

$$\therefore \qquad (b^2 - c^2) \cot A = k^2 (\sin^2 B - \sin^2 C) \cot A = k^2 \sin (B + C) \sin (B - C) \cot A$$

Similarly
$$(c^2 - a^2) \cot B = -\frac{k^2}{2} [\sin 2C - \sin 2A]$$
(ii)

and
$$(a^2 - b^2) \cot C = -\frac{k^2}{2} [\sin 2A - \sin 2B]$$
(iii)

adding equations (i), (ii) and (iii), we get

$$(b^2 - c^2) \cot A + (c^2 - a^2) \cot B + (a^2 - b^2) \cot C = 0$$

Problems for Self Practice-1 :

(1) In any $\triangle ABC$, prove that

(i)
$$a \sin\left(\frac{A}{2}+B\right) = (b + c) \sin\left(\frac{A}{2}\right).$$

(ii)
$$\frac{a^2 \sin(B-C)}{\sin B + \sin C} + \frac{b^2 \sin(C-A)}{\sin C + \sin A} + \frac{c^2 \sin(A-B)}{\sin A + \sin B} = 0$$

(iii)
$$\frac{c}{a-b} = \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{\tan\frac{A}{2} - \tan\frac{B}{2}}$$

(2) If in a
$$\triangle ABC$$
, $\angle A = \frac{\pi}{6}$ and b : c = 2 : $\sqrt{3}$, find $\angle B$.

(3) If in a
$$\triangle ABC$$
, $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$, show that a^2 , b^2 , c^2 are in A.P.

Answers : (2) 90°

2. COSINE FORMULAE :

(a)
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 (b) $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$ (c) $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

or $a^2 = b^2 + c^2 - 2bc \cos A$

_____SOLVED EXAMPLE_____

Example 6 : In a triangle ABC, if B = 30° and c = $\sqrt{3}$ b, then find angle A (where A > 45°)

Solution: We have
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca} \Rightarrow \frac{\sqrt{3}}{2} = \frac{3b^2 + a^2 - b^2}{2 \times \sqrt{3}b \times a}$$

$$\Rightarrow \quad a^2 - 3ab + 2b^2 = 0 \Rightarrow (a - 2b) (a - b) = 0$$

$$\Rightarrow \quad \text{Either } a = b \quad \Rightarrow A = 30^\circ$$
or
$$\quad a = 2b \Rightarrow \quad a^2 = 4b^2 = b^2 + c^2$$

$$\Rightarrow \quad A = 90^\circ.$$

Example 7 : In a triangle ABC, find the value of $(a^2 - b^2 - c^2) \tan A + (a^2 - b^2 + c^2) \tan B$. **Solution :** Using cosine law :

The given expression is equal to -2 bc cos A tan A + 2 ac cos B tan B

=
$$2 \operatorname{abc} \left(-\frac{\sin A}{a} + \frac{\sin B}{b} \right) = 0$$

Example 8 : In a triangle ABC if a = 13, b = 8 and c = 7, then find sin A.

Solution :
$$\therefore$$
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{64 + 49 - 169}{2.8.7} \Rightarrow \cos A = -\frac{1}{2} \Rightarrow A = \frac{2\pi}{3}$

$$\therefore \qquad \sin A = \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$$

Example 9 : In a $\triangle ABC$, prove that a (b cos C – c cos B) = $b^2 - c^2$

Solution : Since $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ & $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

:. L.H.S. = a
$$\left\{ b \left(\frac{a^2 + b^2 - c^2}{2ab} \right) - c \left(\frac{a^2 + c^2 - b^2}{2ac} \right) \right\}$$

$$= \frac{a^2 + b^2 - c^2}{2} - \frac{(a^2 + c^2 - b^2)}{2} = (b^2 - c^2) = R.H.S.$$

Hence L.H.S. = R.H.S.

Example 10 : If in a $\triangle ABC$, $\angle A = 60^{\circ}$, then find the value of $\left(1 + \frac{a}{c} + \frac{b}{c}\right) \left(1 + \frac{c}{b} - \frac{a}{b}\right)$.

Solution: $\begin{pmatrix} 1+\frac{a}{c}+\frac{b}{c} \end{pmatrix} \begin{pmatrix} 1+\frac{c}{b}-\frac{a}{b} \end{pmatrix} = \begin{pmatrix} \frac{c+a+b}{c} \end{pmatrix} \begin{pmatrix} \frac{b+c-a}{b} \end{pmatrix} = \frac{(b+c)^2-a^2}{bc} = \frac{(b^2+c^2-a^2)+2bc}{bc}$ $= \frac{b^2+c^2-a^2}{bc} + 2 = 2 \begin{pmatrix} \frac{b^2+c^2-a^2}{2bc} \end{pmatrix} + 2$ $= 2\cos A + 2 = 3 \qquad \{\because \ \angle A = 60^\circ\}$ $\therefore \qquad \begin{pmatrix} 1+\frac{a}{c}+\frac{b}{c} \end{pmatrix} \begin{pmatrix} 1+\frac{c}{b}-\frac{a}{b} \end{pmatrix} = 3$

Problems for Self Practice-2 :

- (1) The sides of a triangle ABC are a, b, $\sqrt{a^2 + ab + b^2}$, then prove that the greatest angle is 120°.
- (2) In a triangle ABC, prove that $a(\cos B + \cos C) = 2(b + c) \sin^2 \frac{A}{2}$.
- (3) If a : b : c = 4 : 5 : 6, then show that $\angle C = 2 \angle A$.
- (4) In any $\triangle ABC$, prove that

(i)
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$

(ii)
$$\frac{b^2}{a}\cos A + \frac{c^2}{b}\cos B + \frac{a^2}{c}\cos C = \frac{a^4 + b^4 + c^4}{2abc}$$

3. PROJECTION FORMULAE :

(a) $b \cos C + c \cos B = a$ (b) $c \cos A + a \cos C = b$

(c) a $\cos B + b \cos A = c$

_SOLVED EXAMPLE____

Example 11 : In a $\triangle ABC$, $c \cos^2 \frac{A}{2} + a \cos^2 \frac{C}{2} = \frac{3b}{2}$, then show a, b, c are in A.P.

Solution :	Here,	$\frac{c}{2}(1+\cos A) + \frac{a}{2}(1+c)$	$\cos C) = \frac{3b}{2}$	
	\Rightarrow	a + c + (c cos A + a cos C) = 3b		
	\Rightarrow	a + c + b = 3b	{using projection	n formula}
	\Rightarrow	a + c = 2b		
	which	shows a, b, c are in A.P.		
Example 12 :	In a tria	In a triangle ABC, prove that		
	(i) a(b	$\cos C - c \cos B$) = $b^2 - c$	2	
	(ii) (b	+ c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.		
Solution :	(i)	∵ L.H.S. = a (b	cosC – c cosB)	
		= b (a cosC) – c (a cos	sB)	(i)
	::	From projection rule	we know that	
		$b = a \cos C + c \cos A$	\Rightarrow	$a \cos C = b - c \cos A$
	&	c = a cosB + b cosA	\Rightarrow	a cosB = c – b cosA

Put values of a cosC and a cosB in equation (i), we get

L.H.S. = b (b - c cos A) - c(c - b cos A) = $b^2 - bc cos A - c^2 + bc cos A$ = $b^2 - c^2$ = R.H.S.

Hence L.H.S. = R.H.S.

Note: We have also proved a (b cosC – c cosB) = $b^2 - c^2$ by using cosine – rule in solved ***Example.**

Hence L.H.S. = R.H.S.

Problems for Self Practice-3 :

(1) In a
$$\triangle ABC$$
, if $\angle A = \frac{\pi}{4}$, $\angle B = \frac{5\pi}{12}$, show that $a + c\sqrt{2} = 2b$.

(2) In a \triangle ABC, prove that :

(i)
$$b(a \cos C - c \cos A) = a^2 - c^2$$

(ii)
$$2\left(b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2}\right) = a + b + c$$

(iii)
$$\frac{\cos B}{\cos C} = \frac{c - b \cos A}{b - c \cos A}$$
.

(iv) $\frac{\cos A}{\cos B + b \cos C} + \frac{\cos B}{a \cos C + c \cos A} + \frac{\cos C}{a \cos B + b \cos A} = \frac{a^2 + b^2 + c^2}{2abc}.$

4. NAPIER'S ANALOGY (TANGENT RULE) :

(a)
$$\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c}\cot\frac{A}{2}$$
 (b) $\tan\left(\frac{C-A}{2}\right) = \frac{c-a}{c+a}\cot\frac{B}{2}$

(c)
$$\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b}\cot\frac{C}{2}$$

-SOLVED EXAMPLE_

- **Example 13 :** In a \triangle ABC, the tangent of half the difference of two angles is one-third the tangent of half the sum of the angles. Determine the ratio of the sides opposite to the angles.
- Solution : Here,

using Napier's analogy,
$$\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b} \cdot \cot\left(\frac{C}{2}\right)$$
 (ii)

from (i) & (ii) ;

$$\frac{1}{3}\tan\left(\frac{A+B}{2}\right) = \frac{a-b}{a+b} \cdot \cot\left(\frac{C}{2}\right) \implies \frac{1}{3}\cot\left(\frac{C}{2}\right) = \frac{a-b}{a+b} \cdot \cot\left(\frac{C}{2}\right)$$

$$\{\text{as A} + \text{B} + \text{C} = \pi :: \tan\left(\frac{\text{B} + \text{C}}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{\text{C}}{2}\right) = \cot\frac{\text{C}}{2}\}$$

$$\Rightarrow \qquad \frac{a-b}{a+b} = \frac{1}{3} \qquad \text{or} \qquad 3a-3b = a+b$$

2a = 4b or
$$\frac{a}{b} = \frac{2}{1} \Longrightarrow \frac{b}{a} = \frac{1}{2}$$

Thus the ratio of the sides opposite to the angles is b : a = 1 : 2.

.....(i)

Example 14 : Find the unknown elements of the $\triangle ABC$ in which a = $\sqrt{3}$ + 1, b = $\sqrt{3}$ - 1, C = 60°.

Solution :

...

...

a =
$$\sqrt{3}$$
 + 1, b = $\sqrt{3}$ - 1, C = 60°
A + B + C = 180°
A + B = 120°

: From law of tangent, we know that
$$\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b} \cot \frac{C}{2}$$

$$= \frac{(\sqrt{3}+1)-(\sqrt{3}-1)}{(\sqrt{3}+1)+(\sqrt{3}-1)} \cot 30^{\circ} = \frac{2}{2\sqrt{3}} \cot 30^{\circ} \Rightarrow \quad \tan\left(\frac{A-B}{2}\right) = 1$$
$$\frac{A-B}{2} = \frac{\pi}{4} = 45^{\circ}$$

$$\Rightarrow \qquad A - B = 90^{\circ} \qquad \dots \dots (ii)$$

From equation (i) and (ii), we get

 $A = 105^{\circ}$ and $B = 15^{\circ}$

Now,

$$\therefore$$
 From **sine-rule**, we know that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$\therefore \qquad c = \frac{a \sin C}{\sin A} = \frac{(\sqrt{3} + 1) \sin 60^{\circ}}{\sin 105^{\circ}} = \frac{(\sqrt{3} + 1) \frac{\sqrt{3}}{2}}{\frac{\sqrt{3} + 1}{2\sqrt{2}}} \qquad \because \qquad \sin 105^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$
$$\Rightarrow \qquad c = \sqrt{6}$$
$$\therefore \qquad c = \sqrt{6}, A = 105^{\circ}, B = 15^{\circ}$$

Problems for Self Practice-4 :

(1) If $\triangle ABC$ is right angled at C, prove that : (a) $\tan \frac{A}{2} = \sqrt{\frac{c-b}{c+b}}$ (b) $\sin(A-B) = \frac{a^2 - b^2}{a^2 + b^2}$

(2) In a
$$\triangle ABC$$
 if b = 3, c = 5 and cos (B – C) = $\frac{7}{25}$, then find the value of tan $\frac{A}{2}$.

(3) If in a
$$\triangle ABC$$
, we define $x = \tan\left(\frac{B-C}{2}\right) \tan\frac{A}{2}$, $y = \tan\left(\frac{C-A}{2}\right) \tan\frac{B}{2}$ and $z = \tan\left(\frac{A-B}{2}\right) \tan\frac{C}{2}$, then show that $x + y + z = -xyz$.
Answer: (2) $\frac{1}{3}$

5. HALF ANGLE FORMULAE :

$$s = \frac{a+b+c}{2}$$
 = semi-perimeter of triangle.

(a) (i)
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
 (ii) $\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$ (iii) $\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$
(b) (i) $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$ (ii) $\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$ (iii) $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$

(c) (i)
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
 (ii) $\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$ (iii) $\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$

$$=\frac{\Delta}{s(s-a)} \qquad \qquad =\frac{\Delta}{s(s-b)} \qquad \qquad =\frac{\Delta}{s(s-c)}$$

(d) Area of Triangle

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C = \frac{1}{2}ap_1 = \frac{1}{2}bp_2 = \frac{1}{2}cp_3,$$

where p_1, p_2, p_3 are altitudes from vertices A,B,C respectively.

SOLVED EXAMPLE

Example 15 : If Δ is the area and 2s the sum of the sides of a triangle, then show $\Delta \le \frac{s^2}{3\sqrt{3}}$.

Solution : We have, 2s = a + b + c, $\Delta^2 = s(s - a)(s - b)(s - c)$

Now, A.M. \geq G.M.

$$\frac{(s-a)+(s-b)+(s-c)}{3} \ge \{(s-a)(s-b)(s-c)\}^{1/3}$$

or
$$\frac{3s-2s}{3} \ge \left(\frac{\Delta^2}{s}\right)^{1/3}$$
 or $\frac{s}{3} \ge \left(\frac{\Delta^2}{s}\right)^{1/3}$ or $\frac{\Delta^2}{s} \le \frac{s^3}{27}$ \Rightarrow $\Delta \le \frac{s^2}{3\sqrt{3}}$

Example 16 : In a $\triangle ABC$ if a, b, c are in A.P., then find the value of tan $\frac{A}{2}$. tan $\frac{C}{2}$

Solution: Since $\tan \frac{A}{2} = \frac{\Delta}{s(s-a)}$ and $\tan \frac{C}{2} = \frac{\Delta}{s(s-c)}$ $\therefore \quad \tan \frac{A}{2} \cdot \tan \frac{C}{2} = \frac{\Delta^2}{s^2(s-a)(s-c)}$ $\therefore \quad \Delta^2 = s (s-a) (s-b) (s-c)$ $\therefore \quad \tan \frac{A}{2} \cdot \tan \frac{C}{2} = \frac{s-b}{s} = 1 - \frac{b}{s}$ (i) $\because \quad \text{it is given that a, b, c are in A.P.} \Rightarrow 2b = a + c$ $\because \quad s = \frac{a+b+c}{2} = \frac{3b}{2}$ $\therefore \quad \frac{b}{s} = \frac{2}{3}$ put in equation (i), we get $\therefore \quad \tan \frac{A}{2} \cdot \tan \frac{C}{2} = 1 - \frac{2}{3}$ $\Rightarrow \quad \tan \frac{A}{2} \cdot \tan \frac{C}{2} = \frac{1}{3}$

Example 17 : In a $\triangle ABC$ if b sinC(b cosC + c cosB) = 42, then find the area of the $\triangle ABC$.

Solution :
$$\because$$
b sinC (b cosC + c cosB) = 42......(i) given \because From projection rule, we know that
a = b cosC + c cosB put in (i), we get
ab sinC = 42......(ii) \because $\Delta = \frac{1}{2}$ ab sinC \therefore from equation (ii), we get
 \therefore $\Delta = 21$ sq. unit

Example 18 : In any $\triangle ABC$, prove that $(a + b + c)\left(\tan\frac{A}{2} + \tan\frac{B}{2}\right) = 2c \cot\frac{C}{2}$.

Solution: $\therefore \quad L.H.S. = (a + b + c) \left(\tan \frac{A}{2} + \tan \frac{B}{2} \right)$ $\therefore \quad \tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \quad \text{and} \quad \tan \frac{B}{2} = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$ $\therefore \quad L.H.S. = (a + b + c) \left[\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} + \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \right]$ $= 2s \sqrt{\frac{s-c}{s}} \left[\sqrt{\frac{s-b}{s-a}} + \sqrt{\frac{s-a}{s-b}} \right]$ $= 2 \sqrt{s(s-c)} \left[\frac{s-b+s-a}{\sqrt{(s-a)(s-b)}} \right] \quad \because \quad 2s = a + b + c$ $\therefore \quad 2s - b - a = c$ $= 2 \sqrt{s(s-c)} \left[\frac{c}{\sqrt{(s-a)(s-b)}} \right] = 2c \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$

$$\therefore \qquad \cot\frac{C}{2} = \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} = 2c \cot\frac{C}{2} = R.H.S.$$

Hence L.H.S. = R.H.S.

Problems for Self Practice-5 :

(1) Given a = 6, b = 8, c = 10. Find

(i) sinA (ii) tanA (iii) sin $\frac{A}{2}$

(iv)
$$\cos\frac{A}{2}$$
 (v) $\tan\frac{A}{2}$

(2) Prove that in any
$$\triangle ABC$$
, (abcs) $\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} = \Delta^2$.

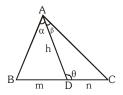
Answers: (1) (i)
$$\frac{3}{5}$$
 (ii) $\frac{3}{4}$ (iii) $\frac{1}{\sqrt{10}}$ (iv) $\frac{3}{\sqrt{10}}$ (v) $\frac{1}{3}$ (vi) 24

(vi) Δ

6. m-n THEOREM :

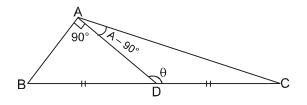
(m + n) $\cot \theta$ = m $\cot \alpha$ – n $\cot \beta$

 $(m + n) \cot \theta = n \cot B - m \cot C.$



_SOLVED EXAMPLE____

Example 19 : If the median AD of a triangle ABC is perpendicular to AB, prove that $\tan A + 2\tan B = 0$. **Solution :** From the figure, we see that $\theta = 90^\circ + B$ (as θ is external angle of $\triangle ABD$)

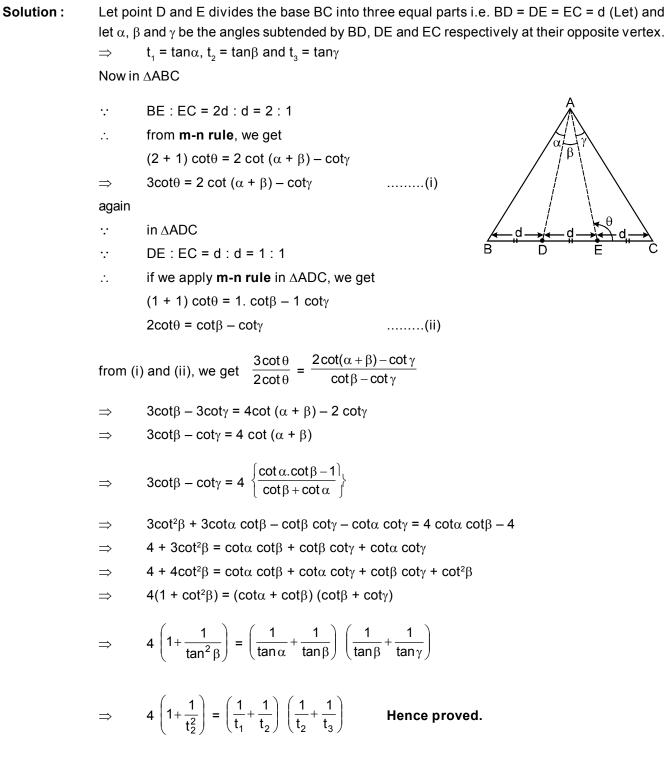


Now if we apply **m-n rule** in $\triangle ABC$, we get

- $(1 + 1) \cot (90^{\circ} + B) = 1. \cot 90^{\circ} 1. \cot (A 90^{\circ})$
- \Rightarrow 2 tan B = cot (90° A)
- \Rightarrow 2 tan B = tan A
- \Rightarrow tan A + 2 tan B = 0 Hence proved.
- **Example 20**: The base of a triangle is divided into three equal parts. If t_1, t_2, t_3 be the tangents of the angles subtended by these parts at the opposite vertex, prove that

$$4\left(1+\frac{1}{t_2^2}\right) = \left(\frac{1}{t_1}+\frac{1}{t_2}\right)\left(\frac{1}{t_2}+\frac{1}{t_3}\right).$$

Solution of Triangle



Problems for Self Practice-6 :

(1) In a $\triangle ABC$, the median to the side BC is of length $\frac{1}{\sqrt{11-6\sqrt{3}}}$ unit and it divides angle A into the angles of 30° and 45°. Prove that the side BC is of length 2 unit.

С

7. LENGTH OF ANGLE BISECTORS AND MEDIANS AND ALTITUDES :

(i) Length of an angle bisector from the angle A = $\beta_a = \frac{2bc \cos \frac{A}{2}}{b+c}$;

(ii) Length of median from the angle A =
$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

(iii) Length of altitude from the angle A = A_a = $\frac{2\Delta}{a}$

NOTE :
$$m_a^2 + m_b^2 + m_c^2 = \frac{3}{4} (a^2 + b^2 + c^2)$$

SOLVED EXAMPLE_

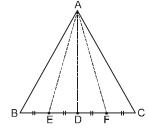
- **Example 21**: AD is a median of the \triangle ABC. If AE and AF are medians of the triangles ABD and ADC respectively, and AD = m₁, AE = m₂, AF = m₃, then prove that m₂² + m₃² 2m₁² = $\frac{a^2}{8}$.
- **Solution :** \therefore In \triangle ABC

$$AD^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2) = m_1^2$$
(i)

: In
$$\triangle ABD$$
, $AE^2 = m_2^2 = \frac{1}{4} (2c^2 + 2AD^2 - \frac{a^2}{4})$ (ii)

Similarly in $\triangle ADC$, $AF^2 = m_3^2 = \frac{1}{4} \left(2AD^2 + 2b^2 - \frac{a^2}{4} \right)$ (iii) by adding equations (ii) and (iii), we get

$$\therefore \qquad m_2^2 + m_3^2 = \frac{1}{4} \left(4AD^2 + 2b^2 + 2c^2 - \frac{a^2}{2} \right)$$
$$= AD^2 + \frac{1}{4} \left(2b^2 + 2c^2 - \frac{a^2}{2} \right) = AD^2 + \frac{1}{4} \left(2b^2 + 2c^2 - a^2 + \frac{a^2}{2} \right)$$



:.
$$m_2^2 + m_3^2 - 2m_1^2 = \frac{a^2}{8}$$
 Hence Proved

Example 22 : If in a triangle ABC, CD is the angle bisector of the angle ACB, then prove that CD is equal to-

(i)
$$\frac{2ab}{a+b}\cos\frac{C}{2}$$
 (ii) $\frac{b\sin\angle DAC}{\sin(B+C/2)}$

Solution : $\triangle CAB = \triangle CAD + \triangle CDB$

$$\Rightarrow \frac{1}{2}\operatorname{absinC} = \frac{1}{2}\operatorname{b.CD.sin}\left(\frac{C}{2}\right) + \frac{1}{2}\operatorname{a.CD}\operatorname{sin}\left(\frac{C}{2}\right)$$

$$\Rightarrow \quad CD(a + b) \sin\left(\frac{C}{2}\right) = ab\left(2\sin\left(\frac{C}{2}\right)\cos\left(\frac{C}{2}\right)\right)$$

So
$$CD = \frac{2ab\cos(C/2)}{(a+b)}$$

and in
$$\triangle CAD$$
, $\frac{CD}{\sin \angle DAC} = \frac{b}{\sin \angle CDA}$ (by sine rule)

$$\Rightarrow \quad CD = \frac{b \sin \angle DAC}{\sin(B + C/2)}$$

Problems for Self Practice-7 :

- (1) In a $\triangle ABC$ if a = 5 cm, b = 4 cm, c = 3 cm. 'G' is the centroid of triangle, then find circumradius of $\triangle GAB$.
- (2) In a \triangle ABC, the lengths of the bisectors of the angle A, B and C are x, y, z respectively. Show that

$$\frac{1}{x}\cos\frac{A}{2} + \frac{1}{y}\cos\frac{B}{2} + \frac{1}{z}\cos\frac{C}{2} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$

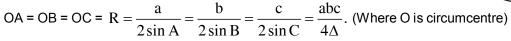
(3) If p_1, p_2, p_3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, prove that

(i)
$$p_1 p_2 p_3 = \frac{a^2 b^2 c^2}{8R^3}$$
 (ii) $\Delta = \sqrt{\frac{1}{2} R p_1 p_2 p_3}$

Answer: (1) $\frac{5}{12} \sqrt{13}$

8. CIRCUMCIRCLE AND DISTANCE OF CIRCUMCENTRE FROM VERTICES & SIDES OF TRIANGLE:

Circumcentre is the point of intersection of perpendicular bisectors of the sides and distance between circumcentre & vertex of triangle is called circumradius 'R'.



Distance of O from side BC = R cosA = OD

Distance of O from side AB = R cosC

Distance of O from side AC = R cosB

SOLVED EXAMPLE

Example 23: In a $\triangle ABC$, prove that sinA + sinB + sinC = $\frac{s}{R}$

Solution : In a
$$\triangle ABC$$
, we know that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$

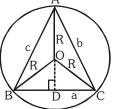
$$\therefore \qquad \sin A = \frac{a}{2R}, \ \sin B = \frac{b}{2R} \ \text{and} \ \sin C = \frac{c}{2R}.$$

$$\therefore \qquad \sin A + \sin B + \sin C = \frac{a+b+c}{2R} = \frac{2s}{2R} \qquad \qquad \Rightarrow \qquad a+b+c=2s$$

$$\Rightarrow$$
 sinA + sinB + sinC = $\frac{s}{R}$.

Example 24 : In a $\triangle ABC$ if a = 13 cm, b = 14 cm and c = 15 cm, then find its circumradius.

Solution: $R = \frac{abc}{4\Delta} \qquad \dots \dots (i)$ $\therefore \qquad \Delta = \sqrt{s(s-a)(s-b)(s-c)}$ $\therefore \qquad s = \frac{a+b+c}{2} = 21 \text{ cm}$ $\therefore \qquad \Delta = \sqrt{21 \times 8 \times 7 \times 6} = \sqrt{7^2 \times 4^2 \times 3^2} \qquad \Rightarrow \qquad \Delta = 84 \text{ cm}^2$ $\therefore \qquad R = \frac{13 \times 14 \times 15}{4 \times 84} = \frac{65}{8} \text{ cm} \qquad \therefore \qquad R = \frac{65}{8} \text{ cm} \text{ Ans.}$



Example 25 : In a $\triangle ABC$, prove that $s = 4R \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}$.

Solution : In a $\triangle ABC$,

$$\therefore \qquad \cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}} \text{ , } \cos\frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}} \text{ and } \cos\frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}} \text{ and } R = \frac{abc}{4\Delta}$$

$$\therefore \qquad \text{R.H.S.} = 4\text{R}\cos\frac{A}{2} \cdot \cos\frac{B}{2} \cdot \cos\frac{C}{2}$$

$$= \frac{abc}{\Delta} \cdot s \sqrt{\frac{s(s-a)(s-b)(s-c)}{(abc)^2}} = s \quad \because \Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

= L.H.S.

Hence R.H.S = L.H.S. proved.

Example 26 : In a $\triangle ABC$, prove that $\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} = \frac{4R}{\Delta}$.

Solution : $\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} = \frac{4R}{\Delta}$ $\therefore \quad L.H.S. = \left(\frac{1}{s-a} + \frac{1}{s-b}\right) + \left(\frac{1}{s-c} - \frac{1}{s}\right)$ $= \frac{2s-a-b}{(s-a)(s-b)} + \frac{(s-s+c)}{s(s-c)} \quad \because \quad 2s = a+b+c$ $= \frac{c}{(s-a)(s-b)} + \frac{c}{s(s-c)}$ $= c \left[\frac{s(s-c) + (s-a)(s-b)}{s(s-a)(s-b)(s-c)}\right] = c \left[\frac{2s^2 - s(a+b+c) + ab}{\Delta^2}\right]$ $\therefore \quad L.H.S. = c \left[\frac{2s^2 - s(2s) + ab}{\Delta^2}\right] = \frac{abc}{\Delta^2} = \frac{4R\Delta}{\Delta} \quad \because \quad R = \frac{abc}{4\Delta}$ $\Rightarrow \quad abc = 4R\Delta$ $\therefore \quad L.H.S. = \frac{4R}{\Delta} = R.H.S.$

Problems for Self Practice-8 :

(1) In a $\triangle ABC$, prove the following :

(i) a $\cot A + b \cot B + c \cot C = 2(R + r)$.

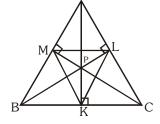
(ii)
$$4\left(\frac{s}{a}-1\right)\left(\frac{s}{b}-1\right)\left(\frac{s}{c}-1\right) = \frac{r}{R}$$
.

- (2) If α , β , γ are the distances of the vertices of a triangle from the corresponding points of contact with the incircle, then prove that $\frac{\alpha\beta\gamma}{\alpha+\beta+\gamma} = r^2$
- (3) If x, y, z are respectively be the perpendiculars from the circumcentre to the sides of $\triangle ABC$,

then prove that $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{4xyz}$.

9. ORTHOCENTRE AND ITS DISTANCE FROM VERTICES & SIDES OF TRIANGLE:

(a) Point of intersection of altitudes is orthocentre & the triangle KLM which is formed by joining the feet of the altitudes is called the pedal triangle.



- (b) The distances of the orthocentre from the angular points of the \triangle ABC are 2R cosA, 2R cosB, & 2R cosC.
- (c) The distance of P from sides are 2R cosB cosC, 2R cosC cosA and 2R cosA cosB.

SOLVED EXAMPLE_

.. ..

Example 27 : If x, y and z are respectively the distances of the vertices of the \triangle ABC from its orthocentre, then prove that x + y + z = 2(R + r)

Solution :

m

$$x = 2R \cos A, y = 2R \cos B, z = 2R \cos C$$
$$x + y + z = 2R (\cos A + \cos B + \cos C)$$

: in a $\triangle ABC \cos A + \cos B + \cos C = 1 + 4\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

$$x + y + z = 2R\left(1 + 4\sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2}\right) = 2\left(R + 4R\sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2}\right)$$

$$r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \qquad \qquad \therefore \qquad x + y + z = 2(R + r)$$

Problems for Self Practice-9:

•:•

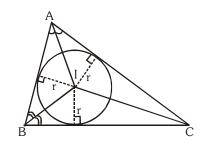
(1) If x, y, z are the distance of the vertices of $\triangle ABC$ respectively from the orthocentre, then prove

that
$$\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$$

(2) In a $\triangle ABC$, AD is altitude and H is the orthocentre prove that AH : DH = (tanB + tanC) : tanA

10. **INCIRCLE AND DISTANCE OF INCENTRE FROM VERTICES & SIDES OF TRIANGLE:**

Point of intersection of internal angle bisectors is incentre and perpendicular distance of incentre from any side is called inradius 'r'.



(i)
$$r = \frac{\Delta}{s} = (s-a)\tan\frac{A}{2} = (s-b)\tan\frac{B}{2} = (s-c)\tan\frac{C}{2} = 4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

$$=a\frac{\sin\frac{B}{2}\sin\frac{C}{2}}{\cos\frac{A}{2}}=b\frac{\sin\frac{A}{2}\sin\frac{C}{2}}{\cos\frac{B}{2}}=c\frac{\sin\frac{B}{2}\sin\frac{A}{2}}{\cos\frac{C}{2}}$$

(ii) IA = r cosec
$$\frac{A}{2}$$
; IB = r cosec $\frac{B}{2}$; IC = r cosec $\frac{C}{2}$

SOLVED EXAMPLE

п

Example 28 : In a triangle ABC, if a : b : c = 4 : 5 : 6, then find the ratio between its circumradius and inradius.

Solutio

on:
$$\frac{R}{r} = \frac{abc}{4\Delta} / \frac{\Delta}{s} = \frac{(abc)s}{4\Delta^2} \implies \frac{R}{r} = \frac{abc}{4(s-a)(s-b)(s-c)}$$
(i)

$$\therefore$$
 a:b:c=4:5:6 \Rightarrow $\frac{a}{4} = \frac{b}{5} = \frac{c}{6} = k$ (say)

 \Rightarrow a = 4k, b = 5k, c = 6k

:.
$$s = \frac{a+b+c}{2} = \frac{15k}{2}$$
, $s-a = \frac{7k}{2}$, $s-b = \frac{5k}{2}$, $s-c = \frac{3k}{2}$

using (i) in these values $\frac{R}{r} = \frac{(4k)(5k)(6k)}{4\left(\frac{7k}{2}\right)\left(\frac{5k}{2}\right)\left(\frac{3k}{2}\right)}$ $=\frac{16}{7}$ **Example 29 :** If A, B, C are the angles of a triangle, prove that : $cosA + cosB + cosC = 1 + \frac{r}{R}$.

Solution :
$$\cos A + \cos B + \cos C = 2\cos\left(\frac{A+B}{2}\right) \cdot \cos\left(\frac{A-B}{2}\right) + \cos C$$

$$= 2\sin\frac{C}{2} \cdot \cos\left(\frac{A-B}{2}\right) + 1 - 2\sin^{2}\frac{C}{2} = 1 + 2\sin\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right) - \sin\left(\frac{C}{2}\right)\right]$$

$$= 1 + 2\sin\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right) - \cos\left(\frac{A+B}{2}\right)\right] \qquad \left\{\because \frac{C}{2} = 90^{\circ} - \left(\frac{A+B}{2}\right)\right\}$$

$$= 1 + 2\sin\frac{C}{2} \cdot 2\sin\frac{A}{2} \cdot \sin\frac{B}{2} = 1 + 4\sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2}$$

$$= 1 + \frac{r}{R} \qquad \{as, r = 4R \sin A/2 \cdot \sin B/2 \cdot \sin C/2\}$$

$$\Rightarrow \qquad \cos A + \cos B + \cos C = 1 + \frac{r}{R} \cdot \text{Hence proved.}$$

Problems for Self Practice-10:

(1) If in
$$\triangle ABC$$
, a = 3, b = 4 and c = 5, find
(a) \triangle (b) R (c) r

(2) In a $\triangle ABC$, show that :

(a)
$$\frac{a^2 - b^2}{c} = 2R\sin(A - B)$$
 (b) $r\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} = \frac{\Delta}{4R}$ (c) $a + b + c = \frac{abc}{2Rr}$

(3) Let $\Delta \& \Delta'$ denote the areas of a Δ and that of its incircle. Prove that

$$\Delta: \Delta' = \left(\cot\frac{A}{2} \cdot \cot\frac{B}{2} \cdot \cot\frac{C}{2}\right): \pi$$

(4) If I be the incentre of $\triangle ABC$, then prove that IA . IB . IC = abc $\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}$.

Answers: (1) (a) 6 (b) $\frac{5}{2}$ (c) 1

11. EX-CIRCLES AND DISTANCE OF EXCENTRES FROM VERTICES & SIDES OF TRIANGLE:

Point of intersection of two external angles and one internal angle bisectors is excentre and perpendicular distance of excentre from any side is called exradius. If r_1 is the radius of escribed circle opposite to $\angle A$ of $\triangle ABC$ and so on, then -

(i)
$$r_1 = \frac{\Delta}{s-a} = s \tan \frac{A}{2} = 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$$

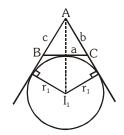
(ii)
$$r_2 = \frac{\Delta}{s-b} = s \tan \frac{B}{2} = 4R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2} = \frac{b \cos \frac{A}{2} \cos \frac{C}{2}}{\cos \frac{B}{2}}$$

(iii)
$$r_3 = \frac{\Delta}{s-c} = s \tan \frac{C}{2} = 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} = \frac{c \cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{C}{2}}$$

 $\rm I_1, \rm I_2$ and $\rm I_3$ are taken as ex-centre opposite to vertex A, B, C respectively.

(iv)
$$I_1 A = r_1 \csc \frac{A}{2}$$
; $I_1 B = r_1 \sec \frac{B}{2}$; $I_1 C = r_1 \sec \frac{C}{2}$
 $I_2 A = r_2 \sec \frac{A}{2}$; $I_2 B = r_2 \csc \frac{B}{2}$; $I_2 C = r_2 \sec \frac{C}{2}$
A B C

$$I_{3} A = r_{3} \sec \frac{A}{2}$$
; $I_{3} B = r_{3} \sec \frac{B}{2}$; $I_{3} C = r_{3} \csc \frac{C}{2}$



Solved Example

Example 30 : Find the value of the expression $\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3}$

Solution :

$$\frac{(b-c)}{r_1} + \frac{(c-a)}{r_2} + \frac{(a-b)}{r_3} \implies (b-c)\left(\frac{s-a}{\Delta}\right) + (c-a)\left(\frac{s-b}{\Delta}\right) + (a-b)\left(\frac{s-c}{\Delta}\right)$$
$$\implies \frac{(s-a)(b-c) + (s-b)(c-a) + (s-c)(a-b)}{\Delta}$$
$$= \frac{s(b-c+c-a+a-b) - [ab-ac+bc-ba+ac-bc]}{\Delta} = \frac{0}{\Delta} = 0$$
Thus,
$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$$

Example 31 : If $r_1 = r_2 + r_3 + r$, prove that the triangle is right angled. **Solution :** We have, $r_1 - r = r_2 + r_3$

$$\Rightarrow \frac{\Delta}{s-a} - \frac{\Delta}{s} = \frac{\Delta}{s-b} + \frac{\Delta}{s-c} \Rightarrow \frac{s-s+a}{s(s-a)} = \frac{s-c+s-b}{(s-b)(s-c)}$$
$$\Rightarrow \frac{a}{s(s-a)} = \frac{2s-(b+c)}{(s-b)(s-c)} \qquad \{as, 2s = a+b+c\}$$
$$\Rightarrow \frac{a}{s(s-a)} = \frac{a}{(s-b)(s-c)} \Rightarrow s^{2} - (b+c) s+bc = s^{2} - as$$

$$\Rightarrow \quad s(-a + b + c) = bc \qquad \Rightarrow \qquad \frac{(b + c - a)(a + b + c)}{2} = bc$$

$$\Rightarrow \quad (b + c)^{2} - (a)^{2} = 2bc \qquad \Rightarrow \qquad b^{2} + c^{2} + 2bc - a^{2} = 2bc$$

$$\Rightarrow \quad b^{2} + c^{2} = a^{2}$$

$$\therefore \qquad \angle A = 90^{\circ}.$$

Example 32: In a $\triangle ABC$, prove that $r_1 + r_2 + r_3 - r = 4R = 2a \operatorname{cosec} A$

Solution:

$$\therefore \quad L.H.S = r_1 + r_2 + r_3 - r = \frac{\Delta}{s-a} + \frac{\Delta}{s-b} + \frac{\Delta}{s-c} - \frac{\Delta}{s}$$

$$= \Delta \left(\frac{1}{s-a} + \frac{1}{s-b} \right) + \Delta \left(\frac{1}{s-c} - \frac{1}{s} \right) = \Delta \left[\left(\frac{s-b+s-a}{(s-a)(s-b)} \right) + \left(\frac{s-s+c}{s(s-c)} \right) \right]$$

$$= \Delta \left[\frac{c}{(s-a)(s-b)} + \frac{c}{s(s-c)} \right] = c\Delta \left[\frac{s(s-c) + (s-a)(s-b)}{s(s-a)(s-b)(s-c)} \right]$$

$$= c\Delta \left[\frac{2s^2 - s(a+b+c) + ab}{\Delta^2} \right] = \frac{abc}{\Delta} \quad \because \qquad a+b+c=2s$$
$$\therefore \qquad R = \frac{abc}{4\Delta}$$
$$= 4R = 2a \operatorname{cosec} A \qquad \because \qquad \frac{a}{\sin A} = 2R = a \operatorname{cosec} A$$
$$= R.H.S.$$
Hence L.H.S. = R.H.S.

Example 33 : If the area of a \triangle ABC is 96 sq. unit and the radius of the escribed circles are respectively 8, 12 and 24. Find the perimeter of \triangle ABC.

Solution :
$$\therefore$$
 $\Delta = 96$ sq. unit
 $r_1 = 8, r_2 = 12$ and $r_3 = 24$ \because $r_1 = \frac{\Delta}{s-a}$ \Rightarrow $s - a = 12$(i) \because $r_2 = \frac{\Delta}{s-b}$ \Rightarrow $s - b = 8$(ii) \because $r_3 = \frac{\Delta}{s-c}$ \Rightarrow $s - c = 4$(iii) \therefore adding equations (i), (ii) & (iii), we get
 $3s - (a + b + c) = 24$
 $s = 24$ \therefore perimeter of $\triangle ABC = 2s = 48$ unit. Ans.

Problems for Self Practice-11 :

(a)

(1) In a $\triangle ABC$, prove that (i) $r_1r_2 + r_2r_3 + r_3r_1 = s^2$ (ii) $rr_1 + rr_2 + rr_3 = ab + bc + ca - s^2$ (iii) $\frac{r_1 - r}{a} + \frac{r_2 - r}{b} = \frac{c}{r_3}$ (iv) $\frac{1}{4}r^2s^2\left(\frac{1}{r} - \frac{1}{r_1}\right)\left(\frac{1}{r} - \frac{1}{r_2}\right)\left(\frac{1}{r} - \frac{1}{r_3}\right) = R$

(2) If A, A_1 , A_2 and A_3 are the areas of the inscribed and escribed circles respectively of a $\triangle ABC$,

then prove that
$$\frac{1}{\sqrt{A}} = \frac{1}{\sqrt{A_1}} + \frac{1}{\sqrt{A_2}} + \frac{1}{\sqrt{A_3}}$$

(3) In an equilateral $\triangle ABC$, R = 2, find

Answers: (3) (a) 1 (b) 3 (c) $2\sqrt{3}$

12. THE DISTANCES BETWEEN THE SPECIAL POINTS :

- (a) The distance between circumcentre and orthocentre is = $R\sqrt{1-8\cos A \cos B \cos C}$
- (b) The distance between circumcentre and incentre is $=\sqrt{R^2 2Rr}$
- (c) The distance between incentre and orthocentre is = $\sqrt{2r^2 4R^2 \cos A \cos B \cos C}$
- (d) The distances between circumcentre & excentres are

$$OI_1 = R\sqrt{1 + 8\sin{\frac{A}{2}}\cos{\frac{B}{2}}\cos{\frac{C}{2}}} = \sqrt{R^2 + 2Rr_1}$$
 & so on.

(e) I I₁ = 4 R sin
$$\frac{A}{2}$$
; I I₂ = 4 R sin $\frac{B}{2}$; I I₃ = 4 R sin $\frac{C}{2}$.

Solved Example _____

Example 34 : Prove that the distance between the circumcentre and the orthocentre of a triangle ABC

is $R\sqrt{1-8\cos A\cos B\cos C}$.

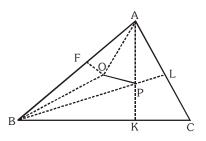
Solution : Let O and P be the circumcentre and the orthocentre respectively. If OF is the perpendicular to AB, we have $\angle OAF = 90^\circ - \angle AOF = 90^\circ - C$. Also $\angle PAL = 90^\circ - C$.

Hence, $\angle OAP = A - \angle OAF - \angle PAL = A - 2(90^{\circ} - C) = A + 2C - 180^{\circ}$

= A + 2C - (A + B + C) = C - B.

Also OA = R and PA = 2RcosA.

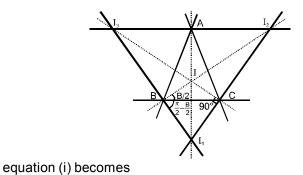
Now in $\triangle AOP$, $OP^{2} = OA^{2} + PA^{2} - 2OA. PA \cos OAP$ $= R^{2} + 4R^{2} \cos^{2} A - 4R^{2} \cos A \cos(C - B)$ $= R^{2} + 4R^{2} \cos A [\cos A - \cos(C - B)]$ $= R^{2} - 4R^{2} \cos A [\cos(B + C) + \cos(C - B)] = R^{2} - 8R^{2} \cos A \cos B \csc C.$ Hence $OP = R\sqrt{1 - 8\cos A \cos B \cos C}$.



Example 35 : If I is the incentre and I_1 , I_2 , I_3 are the centres of escribed circles of the $\triangle ABC$, prove that

$$II_{1}$$
. II_{2} . $II_{3} = 16R^{2}r$

Solution: $II_1 \cdot II_2 \cdot II_3 = abc \sec \frac{A}{2} \cdot \sec \frac{B}{2} \cdot \sec \frac{C}{2} \quad \dots \dots (i)$ $\therefore \quad a = 2R \sin A, b = 2R \sin B \text{ and } c = 2R \sin C$ ÷



Problems for Self Practice-12 :

(1) In a $\triangle ABC$, if b = 2 cm, c = $\sqrt{3}$ cm and $\angle A = \frac{\pi}{6}$, then find distance between its circumcentre and incentre.

Answer : (1)
$$\sqrt{2-\sqrt{3}}$$
 cm

13. SOLUTION OF TRIANGLES :

The three sides a,b,c and the three angles A,B,C are called the elements of the triangle ABC. When any three of these six elements (except all the three angles) of a triangle are given, the triangle is known completely; that is the other three elements can be expressed in terms of the given elements and can be evaluated. This process is called the solution of triangles.

* If the three sides a,b,c are given, angle A is obtained from $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

or
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
. B and C can be obtained in the similar way.

If two sides b and c and the included angle A are given, then $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$ gives $\frac{B-C}{2}$.

Also
$$\frac{B+C}{2} = 90^{\circ} - \frac{A}{2}$$
, so that B and C can be evaluated. The third side is given by

$$a = b \frac{\sin A}{\sin B}$$
 or $a^2 = b^2 + c^2 - 2bc \cos A$.

If two sides b and c and an angle opposite the one of them (say B) are given then

$$\sin C = \frac{c}{b} \sin B$$
, $A = 180^{\circ} - (B + C)$ and $a = \frac{b \sin A}{\sin B}$ given the remaining elements

Case I :

b < c sin B.

We draw the side c and angle B. Now it is obvious from the figure that there is no triangle possible.

Case II :

 $b = c \sin B$ and B is an acute angle, there is only one triangle possible. and it is right-angled at C.

Case III :

b > c sin B, b < c and B is an acute angle, then there are two triangles possible for two values of angle C.

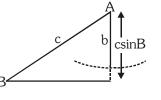
Case IV :

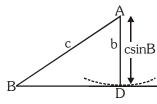
b > c sin B, c < b and B is an acute angle, then there is only one triangle.

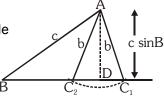
Case V :

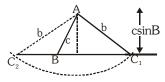
 $b > c \sin B$, c > b and B is an obtuse angle.

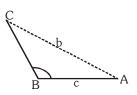
For any choice of point C, b will be greater than c which is a contradication as c > b (given). So there is no triangle possible.











Case VI :

 $b > c \sin B$, c < b and B is an obtuse angle.

We can see that the circle with A as centre and b as radius will cut the line only in one point. So only one triangle is possible.

Case VII :

 $b > c and B = 90^{\circ}$.

Again the circle with A as centre and b as radius will cut the line only in one point. So only one triangle is possible.

Case VIII :

 $b < c and B = 90^{\circ}$.

The circle with A as centre and b as radius will not cut the line in any point. So no triangle is possible.

This is, sometimes, called an ambiguous case.

Alternative Method : By applying cosine rule, we have $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

$$\Rightarrow \qquad a^2 - (2c \cos B)a + (c^2 - b^2) = 0 \Rightarrow a = c \cos B \pm \sqrt{(c \cos B)^2 - (c^2 - b^2)}$$

$$\Rightarrow \qquad \mathsf{a} = \mathsf{c} \cos \mathsf{B} \pm \sqrt{\mathsf{b}^2 - (\mathsf{c} \sin \mathsf{B})^2}$$

This equation leads to following cases :

Case-I: If b < csinB, no such triangle is possible.

Case-II:Let b = c sinB. There are further following case :

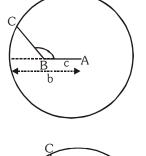
(a) B is an obtuse angle \Rightarrow cosB is negative. There exists no such triangle.

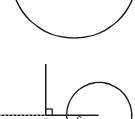
(b) B is an acute angle \Rightarrow cosB is positive. There exists only one such triangle.

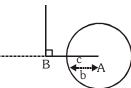
Case-III: Let b > c sin B. There are further following cases :

(a) B is an acute angle \Rightarrow cosB is positive. In this case triangle will exist if and only if

 $c \cos B > \sqrt{b^2 - (c \sin B)^2}$ or $c > b \Rightarrow$ Two such triangle is possible. If c < b, only one such triangle is possible.







(b) B is an obtuse angle \Rightarrow cosB is negative. In this case triangle will exist if and only if

 $\sqrt{b^2 - (c \sin B)^2}$ > $|c \cos B| \Rightarrow b$ > c. So in this case only one such triangle is possible. If b < c there exists no such triangle. This is called an ambiguous case.

- * If one side a and angles B and C are given, then A = 180° (B + C), and $b = \frac{a \sin B}{\sin A}$, $c = \frac{a \sin C}{\sin A}$.
- * If the three angles A,B,C are given, we can only find the ratios of the sides a,b,c by using sine rule (since there are infinite similar triangles possible).

SOLVED EXAMPLE

- **Example 36 :** In the ambiguous case of the solution of triangles, prove that the circumcircles of the two triangles are of same size.
- **Solution :** Let us say b,c and angle B are given in the ambiguous case. Both the triangles will have b and

its opposite angle as B. so $\frac{b}{\sin B} = 2R$ will be given for both the triangles. So their circumradii and

therefore their sizes will be same.

Example 37 : If a,b and A are given in a triangle and c_1, c_2 are the possible values of the third side, prove that $c_1^2 + c_2^2 - 2c_1c_2 \cos 2A = 4a^2\cos^2 A$.

Solution :

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} \implies c^2 - 2bc \cos A + b^2 - a^2 = 0.$ $c_1 + c_2 = 2b\cos A \text{ and } c_1c_2 = b^2 - a^2.$ $\implies c_1^2 + c_2^2 - 2c_1c_2\cos 2A = (c_1 + c_2)^2 - 2c_1c_2(1 + \cos 2A)$

$$= 4b^2 \cos^2 A - 2(b^2 - a^2)2 \cos^2 A = 4a^2 \cos^2 A.$$

Problems for Self Practice-13 :

(1)

14. REGULAR POLYGON :

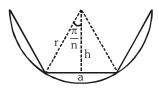
A regular polygon has all its sides equal. It may be inscribed or circumscribed.

(a) Inscribed in circle of radius r :

(i)
$$a = 2h \tan \frac{\pi}{n} = 2r \sin \frac{\pi}{n}$$

(ii) Perimeter (P) and area (A) of a regular polygon of n sides inscribed in a circle of radius r

are given by
$$P = 2nr\sin\frac{\pi}{n}$$
 and $A = \frac{1}{2}nr^2\sin\frac{2\pi}{n}$



Solution of Triangle

(b) Circumscribed about a circle of radius r :

(i)
$$a = 2r \tan \frac{\pi}{n}$$

(ii) Perimeter (P) and area (A) of a regular polygon of n sides

circumscribed about a given circle of radius r is given by $P = 2nr \tan \frac{\pi}{n}$ and

$$A = nr^2 \tan \frac{\pi}{n}$$

(c) Area of a cyclic quadrilateral = $\sqrt{(s-a)(s-b)(s-c)(s-d)}$

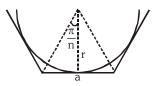
where a, b, c, d are lengths of the sides of quadrilateral and s = $\frac{a+b+c+d}{2}$.

Problems for Self Practice-14 :

(1) If the perimeter of a circle and a regular polygon of n sides are equal, then

prove that
$$\frac{\text{area of the circle}}{\text{area of polygon}} = \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}}$$
.

(2) The ratio of the area of n-sided regular polygon, circumscribed about a circle, to the area of the regular polygon of equal number of sides inscribed in the circle is 4 : 3. Find the value of n.
 Answers : (2) 6



Exercise #1

PART - I : SUBJECTIVE QUESTIONS

Section (A) : Sine rule, Cosine rule, Napier's Analogy, Projection rule

A-1. In a $\triangle ABC$, prove that :

- (i) $a \sin (B C) + b \sin (C A) + c \sin (A B) = 0$
- (ii) $\frac{a^2 \sin(B-C)}{\sin A} + \frac{b^2 \sin(C-A)}{\sin B} + \frac{c^2 \sin(A-B)}{\sin C} = 0$
- (iii) $2(bc \cos A + ca \cos B + ab \cos C) = a^2 + b^2 + c^2$
- (iv) $(a-b)^2 \cos^2 \frac{C}{2} + (a+b)^2 \sin^2 \frac{C}{2} = c^2$
- (v) $b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$ (vi) $\frac{\sin B}{\sin C} = \frac{c a \cos B}{b a \cos C}$
- **A-2.** The angles of a \triangle ABC are in A.P. (order being A, B, C) and it is being given that b : c = $\sqrt{3}$: $\sqrt{2}$, then find \angle A.
- **A-3.** If K is a point on the side BC of an equilateral triangle ABC and if $\angle BAK = 15^\circ$, then find the ratio of lengths

$\frac{AK}{AB}$.

- **A-4.** In a triangle tan A : tan B : tan C = 1 : 2 : 3, then find the ratio $a^2 : b^2 : c^2$
- A-5. If the sides of a triangle are $\sin \alpha$, $\cos \alpha$, $\sqrt{1 + \sin \alpha \cos \alpha}$, $0 < \alpha < \frac{\pi}{2}$, then find the largest angle
- **A-6.** With usual notations, if in a \triangle ABC, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$, then prove that $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$.
- **A-7.** Let a, b and c be the sides of a $\triangle ABC$. If a^2 , b^2 and c^2 are the roots of the equation

 $x^{3} - Px^{2} + Qx - R = 0$, where P, Q & R are constants, then find the value of $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$ in terms of P, Q and R.

- **A-8.** In a triangle ABC, prove that for any angle θ , $b \cos(A \theta) + a \cos(B + \theta) = c \cos \theta$.
- **A-9.** If in a \triangle ABC, a = 6, b = 3 and $\cos(A B) = 4/5$, then find its area.

Section (B) : Half angle formulae, m : n theorem & length of Median/Angle bisector/Altitude

B-1. In a $\triangle ABC$, prove that

(i)
$$2\left[a\sin^2\frac{C}{2}+c\sin^2\frac{A}{2}\right] = c + a - b.$$

(ii)
$$\frac{\cos^2 \frac{A}{2}}{a} + \frac{\cos^2 \frac{B}{2}}{b} + \frac{\cos^2 \frac{C}{2}}{c} = \frac{s^2}{abc}$$

(iii) $4\left(bc.\cos^2\frac{A}{2} + ca.\cos^2\frac{B}{2} + ab.\cos^2\frac{C}{2}\right) = (a + b + c)^2$

(iv)
$$(b-c) \cot \frac{A}{2} + (c-a) \cot \frac{B}{2} + (a-b) \cot \frac{C}{2} = 0$$

- (v) $4\Delta (\cot A + \cot B + \cot C) = a^2 + b^2 + c^2$
- (vi) $\left(\frac{2abc}{a+b+c}\right) \cdot \cos\frac{A}{2} \cdot \cos\frac{B}{2} \cdot \cos\frac{C}{2} = \Delta$
- **B-2.** If the sides a, b, c of a triangle are in A.P., then find the value of $\tan \frac{A}{2} + \tan \frac{C}{2}$ in terms of cot (B/2).
- **B-3.** If in a triangle ABC, $\angle A = 30^{\circ}$ and the area of triangle is $\frac{\sqrt{3}a^2}{4}$, then prove that either B = 4 C or C = 4 B.
- **B-4.** If D is the mid point of CA in triangle ABC and Δ is the area of triangle, then show that

$$\tan\left(\angle \mathsf{ADB}\right) = \frac{4\,\Delta}{a^2 - c^2}\,.$$

B-5. If α , β , γ are the respective altitudes of a triangle ABC, prove that

(i)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} = \frac{\cot A + \cot B + \cot C}{\Delta}$$
 (ii) $\frac{1}{\alpha} + \frac{1}{\beta} - \frac{1}{\gamma} = \frac{2ab}{(a+b+c)\Delta} \cos^2 \frac{C}{2}$

Section (C) : Circumcentre, Incentre, Excentres, Orthocentre, Centroid & their distances from vertices

C-1. In any $\triangle ABC$, prove that

(i)
$$\operatorname{Rr}(\sin A + \sin B + \sin C) = \Delta$$
 (ii) $\operatorname{a} \cos B \cos C + \operatorname{b} \cos C \cos A + \operatorname{c} \cos A \cos B = \frac{\Delta}{R}$

(iii)
$$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{1}{2Rr}$$
. (iv) $\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2 + \frac{r}{2R}$

(v)
$$a \cot A + b \cot B + c \cot C = 2(R + r)$$

C-2. In any $\triangle ABC$, prove that

(i) r.
$$r_1 \cdot r_2 \cdot r_3 = \Delta^2$$
 (ii) $r_1 + r_2 - r_3 + r = 4R \cos C$.

(iii)
$$\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$$
 (iv)

)
$$\left(\frac{1}{r}+\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}\right)^2 = \frac{4}{r}\left(\frac{1}{r_1}+\frac{1}{r_2}+\frac{1}{r_3}\right)^2$$

(v)
$$\frac{bc - r_2r_3}{r_1} = \frac{ca - r_3r_1}{r_2} = \frac{ab - r_1r_2}{r_3} = r$$

- **C-3.** Show that the radii of the three escribed circles of a triangle are roots of the equation $x^3 - x^2(4R + r) + x s^2 - r s^2 = 0.$
- **C-4.** The radii r_1 , r_2 , r_3 of escribed circles of a triangle ABC are in harmonic progression. If its area is 24 sq. cm and its perimeter is 24 cm, find the lengths of its sides.
- **C-5.** If the area of a triangle is 100 sq.cm, $r_1 = 10$ cm and $r_2 = 50$ cm, then find the value of (b a).
- **C-6.** If in an acute angled $\triangle ABC$, line joining the circumcentre and orthocentre is parallel to side AC, then find the value of tan A.tan C.

Section (D) : Distances between special points, solution of triangle, regular polygon

D-1. If the circumcentre of the \triangle ABC lies on its incircle, then prove that

 $\cos A + \cos B + \cos C = \sqrt{2}$

D-2. If orthocentre of triangle lies on circumcircle of triangle then find the ratio of distance between incentre and orthocentre to in radius.

D-3. If b,c,B are given and b < c, prove that
$$\cos\left(\frac{A_1 - A_2}{2}\right) = \frac{c \sin B}{b}$$
.

D-4. In a \triangle ABC, b,c,B (c > b) are gives. If the third side has two values a_1 and a_2 such that

$$a_1 = 3a_2$$
, show that $\sin B = \sqrt{\frac{4b^2 - c^2}{3c^2}}$

- **D-5.** A regular hexagon & a regular dodecagon are inscribed in the same circle. If the side of the dodecagon is $(\sqrt{3}-1)$, if the side of the hexagon is $\sqrt[4]{k}$, then find value of k.
- **D-6.** If I_n is the area of n sided regular polygon inscribed in a circle of unit radius and O_n be the area of the

polygon circumscribing the given circle, prove that
$$I_n = \left(\frac{2I_n - O_n}{O_n}\right)^2 + \left(\frac{2I_n}{n}\right)^2 = 1$$

PART-II : OBJECTIVE QUESTIONS

Secti	ion (A) : Sine rule,	Cosine rule, Napie	er's Analogy, Projectio	n rule	
A-1.	In a $\triangle ABC$, A : B : C = 3 : 5 : 4. Then a + b + c $\sqrt{2}$ is equal to				
	(A) 2b	(B) 2c	(C) 3b	(D) 3a	
A-2.	If in a \triangle ABC, $\frac{\cos A}{a}$	$=\frac{\cos B}{b}=\frac{\cos C}{c}$, then	n the triangle is :		
	(A) right angled	(B) isosceles	(C) equilateral	(D) obtuse angled	
A-3.	In a $\triangle ABC \frac{bc sin}{cos A + co}$	n ² A osBcosC is equal to			
	(A) b ² + c ²	(B) bc	(C) a ²	(D) a² + bc	
A-4.	In a triangle ABC, B	= 60° and C = 45°. Le	t D divides BC internally in	the ratio 1:3,	
	then value of $\frac{\sin \angle BAD}{\sin \angle CAD}$ is				
	(A) $\sqrt{\frac{2}{3}}$	(B) $\frac{1}{\sqrt{3}}$	(C) $\frac{1}{\sqrt{6}}$	(D) $\frac{1}{3}$	
A-5.	If R denotes circumradius, then in $\triangle ABC$, $\frac{b^2 - c^2}{2a R}$ is equal to				
	(A) cos (B – C)	(B) sin (B – C)	(C) cos B – cos C	(D) sin(B + C)	
A-6.	In a triangle ABC, if b	= $(\sqrt{3}-1)$ a and $\angle C$	= 30°, then the value of (A –	B) is equal to	
	(All symbols used have usual meaning in a triangle.)				
	(A) 30°	(B) 45°	(C) 60°	(D) 75°	
A-7.	In triangle ABC, if $2b = a + c$ and $A - C = 90^{\circ}$, then sin B equals				
		ed have usual meaning	in triangle ABC.]		
	(A) $\frac{\sqrt{7}}{5}$	(B) $\frac{\sqrt{5}}{8}$	(C) $\frac{\sqrt{7}}{4}$	(D) $\frac{\sqrt{5}}{3}$	
A-8.	If in a triangle ABC, $(a + b + c) (b + c - a) = k$. b c, then :				
	(A) k < 0	(B) k > 6	(C) 0 < k < 4	(D) k > 4	
A-9.	If in a triangle ABC, t	he altitude AM be the l	bisector of $\angle BAD$, where D	is the mid point of side BC, then	
	$\frac{b^2-c^2}{a^2}$ is equal to				
	(A) 1	(B) 2	(C) 0.5	(D) 0.25	
A-10.	In triangle ABC, if sin	A^3 A + sin ³ B + sin ³ C =	- 3sin A.sin B.sin C , then tr	iangle is	
	(A) obtuse angled	(B) right angled	(C) obtuse right angled	(D) equilateral	

Section (B) : Half angle formulae, m : n theorem & length of Median/Angle bisector/Altitude

B-1.	If in a triangle ABC, right angle at B, $s - a = 3$ and $s - c = 2$, then				
	(A) a = 2, c = 3	(B) a = 3, c = 4	(C) a = 4, c = 3	(D) a = 6, c = 8	
B-2.	If in a triangle ABC, t	$\cos^2 \frac{A}{2} + a\cos^2 \frac{B}{2} = \frac{B}{2}$	$\frac{3}{2}$ c, then a, c, b are :		
	(A) in A.P.	(B) in G.P.	(C) in H.P.	(D) None	
B-3.	If in a $\triangle ABC$, $\angle A = \frac{\pi}{2}$, then $\tan \frac{C}{2}$ is equal to				
	(A) $\frac{a-c}{2b}$	(B) $\frac{a-b}{2c}$	(C) $\frac{a-c}{b}$	(D) $\frac{a-b}{c}$	
B-4.	A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of leng 4 and 5 units. Then area of the triangle is equal to:			e circle into three arcs of length 3,	
	(A) $\frac{9\sqrt{3}(1+\sqrt{3})}{\pi^2}$	$(B)\frac{9\sqrt{3}(\sqrt{3}-1)}{\pi^2}$	(C) $\frac{9\sqrt{3}(1+\sqrt{3})}{2\pi^2}$	(D) $\frac{9\sqrt{3}(\sqrt{3}-1)}{2\pi^2}$	
B-5.	In a ∆ ABC if b + c = 3	3a, then $\cot \frac{B}{2} \cdot \cot \frac{C}{2}$ h	nas the value equal to:		
	(A) 4	(B) 3	(C) 2	(D) 1	
B-6.		(b – c) ² , then tan A is e (B) 8/15	qual to (C) 8/17	(D) 1/2	
B-7.	(A) $15/16$ (B) $8/15$ (C) $8/17$ (D) $1/2$ In a $\triangle ABC$, if $AB = 5 \text{ cm}$, $BC = 13 \text{ cm}$ and $CA = 12 \text{ cm}$, then the distance of vertex 'A' from the side I is (in cm)				
	(A) $\frac{25}{13}$	(B) $\frac{60}{13}$	(C) $\frac{65}{12}$	(D) <u>144</u> 13	
B-8.	Let ABC is a right and	gled, right angle at B. If	D and E be the points of	on CB such that $\angle ADB = 2 \angle ACB$	
	and $\angle AEB = 3 \angle ACB$, then range of $\frac{DE}{CD}$ is				
	$(A)\left(\frac{1}{3},\frac{1}{2}\right)$	$(B)\left(\frac{1}{6},\frac{1}{3}\right)$	$(C)\left(\frac{1}{5},\frac{1}{3}\right)$	$(D)\left(\frac{1}{6},\frac{1}{4}\right)$	
В-9.	If ' ℓ ' is the length of me	dian from the vertex A to			
	(A) $4\ell^2 = b^2 + 4ac \cos(\theta)$		(B) $4\ell^2 = a^2 + 4bc \cos(2\theta)$		
B-10.	(C) $4\ell^2 = c^2 + 4ab \cos ln a triangle ABC, wit$		(D) $4\ell^2 = b^2 + 2c^2 - 2a$ noth of the bisector of in	fternal angle A is not equal to :	
			A		
	ο. Λ	A	aha asa a A		

(A)
$$\frac{2 \operatorname{bc} \cos \frac{A}{2}}{\operatorname{b} + \operatorname{c}}$$
 (B) $\frac{2 \operatorname{bc} \sin \frac{A}{2}}{\operatorname{b} + \operatorname{c}}$ (C) $\frac{\operatorname{abc} \operatorname{cos} \operatorname{ec} \frac{A}{2}}{2 \operatorname{R}(\operatorname{b} + \operatorname{c})}$ (D) $\frac{2 \Delta}{\operatorname{b} + \operatorname{c}} \cdot \operatorname{cos} \operatorname{ec} \frac{A}{2}$

	from vertices	enue, incenue, excen	ues, onnocentre	e, Centroid & their distances		
C-1.	If H is the orthocer	If H is the orthocentre of a triangle ABC, then the radii of the circle circumscribing the triangles BHC, CHA and AHB are respectively equal to :				
	(A) R, R, R	(B) $\sqrt{2}R$, $\sqrt{2}R$, $\sqrt{2}R$	(C) 2R, 2R, 2R	(D) $\frac{R}{2}$, $\frac{R}{2}$, $\frac{R}{2}$		
C-2.	In a \triangle ABC, the value of $\frac{a\cos A + b\cos B + c\cos C}{a+b+c}$ is equal to:					
	(A) $\frac{r}{R}$	(B) $\frac{R}{2r}$	(C) $\frac{R}{r}$	(D) $\frac{2r}{R}$		
C-3.	In a triangle ABC, i	f a : b : c = 3 : 7 : 8, then R :	r is equal to			
	(A) 2 : 7	(B) 7 : 2	(C) 3 : 7	(D) 7 : 3		
C-4.	In any $\triangle ABC$, $\frac{(r_1 + r_2)(r_2 + r_3)(r_3 + r_1)}{Rs^2}$ is always equal to					
	(A) 8	(B) 27	(C) 16	(D) 4		
C-5.				e of the Δ ABC on the sides BC, CA		
	and AB respective	Iy. If $\frac{a}{f} + \frac{b}{g} + \frac{c}{h} = \lambda \frac{abc}{fgh}$, the	en the value of ' λ ' is:			
	(A) 1/4	(B) 1/2	(C) 1	(D) 2		
C-6.	The product of the	The product of the distances of the incentre from the angular points of a Δ ABC is:				
	(A) 4 R ² r	(B) 4 Rr ²	(C) $\frac{(abc)R}{s}$	(D) $\frac{4(a b c) r}{s}$		
Sect	ion (D) : Distance	es between special po	ints, solution of t	riangle, regular polygon		
D-1.	If orthocentre of tri	$\frac{c^2 - c^2}{A\cos B}$ is equal to (c is largest side				
	(A) 2	(B) 4	(C) 6	(D) 8		
D-2 .	In an acute triangle ABC, \angle ABC = 45°, AB = 3 and AC = $\sqrt{6}$. The			gle \angle BAC, is		
	(A) 60°	(B) 65°	(C) 75°	(D) 15° or 75°		
	Two sides of a triangle are of lengths $\sqrt{6}$ and 4 and the angle opposite to smaller side is 30 ⁰ . How many suctriangles are possible ?					
D-3.	Two sides of a triang triangles are possib					
D-3.			(C)2	(D) infinite		
D-3. D-4.	triangles are possib (A) 0	le ? (B) 1	(C)2	(D) infinite led regular polygon of side 'a', is :		

D-5. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is (A) There is a regular polygon with $\frac{r}{R} = \frac{1}{\sqrt{2}}$. (B) There is a regular polygon with $\frac{r}{R} = \frac{2}{3}$. (C) There is a regular polygon with $\frac{r}{R} = \frac{\sqrt{3}}{2}$. (D) There is a regular polygon with $\frac{r}{R} = \frac{1}{2}$. PART-III: MATCH THE COLUMN 1. Match the column Column-I Column-II (A) In a $\triangle ABC$, 2B = A + C and $b^2 = ac$. 8 (p) Then the value of $\frac{a^2(a+b+c)}{2abc}$ is equal to In any right angled triangle ABC, the value of $\frac{a^2 + b^2 + c^2}{D^2}$ (B) 1 (q) is always equal to (where R is the circumradius of $\triangle ABC$) (C) In a $\triangle ABC$ if a = 2, bc = 9, then the value of $2R\Delta$ is equal to 5 (r) In a $\triangle ABC$, a = 5, b = 3 and c = 7, then the value of (D) (s) 9 3 cos C + 7 cos B is equal to 2. Match the column Column – II Column – I (A) In a $\triangle ABC$, a = 4, b = 3 and the medians AA₁ and BB₁ are 27 (p) mutually perpendicular, then square of area of the $\triangle ABC$ is equal to In any $\triangle ABC$, minimum value of $\frac{r_1 r_2 r_3}{r^3}$ is equal to (B) 7 (q) In a $\triangle ABC$, a = 5, b = 4 and $\tan \frac{C}{2} = \sqrt{\frac{7}{9}}$, then side 'c' (C) 6 (r) is equal to In a $\triangle ABC$, $2a^2 + 4b^2 + c^2 = 4ab + 2ac$, then value of (8 cos B) (D) (s) 11 is equal to

Exercise #2

PART - I : ONLY ONE OPTION CORRECT TYPE

(C) $\pi - C$

1. In a triangle ABC, a: b: c = 4: 5: 6. Then 3A + B equals to : (B) 2π

(A) 4C

- **(D)** π
- 2. The distance between the middle point of BC and the foot of the perpendicular from A is :

(A)
$$\frac{-a^2+b^2+c^2}{2a}$$
 (B) $\frac{b^2-c^2}{2a}$ (C) $\frac{b^2+c^2}{\sqrt{bc}}$ (D) $\frac{b^2+c^2}{2a}$

- 3. In a $\triangle ABC$, a = 1 and the perimeter is six times the arithmetic mean of the sines of the angles. Then measure of $\angle A$ is
 - (C) $\frac{\pi}{6}$ (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ (D) $\frac{\pi}{4}$
- 4. In \triangle ABC, angle A, B and C are in the ratio 1 : 2 : 3, then which of the following is (are) correct? (All symbol used have usual meaning in a triangle.)

(A) Circumradius of
$$\triangle ABC = c$$

(B) $a : b : c = 1 : 2 : \sqrt{3}$
(C) Perimeter of $\triangle ABC = 3 + \sqrt{3}$
(D) Area of $\triangle ABC = \frac{\sqrt{3}}{8} c^2$

5. In \triangle ABC, angle A is 120°, BC + CA = 20 and AB + BC = 21, then

- (B)AB < AC(A) perimeter of \triangle ABC is 32
- (D) area of $\triangle ABC = 14\sqrt{3}$ (C) $\triangle ABC$ is isosceles
- AA₁, BB₁ and CC₁ are the medians of triangle ABC whose centroid is G. If points A, C₁, G and B₁ are 6. concyclic, then

(A)
$$2b^2 = a^2 + c^2$$
 (B) $2c^2 = a^2 + b^2$ (C) $2a^2 = b^2 + c^2$ (D) $3a^2 = b^2 + c^2$

In a triangle ABC, if $\frac{a-b}{b-c} = \frac{s-a}{s-c}$, then r_1, r_2, r_3 are in: 7.

(B) G.P.

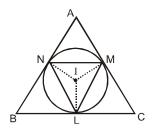
(A) A.P.

(C) H.P.

(D) none of these

8. If the incircle of the \triangle ABC touches its sides at L, M and N as shown in the figure and if x, y, z be the circumradii of the triangles MIN, NIL and LIM respectively, where I is the incentre, then the product xyz is equal to : $(A) R r^2$ $(B) r R^2$

(D) $\frac{1}{2}$ r R² (C) $\frac{1}{2}$ R r²



 C^2

9. In an acute angled triangle ABC, AP is the altitude. Circle drawn with AP as its diameter cuts the sides AB and AC at D and E respectively, then length DE is equal to (A) $\frac{\Delta}{2R}$ (B) $\frac{\Delta}{3P}$ (C) $\frac{\Delta}{AP}$ (D) $\frac{\Delta}{D}$ A triangle has vertices A, B and C, and the respective opposite sides have lengths a, b and c. This triangle is 10. inscribed in a circle of radius R. If b = c = 1 and the altitude from A to side BC has length $\sqrt{\frac{2}{2}}$, then R equals (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{\sqrt{3}}{2\sqrt{2}}$ (B) $\frac{2}{\sqrt{3}}$ (A) $\frac{1}{\sqrt{3}}$ In a triangle ABC, if $(a + b + c)(a + b - c)(b + c - a)(c + a - b) = \frac{8a^2b^2c^2}{a^2 + b^2 + c^2}$, then the triangle is 11. [Note: All symbols used have usual meaning in triangle ABC.] (C) equilateral (A) isosceles (B) right angled (D) obtuse angled AD and BE are the medians of a triangle ABC. If AD = 4, $\angle DAB = \frac{\pi}{6}$, $\angle ABE = \frac{\pi}{3}$, then area of triangle 12. ABC equals (B) $\frac{16}{3}$ (C) $\frac{32}{2}$ (A) $\frac{8}{3}$ (D) $\frac{32}{9}\sqrt{3}$ **PART-II : NUMERICAL QUESTIONS** In \triangle ABC, if a = 2b and A = 3B, then the value of $\left(\frac{c}{b}\right)^2$ is equal to 1. 2. If the angle A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then find the value of expression $E = \left(\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A\right)^2$. 3. In triangle ABC, if AC = 8, BC = 7 and D lies between A and B such that AD = 2, BD = 4, then the value of (CD)² equals to In triangle ABC, if $\cos A + \cos B = 4 \sin^2 \left(\frac{C}{2}\right)$, then $\frac{a+b}{c}$ is equal to : 4. If a,b,c are the sides of triangle ABC satisfying $\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2$. 5.

Also $a(1 - x^2) + 2bx + c(1 + x^2) = 0$ has two equal roots. Find the value of sinA + sinB + sinC.

- 6. In a triangle ABC if $a^2 + b^2 = 101c^2$ then find the value of $\frac{\cot C}{\cot A + \cot B}$
- 7. The sides of a triangle are consecutive integers n, n + 1 and n + 2 and the largest angle is twice the smallest angle. Find n.
- 8. Given a triangle ABC with AB = 2 and AC = 1. Internal bisector of \angle BAC intersects BC at D. If AD = BD and \triangle is the area of triangle ABC, then find the value of $12\Delta^2$.
- 9. Given a triangle ABC with sides a = 7, b = 8 and c = 5. If the value of the expression $\left(\sum \sin A\right)\left(\sum \cot \frac{A}{2}\right)$

can be expressed in the form $\frac{p}{q}$ where p, q \in N and $\frac{p}{q}$ is in its lowest form find the value of (p + q).

10. In a
$$\triangle ABC$$
, $A = \frac{2\pi}{3}$, $b - c = 3\sqrt{3}$ cm and area ($\triangle ABC$) = $\frac{9\sqrt{3}}{2}$ cm². Then 'a' is

- **11.** If AD, BE and CF are the medians of a $\triangle ABC$, then $\frac{(AD^2 + BE^2 + CF^2)}{(BC^2 + CA^2 + AB^2)}$ is equal to
- **12.** If in a triangle ABC, the line joining the circumcentre and incentre is parallel to BC, then cos B + cos C is equal to :
- **13.** If in a $\triangle ABC$, $\frac{r}{r_1} = \frac{1}{2}$, then the value of $\tan \frac{A}{2} \left(\tan \frac{B}{2} + \tan \frac{C}{2} \right)$ is equal to :

PART - III : ONE OR MORE THAN ONE CORRECT QUESTION

1. Which of the following holds good for any triangle ABC?

(A)
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$
 (B) $\frac{\sin A}{a} + \frac{\sin B}{b} + \frac{\sin C}{c} = \frac{3}{2R}$
(C) $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ (D) $\frac{\sin 2A}{a^2} = \frac{\sin 2B}{b^2} = \frac{\sin 2C}{c^2}$

2. In a triangle ABC, let $2a^2 + 4b^2 + c^2 = 2a(2b + c)$, then which of the following holds good? [Note: All symbols used have usual meaning in a triangle.]

(A)
$$\cos B = \frac{-7}{8}$$

(B) $\sin (A - C) = 0$
(C) $\frac{r}{r_1} = \frac{1}{5}$
(D) $\sin A : \sin B : \sin C = 1 : 2 : 1$

		<u> </u>
3.	In which of the following situations, it is possible (All symbols used have usual meaning in a trian	_
	(A) $(a + c - b) (a - c + b) = 4bc$	(B) $b^2 \sin 2C + c^2 \sin 2B = ab$
	(C) a = 3, b = 5, c = 7 and C = $\frac{2\pi}{3}$	(D) $\cos\left(\frac{A-C}{2}\right) = \cos\left(\frac{A+C}{2}\right)$
4.	Given an acute triangle ABC such that sin C =	$\frac{4}{5}$, tan A = $\frac{24}{7}$ and AB = 50. Then-
	(A) centroid, orthocentre and incentre of ΔABC	are collinear
	$(B) \sin B = \frac{4}{5}$	
	(C) $\sin B = \frac{4}{7}$	(D) area of $\triangle ABC = 1200$
5.	If in a triangle ABC, cos A cos B + sin A sin A (A) isosceles (B) right angled	B sin C = 1, then the triangle is (C) equilateral (D) None of these
6.	If in a $\triangle ABC$, a = 5, b = 4 and cos (A – B) =	$\frac{31}{32}$, then
	(A) c = 6	(B) sin A = $\left(\frac{5\sqrt{7}}{16}\right)$
	(C) area of $\triangle ABC = \frac{15\sqrt{7}}{4}$	(D) c = 8
7.	ADE = angle AED = θ , then:	aken on side BC such that BD = DE = EC. If angle (B) $3 \tan \theta = \tan C$
	(A) $\tan \theta = 3 \tan B$	(B) 3 tan θ = tanC
	(C) $\frac{6 \tan \theta}{\tan^2 \theta - 9} = \tan A$	(D) angle B = angle C
8.	In a triangle ABC, if $a = 4$, $b = 8 \angle C = 60^{\circ}$, ther [Note: All symbols used have usual meaning in	n which of the following relations is (are) correct? n triangle ABC.]
	(A) The area of triangle ABC is $8\sqrt{3}$	(B) The value of $\sum \sin^2 A = 2$
	(C) Inradius of triangle ABC is $\frac{2\sqrt{3}}{3+\sqrt{3}}$	(D) The length of internal angle bisector of angle C is $\frac{4}{\sqrt{3}}$
9.	If $r_1 = 2r_2 = 3r_3$, then	
	(A) $\frac{a}{b} = \frac{4}{5}$ (B) $\frac{a}{b} = \frac{5}{4}$	(C) $\frac{a}{c} = \frac{3}{5}$ (D) $\frac{a}{c} = \frac{5}{3}$

10. In a \triangle ABC, following relations hold good. In which case(s) the triangle is a right angled triangle?

(A)
$$r_2 + r_3 = r_1 - r$$
 (B) $a^2 + b^2 + c^2 = 8 R^2$
(C) $r_1 = s$ (D) $2 R = r_1 - r$

11. In a triangle ABC, right angled at B, then

(A)
$$r = \frac{AB + BC - AC}{2}$$
 (B) $r = \frac{AB + AC - BC}{2}$ (C) $r = \frac{AB + BC + AC}{2}$ (D) $R = \frac{s - r}{2}$

12. Three equal circles of radius unity touches one another. Radius of the circle touching all the three circles is :

(A)
$$\frac{2-\sqrt{3}}{\sqrt{3}}$$
 (B) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}$ (C) $\frac{2+\sqrt{3}}{\sqrt{3}}$ (D) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{2}}$

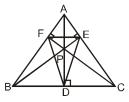
13. With usual notations, in a \triangle ABC the value of Π (r₁ – r) can be simplified as:

(A)
$$abc \prod tan \frac{A}{2}$$
 (B) 4 r R² (C) $\frac{(abc)^2}{R(a+b+c)^2}$ (D) 4 R r²

PART - IV : COMPREHENSION

Comprehension #1

The triangle DEF which is formed by joining the feet of the altitudes of triangle ABC is called the Pedal Triangle.



Answer The Following Questions :

1.	Angle of triangle DEF	are		
	(A) π – 2A, π – 2B and	$1 \pi - 2C$	(B) π + 2A, π + 2B and	l π + 2C
	(C) π – A, π – B and π	– C	(D) 2π – A, 2π – B and	$2\pi - C$
2.	Sides of triangle DEF	are		
	(A) b cosA, a cosB, c	cosC	(B) a cosA, b cosB, c	cosC
	(C) R sin 2A, R sin 2E	3, R sin 2C	(D) a cotA, b cotB, c	cotC
3.	Circumraii of the trian	gle PBC, PCA and PAB	are respectively	
	(A) R, R, R	(B) 2R, 2R, 2R	(C) R/2, R/2, R/2	(D) 3R, 3R, 3R
4.	Which of the following	g is/are correct		
	(A) $\frac{\text{Perimeter of } \Delta \text{DE}}{\text{Perimeter of } \Delta \text{AB}}$	$\frac{F}{C} = \frac{r}{R}$	(B) Area of $\Delta DEF = 2$	$2 \Delta \cos A \cos B \cos C$
	(C) Area of $\triangle AEF = \Delta$	cos²A	(D) Circum-radius of A	$\Delta DEF = \frac{R}{2}$

Comprehension #2

The triangle formed by joining the three excentres I_1 , I_2 and I_3 of Δ ABC is called the excentral or excentric triangle and in this case internal angle bisector of triangle ABC are the altitudes of triangles $I_1I_2I_3$

5. Incentre I of \triangle ABC is the of the excentral $\triangle I_1 I_2 I_3$.

(A) Circumcentre (B) Orthocentre (C) Centroid (D) None of these

- $\textbf{6.} \qquad \text{Angles of the } \Delta \, I_{_1} I_{_2} I_{_3} \, \text{are}$
 - (A) $\frac{\pi}{2} \frac{A}{2}$, $\frac{\pi}{2} \frac{B}{2}$ and $\frac{\pi}{2} \frac{C}{2}$
 - (C) $\frac{\pi}{2} A$, $\frac{\pi}{2} B$ and $\frac{\pi}{2} C$

(D) None of these

(B) $\frac{\pi}{2} + \frac{A}{2}, \frac{\pi}{2} + \frac{B}{2}$ and $\frac{\pi}{2} + \frac{C}{2}$

- 7. Sides of the $\Delta I_1 I_2 I_3$ are
 - (A) $\operatorname{Rcos} \frac{A}{2}$, $\operatorname{Rcos} \frac{B}{2}$ and $\operatorname{Rcos} \frac{C}{2}$
 - (C) $2R\cos{\frac{A}{2}}$, $2R\cos{\frac{B}{2}}$ and $2R\cos{\frac{C}{2}}$
- 8. Value of $II_1^2 + I_2I_3^2 = II_2^2 + I_3I_1^2 = II_3^2 + I_1I_2^2 =$ (A) 4R² (B) 16R²

(B) $4R \cos{\frac{A}{2}}$, $4R \cos{\frac{B}{2}}$ and $4R \cos{\frac{C}{2}}$

(D) None of these

(C) 32R² (D) 64R²

Exercise #3

PART - I : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

* Marked Questions may have more than one correct option.

- 1. If the angle A, B and C of a triangle are in arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c} \sin 2C + \frac{c}{a} \sin 2A$ is [IIT-JEE 2010, Paper-1, (3, –1), 84]
 - (A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) 1 (D) $\sqrt{3}$
- 2. Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a, b and c denote the lengths of the sides opposite to A, B and C respectively. The value(s) of x for which a = x² + x + 1, b = x² - 1 and c = 2x + 1 is (are) [IIT-JEE 2010, Paper-1, (3, 0), 84]

(A)
$$-(2+\sqrt{3})$$
 (B) $1+\sqrt{3}$ (C) $2+\sqrt{3}$ (D) $4\sqrt{3}$

3. Consider a triangle ABC and let a, b and c denote the lengths of the sides opposite to vertices A, B and C respectively. Suppose a = 6, b = 10 and the area of the triangle is $15\sqrt{3}$. If $\angle ACB$ is obtuse and if r denotes the radius of the incircle of the triangle, then r² is equal to

[IIT-JEE 2010, Paper-2, (3, 0), 79]

4. Let PQR be a triangle of area \triangle with a = 2, b = $\frac{7}{2}$ and c = $\frac{5}{2}$, where a, b and c are the lengths of the sides

of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P - \sin 2P}{2 \sin P + \sin 2P}$ equals

[IIT-JEE 2012, Paper-2, (3, -1), 66]

(A)
$$\frac{3}{4\Delta}$$
 (B) $\frac{45}{4\Delta}$

$$(C) \left(\frac{3}{4\Delta}\right)^2 \qquad \qquad (D) \left(\frac{45}{4\Delta}\right)^2$$

5.* In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the incircle of the triangle touches the sides

PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)

[JEE (Advanced) 2013, Paper-2, (3, -1)/60]

- (A) 16 (B) 18 (C) 24 (D) 22
- 6. In a triangle the sum of two sides is x and the product of the same two sides is y. If $x^2 c^2 = y$, where c is the third side of the triangle, then the ratio of the in-radius to the circum-radius of the triangle is

[JEE (Advanced) 2014, Paper-2, (3, -1)/60]

(A)
$$\frac{3y}{2x(x+c)}$$
 (B) $\frac{3y}{2c(x+c)}$ (C) $\frac{3y}{4x(x+c)}$ (D) $\frac{3y}{4c(x+c)}$

7. In a triangle XYZ, let x,y,z be the lengths of sides opposite to the angles X,Y,Z, respectively and

2s = x + y + z. If
$$\frac{s-x}{4} = \frac{s-y}{3} = \frac{s-z}{2}$$
 and area of incircle of the triangle XYZ is $\frac{8\pi}{3}$, then-

[JEE(Advanced)-2016, 4(-2)]

[JEE(Advanced)-2019, 4(-1)]

(B) the radius of circumcircle of the triangle XYZ is $\frac{35}{6}\sqrt{6}$

(C) $\sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2} = \frac{4}{35}$ (D) $\sin^2 \left(\frac{X+Y}{2}\right) = \frac{3}{5}$

8. In a triangle PQR, let \angle PQR = 30° and the sides PQ and QR have lengths $10\sqrt{3}$ and 10, respectively. Then, which of the following statement(s) is (are) TRUE ? [JEE(Advanced)-2018, 4(-2)]

(A) ∠QPR = 45°

(A) Area of $\triangle SOE = \frac{\sqrt{3}}{12}$

(A) area of the triangle XYZ is $6\sqrt{6}$

- (B) The area of the triangle PQR is $25\sqrt{3}$ and \angle QRP = 120°
- (C) The radius of the incircle of the triangle PQR is $10\sqrt{3}$ –15
- (D) The area of the circumcircle of the triangle PQR is 100π .
- **9.** In a non-right-angled triangle Δ PQR, let p, q, r denote the lengths of the sides opposite to the angles at P, Q, R respectively. The median from R meets the side PQ at S, the perpendicular from P meets the side

QR at E, and RS and PE intersect at O. If $p = \sqrt{3}$, q = 1, and the radius of the circumcircle of the Δ PQR

equals 1, then which of the following options is/are correct?

(B) Radius of incircle of $\Delta PQR = \frac{\sqrt{3}}{2}(2-\sqrt{3})$

(C) Length of
$$RS = \frac{\sqrt{7}}{2}$$
 (D) Length of $OE = \frac{1}{6}$

PART - II : JEE(MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A **false** statement among the following is [AIEEE - 2010 (4, -1), 144]

(1) There is a regular polygon with
$$\frac{r}{R} = \frac{1}{\sqrt{2}}$$
. (2) There is a regular polygon with $\frac{r}{R} = \frac{2}{3}$

(3) There is a regular polygon with $\frac{r}{R} = \frac{\sqrt{3}}{2}$. (4) There is a regular polygon with $\frac{r}{R} = \frac{1}{2}$.

2. ABCD is a trapezium such that AB and CD are parallel and BC \perp CD. If \angle ADB = θ , BC = p and CD = q, then AB is equal to - [JEE - Main 2013]

(1)
$$\frac{p^2 + q^2}{p^2 \cos \theta + q^2 \sin \theta}$$
 (2)
$$\frac{\left(p^2 + q^2\right) \sin \theta}{\left(p \cos \theta + q \sin \theta\right)^2}$$

(3)
$$\frac{\left(p^2+q^2\right)\sin\theta}{p\cos\theta+q\sin\theta}$$
 (4)
$$\frac{p^2+q^2\cos\theta}{p\cos\theta+q\sin\theta}$$

3. In a $\triangle ABC$, $\frac{a}{b} = 2 + \sqrt{3}$ and $\angle C = 60^{\circ}$. Then the ordered pair ($\angle A$, $\angle B$) is equal to : [JEE(Main)-2015]

- (1) (75°, 45°) (2) (45°, 75°)
- (3) (15°, 105°) (4) (105°, 15°)

4. If 5, 5r, 5r² are the lengths of the sides of a triangle, then r cannot be equal to : [JEE(Main)-Jan 2019]

(1) $\frac{3}{2}$ (2) $\frac{3}{4}$ (3) $\frac{5}{4}$ (4) $\frac{7}{4}$

5. With the usual notation, in $\triangle ABC$, if $\angle A + \angle B = 120^\circ$, $a = \sqrt{3} + 1$ and $b = \sqrt{3} - 1$, then the ratio $\angle A : \angle B$, is : [JEE(Main)-Jan 2019]

 (1) 7 : 1
 (2) 5 : 3
 (3) 9 : 7
 (4) 3 : 1

6. In a triangle, the sum of lengths of two sides is x and the product of the lengths of the same two sides is y. If $x^2 - c^2 = y$, where c is the length of the third side of the triangle, then the circumradius of the triangle is : [JEE(Main)-Jan 2019]

(1) $\frac{y}{\sqrt{3}}$ (2) $\frac{c}{\sqrt{3}}$ (3) $\frac{c}{3}$ (4) $\frac{3}{2}y$

7.	Given $\frac{b+c}{11} = \frac{c+a}{12}$	$a = \frac{a+b}{13}$ for a $\triangle ABC$ with $a = \frac{a+b}{13}$	usual notation. If $\frac{\cos A}{\alpha}$ =	$=\frac{\cos B}{\beta}=\frac{\cos C}{\gamma}$, then the ordered triad
	(α , β , γ) has a val	ue :-		[JEE(Main)-Jan 2019]
	(1) (3, 4, 5)	(2) (19, 7, 25)	(3) (7, 19, 25)	(4) (5, 12, 13)
8.	-	sides of a triangle are in A des of this triangle is :	A.P. and the greatest and	gle is double the smallest, then a ratio [JEE(Main)-Apr 2019]
	(1) 5 : 9 : 13	(2) 5 : 6 : 7	(3) 4 : 5 : 6	(4) 3 : 4 : 5
9.	The angles A, B a (in sq. cm) of this t	-	are in A.P. and a : b =	1 : $\sqrt{3}$. If c = 4 cm, then the area [JEE(Main)-Apr 2019]

(1)
$$4\sqrt{3}$$
 (2) $\frac{2}{\sqrt{3}}$ (3) $2\sqrt{3}$ (4) $\frac{4}{\sqrt{3}}$

			Ans	we	rs		
	Ex	ercise	# 1			SECTION	-(B)
		DADT		B-1.	(B)	B-2.	(A)
		PART		B-3.	(D)	B-4.	(A)
	SE	ECTION	-(A)	B-5.	(C)	B-6.	(B)
			$\overline{D}(2, \overline{D})$	B-7.	(B)	B-8.	(A)
A-2.	75°	A-3.	$\frac{\sqrt{2}\left(3-\sqrt{3}\right)}{2}$	B-9.	(B)	B-10.	(B)
			2			SECTION	-(C)
A-4.	5:8:9	A-5.	120°	C-1.	(A)	C-2.	(A)
	Р			C-3.	(B)	C-4.	(D)
A-7.	$\frac{P}{2\sqrt{R}}$	A-9.	9 sq. unit	C-5.	(A)	C-6.	(B)
	SE		-(B)			SECTION	-(D)
				D-1.	(D)	D-2.	(C)
B-2.	$\frac{2}{3} \cot \frac{B}{2}$			D-3.	(C)	D-4.	(B)
	3 2			D-5.	(B)		
	SE		-(C)			PART-I	
C-4.	6, 8, 10 cm	C-5.	8	1.	$(A) \rightarrow (C)$	$(B) \rightarrow (p)$, (C	$(s) \rightarrow (s), (D) \rightarrow (r)$
C-6.	3			2.			$) \rightarrow (r), (D) \rightarrow (q)$
	SE		-(D)			Exercise	
D-2.	$\sqrt{2}$	D-5.	$\sqrt{2}$				
		DADT				PART	- 1
		PART-		1.	(D)	2.	(B)
			. ,	3.	(C)	4.	(D)
A-1.	(C)	A-2.	(C)	5.	(D)	6.	(C)
A-3.	(C)	A-4.	(C)	7.	(A)	8.	(C)
A-5.	(B)	A-6.	(C)	9.	(D)	10.	(D)
A -7.	(C)	A-8.	(C)	11.	(B)	12.	(D)
A-9.	(C)	A-10.	(D)				

Solution of Triangle

		PART	-11		E	xercis	e # 3
1.	3	2.	3			PART	-1
3.	51	4.	2	1.	(D)	2.	(B)
5.	2.4	6.	50	3.	3	4.	(C)
7.	4	8.	9	5.	(B, D)	6.	(B)
9.	107	10.	9	7.	(B, C, D)	8.	(B, C, D)
11.	0.75	12.	1	9.	(B, C, D)		
13.	0.5						
	Р	ART	- 111			PART	- 11
1.	(A, (B)	2.	(B), (C)				
3.	(B), (C)	4.	(A), (B), (D)	1.	(2)	2.	(3)
5.	(A), (B)	6.	(A), (B), (C)	3.	(4)	4.	(4)
7.	(A), (C), (D)	8.	(A), (B)	5.	(1)	6.	(2)
9.	(B), (D)	10.	(A), (B), (C), (D)	7.	(3)	8.	(3)
11.	(A), (D)	12.	(A), (C)	9.	(3)		
13.	(A), (C) (D)						

		PART ·	- IV
1.	(A)	2.	(B), (C)
3.	(A)	4.	(A),(B),(C),(D)
5.	(B),	6.	(A)
7.	(B)	8.	(B)

SUBJECTIVE QUESTIONS

- **1.** In a triangle ABC, if a tan A + b tan B = (a + b) tan $\left(\frac{A+B}{2}\right)$, prove that triangle is isosceles.
- **2.** In a $\triangle ABC$, if a, b and c are in A.P., prove that $\cos A. \cot \frac{A}{2}$, $\cos B. \cot \frac{B}{2}$, and $\cos C. \cot \frac{C}{2}$ are in A.P.
- **3.** ABCD is a trapezium such that AB, DC are parallel and BC is perpendicular to them. If angle

ADB = θ , BC = p and CD = q, show that AB = $\frac{(p^2 + q^2)\sin\theta}{p\cos\theta + q\sin\theta}$.

- 4. If in a triangle ABC, $\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}$ prove that the triangle ABC is either isosceles or right angled.
- **5.** In a \triangle ABC, \angle C = 60° and \angle A = 75°. If D is a point on AC such that the area of the \triangle BAD is $\sqrt{3}$ times the area of the \triangle BCD, find the \angle ABD.
- 6. In a triangle ABC, prove that the area of the incircle is to the area of triangle itself is,

$$\pi : \operatorname{cot}\left(\frac{A}{2}\right). \operatorname{cot}\left(\frac{B}{2}\right). \operatorname{cot}\left(\frac{C}{2}\right).$$

7. Three circles, whose radii are a, b and c, touch one another externally and the tangents at their points of contact meet in a point, prove that the distance of this point from either of their points of contact

$$\operatorname{is}\left(\frac{\operatorname{abc}}{\operatorname{a}+\operatorname{b}+\operatorname{c}}\right)^{\frac{1}{2}}$$
.

- 8. In any $\triangle ABC$, prove that
 - (i) $(r_3 + r_1) (r_3 + r_2) \sin C = 2 r_3 \sqrt{r_2 r_3 + r_3 r_1 + r_1 r_2}$

(ii)
$$\frac{\tan\frac{A}{2}}{(a-b)(a-c)} + \frac{\tan\frac{B}{2}}{(b-a)(b-c)} + \frac{\tan\frac{C}{2}}{(c-a)(c-b)} = \frac{1}{\Delta}$$

- (iii) $(r+r_1) \tan \frac{B-C}{2} + (r+r_2) \tan \frac{C-A}{2} + (r+r_3) \tan \frac{A-B}{2} = 0$
- (iv) $r^2 + r_1^2 + r_2^2 + r_3^2 = 16R^2 a^2 b^2 c^2$.

- 9. If $\left(1 \frac{r_1}{r_2}\right) \left(1 \frac{r_1}{r_3}\right) = 2$, then prove that the triangle is right angled.
- **10.** In a triangle ABC, AD is the altitude from A. Given b > c, angle C = 23° and AD = $\frac{abc}{b^2 c^2}$, then find

angle B.

- **11.** DEF is the triangle formed by joining the points of contact of the incircle with the sides of the triangle ABC; prove that
 - (i) its sides are $2r\cos\frac{A}{2}$, $2r\cos\frac{B}{2}$ and $2r\cos\frac{C}{2}$,

(ii) its angles are
$$\frac{\pi}{2} - \frac{A}{2}$$
, $\frac{\pi}{2} - \frac{B}{2}$ and $\frac{\pi}{2} - \frac{C}{2}$

and

(iii) its area is
$$\frac{2\Delta^3}{(abc)s}$$
, i.e. $\frac{1}{2} \frac{r}{R} \Delta$.

12. In acute angled triangle ABC, a semicircle with radius r_a is constructed with its base on BC and tangent to the other two sides. r_b and r_c are defined similarly. If r is the radius of the incircle of triangle ABC then prove that,

$$\frac{2}{r} = \frac{1}{r_{a}} + \frac{1}{r_{b}} + \frac{1}{r_{c}}.$$

- **13.** Let ABC and ABC' be two non-congruent triangles with sides AB = 4, AC = AC' = $2\sqrt{2}$ and angle B= 30°. Find the absolute value of the difference between the areas of these triangles.
- **14*.** In a triangle ABC with fixed base BC, the vertex A moves such that $\cos B + \cos C = 4 \sin^2 \frac{A}{2}$. If a, b and c

denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then prove that (i) b + c = 2a

(ii) locus of points A is an ellipse

15. ABC is a triangle with incentre I. Let P and Q be the feet of perpendiculars from A to BI and CI respectively,

then prove that
$$\frac{AP}{BI} + \frac{AQ}{CI} = \cot \frac{A}{2}$$

16. Let $\triangle ABC$ be equilateral. On side AB produced, we chose a point P such that A lies between P and B. Denote 'a' as the length of sides of $\triangle ABC$; r₁ as the radius of incircle of $\triangle PAC$; and r₂ as the exradius of $\triangle PBC$ with respect to side BC. Then find the value of (r₁ + r₂)

17. The diagonals of a parallelogram are inclined to each other at an angle of 45° , while its sides a and b (a > b)

are inclined to each other at an angle of 30°. Find the value of $\frac{a}{b}$.

- **18.** Let ABC be a triangle of area Δ and A' B' C' be the triangle formed by the altitudes of Δ ABC as its sides with are Δ ' and A" B" C" be the triangle formed by the altitudes of Δ A'B'C' as its sides with area Δ ". If Δ ' = 30 and Δ " = 20 then find the value of Δ .
- **19.** In a right triangle ABC, right angle at A. The radius of the inscribed circle is 2 cm. Radius of the circle touching the side BC and also sides AB and AC produced is 15 cm. Find the length of the side BC measured in cm.
- **20.** If p_1, p_2, p_3 are the altitudes of a triangle which circumscribes a circle of diameter $\frac{4}{3}$ units, then find the least

value of $(p_1 + p_2 + p_3)$

			Answe	rs			
5.	∠ ABD = 30°	10.	∠ B = 113°	13.	4	16.	$\frac{\sqrt{3}}{2}a$
17.	$\frac{\sqrt{5}+1}{2}$	18.	45	19.	13	20.	6

Self Assessment Paper

JEE ADVANCED

Maximum Marks : 62

Total Time : 1:00 Hr

	SEC	TION-1 : ONE OF	TION CORRECT	(Marks - 12)	
1.	In ∆ABC, if AB = of CD is	= 10, BC = 8, CA = 12 and	point D is taken on AB si	uch that AD : DB is 3 : 2, then	the length
	(A) √ <u>24</u>	(B) √ <u>36</u>	(C) \ 84	(D) √72	
2.		has sides OA = 7, AB = 1 it in the ratio 2 : 1 then a		mid point of OA and a point	S is taken
	(A) 2√5	(B) 2√10	(C) 12√10	(D) 6√10	
3.	Inside the cresc same circle mov	ent shaped are intercepte	ed between these circles ginal circle of radius R, t	nother circle of radius $\frac{3R}{2}$ is , a circle of radius R/8 is plathen find the length of the arc	ced. If the
	$(A)\frac{7\pi R}{12}$	(B) $\frac{5\pi R}{12}$	(C) $\frac{7\pi R}{10}$	(D) $\frac{5\pi R}{9}$	
4.	In ∆ABC, if s− 1	$\frac{a}{1} = \frac{s-b}{12} = \frac{s-c}{13}$, then ta	$\ln^2 \frac{A}{2}$ is equal to		
	[All symbols use	ed has unsual meaning i	n triangle ABC.]		
	(A) $\frac{143}{342}$	(B) ¹³ / ₃₃	(C) $\frac{11}{39}$	(D) ¹² / ₃₇	

SECTION-2 : ONE OR MORE THAN ONE CORRECT (Marks - 32)

5. In \triangle ABC, which of the following is/are possible (where notations have usual meaning)

(A) sinA : sinB : sinC = 1 : 2 : 3	(B) $\Delta = \frac{bc}{4}$
(C) (a + b + c)(a + b – c) = 3ab	(D) $b^2 - c^2 = aR$

6. In \triangle ABC with usual notations if $a^2 + 4 + b^2 + 4c^2 = 4a + 4bc$, then

(A) length of internal angle bisector through A is $\frac{b}{3}\cos\frac{A}{2}$

(B)
$$\frac{\sin B}{\sin C} = 2$$

(C)
$$\frac{\sin B}{\sin C} = \frac{1}{2}$$

(D) length of internal angle bisector through A is $\frac{2b}{3}\cos\frac{A}{2}$

7. If the sides of a triangle are in A.P. with common difference 1 and whose circumradius is $\frac{8}{\sqrt{15}}$, then which

of the following can be side(s) of a triangle

- (A) 2 (B) 3 (C) 4 (D) 5 on solving we get a = 3
- 8. A triangle ABC is such that a = 3, b = 4 and area of triangle is maximum, then -

(A) Distance between orthocentre & circumcentre is 5.

(B) Inradius of $\triangle ABC$ is 1.

(C) Perpendicular distance of orthocentre from side AB is $\frac{12}{5}$

(D) Sum of ex-radii of $\triangle ABC$ is 11.

9. Consider an isosceles triangle ABC, whose none of the angle is right angle. If a & tanB are rational and b = c, then which of the following is/are always rational ?
 (A) tanA
 (B) altitude through vertex A

(C)
$$\sin \frac{A}{2}$$
 (D) $\cos \frac{A}{2}$

10.In a triangle if the length of two longer sides are 8 and 7 and its angles are in A.P., then smaller side can be-
(A) 3(A) 3(B) 4(C) 5(D) 6

11. Let P is an interior point of $\triangle ABC$ for which $\angle A = 45^\circ$, $\angle B = 60^\circ$ & $\angle C = 75^\circ$, then PA : PB : PC is -

(A) 1 : 1 : 1 if P is the circumcentre

(B) $2:\sqrt{2}:(\sqrt{3}-1)$ if P is the orthocentre

- (C) $\csc 22\frac{1}{2}^{\circ}: \csc 30^{\circ}: \csc 37\frac{1}{2}^{\circ}$ if P is the incentre
- (D) $2:\sqrt{2}:(\sqrt{3}+1)$ if P is the orthocentre

12. Let ABC & ABC' are two non-congruent triangles such that AB = 5, BC = 4 = BC' and $\angle A = \tan^{-1}\left(\frac{3}{4}\right)$,

then-

(A) $|AC - AC'| = 2\sqrt{7}$

(B) Non-negative difference between perimeters of two triangles is $2\sqrt{7}$

(C) $\sin C = \sin C' = \frac{3}{4}$

(D) Both triangles are acute angled triangle

SECTION-3 : NUMERICAL VALUE TYPE (Marks - 18)

13. In a triangle ABC, BD is a median. If I (BD) = $\frac{\sqrt{3}}{4}$. *l* (AB) and \angle DBC = $\frac{\pi}{2}$. Determine the \angle ABC.

14. ABCD is a rhombus. the circumradii of △ABD are 12.5 and 25 respectively. Find the area of rhombus.

- **15.** The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60°. If the area of the quadrilateral is $4\sqrt{3}$, find the sum of remaining two sides.
- **16.** ABC is a triangle. Circles with radii as shown are drawn inside the triangle each touching two sides and the incircle. Find the radius of the incircle of the $\triangle ABC$.
- **17.** In a scalene triangle ABC the altitudes AB and CF are dropped from the vertices A and C to the sides BC and AB. The area of \triangle ABC is known to be equal to 18, the area of triangle BDF is equal to 2 and length of segment DF is equal to $2\sqrt{2}$. Find the radius of the circle circumscribed.
- **18.** A circle is inscribed in a right triangle ABC, right angled at C. The circle is tangent to the segment AB at D and length of segments AD and DB are 7 and 13 respectively. Area of triangle ABC is equal to

				Ans	wers	5	
1.	(D)	2.	(B)	3.	(A)	4.	(B)
5.	(B,C,D)	6.	(B,D)	7.	(A,B,C)	8.	(B,C,D)
9.	(A,B)	10.	(A,C)	11.	(A,B,C)	12.	(A,B,C)
13.	120°	14.	400	15.	5	16.	11
17.	4.5	18.	91				