Solutions

1 EXPRESSING CONCENTRATION OF SOLUTIONS

- Volume percentage (v/v) = Volume of a component Total volume of solution × 100
- Mass by volume percentage (w/v) = Mass of solute Volume of solution × 10
- Parts per million (ppm) = $\frac{\text{Mass of solute}}{\text{Mass of solution}} \times 10^6$
- $Molarity (M) = \frac{Moles of solute}{Volume of solution (I)}$
- Molality (m) = Mass of solute Mass of solvent (kg)
- Solubility of a substance is its maximum amount that can be dissolved in a specified amount of solvent at a specified temperature.

(2) SOLUBILITY OF A SOLID IN A LIQUID

- Significantly affected by temperature change.
- Pressure does not have any significant effect.

(3) SOLUBILITY OF A GAS IN A LIQUID

- Henry's law: p = K_ux
- Decreases with increase in temperature.
- Increases with increase in pressure.
- The air tanks of scuba divers are diluted with He to avoid bends.
- To increase the solubility of CO₂ in soft drinks and soda water, the bottle is sealed under high pressure.

(4) RAOULT'S LAW

- For non-volatile solute in volatile solvent

 p_{solution} = p^o_{solvent} x_{solvent}
- For volatile liquids:
- $p_{total} = p_1 + p_2 = p_1^{\circ} x_1 + p_2^{\circ} x_2 = p_1^{\circ} + (p_2^{\circ} p_1^{\circ}) x_2$
- Mole fraction of any component in vapour phase:
 y₁ = p₁/p_{total}

(5) TYPE OF SOLUTIONS

- b Ideal solutions: A B interactions are of same magnitude as A A and B B interactions. ΔV_{mix} = 0 and ΔH_{mix} = 0
- eg.: n-hexane and n-heptane, bromoethane and chloroethane.
- Non-ideal solutions: A B interactions are of different magnitude than A A and B B interactions. $\Delta V_{mix} \neq 0$ and $\Delta H_{mix} \neq 0$.
- (+)ve deviations: A B interactions are weaker than A–A and B B interactions.
- ΔH_{mix} > 0, ΔV_{mix} > 0, P_{obx} > P_{ca}
- · eg: acetone + ethanol,
- (-)ve deviations; A B interactions are stronger than A A and B B interactions.
- ΔH_{mix} ≤ 0, ΔV_{mix} < 0, P_{obs} < P_{cal}
- eg: nitric acid + water, chloroform + acetone
- Azeotropes: constant boiling mixtures whose composition does not change on distillation.
- Minimum boiling azeotrope: 95% C₂H₅OH and 5% H₂O by volume
- Maximum boiling azeotrope: 68% HNO₃ and 32% H₂O by mass

(6) COLLIGATIVE PROPERTIES

- Relative lowering of vapour pressure : $\frac{p_1^0 p_1}{p_1^0} = x_{\text{solute}}$
- Elevation in boiling point: ΔT_b = T_b T_b⁰ = K_bm

Where,
$$K_b = \frac{R \times M_1 \times T_b^2}{1000 \times \Delta_{vap}H}$$

Depression in freezing point: ΔT_t = T_t⁰ - T_t = K_tm

Where,
$$K_f = \frac{R \times M_1 \times T_f^2}{1000 \times \Delta_{fus}H}$$

- Osmotic pressure: $\pi = CRT = \left(\frac{n}{v}\right)RT$
- Osmotic pressure method is widely used to determine molar mass of proteins, polymers.
- Isotonic solution have same osmotic pressure.
- Osmotic pressure associated with the fluid inside the blood cell is equivalent to 0.9% (mass/vol) of NaCl solution.

7 van't Hoff FACTOR AND ITS SIGNIFICANCE

- Observed value of colligative property
- Calculated value of colligative property
- Normal molar mass
- Abnormal molar mass
- For normal solute (i = 1)
- For association, i < 1
- For dissociation, i > 1

(8) MODIFIED COLLIGATIVE PROPERTIES

$$o \frac{p_1^o - p_1}{p_1^o} = \frac{in_2}{n_1}$$

- $\Delta T_b = iK_b m$
- ΔT_f = iK_fm
- π = iCRT

Sharpen Your Understanding

- Which of the following is a common example of solid solution? [NCERT Pg. 36]
 - Chloroform mixed with nitrogen gas
 - (2) Glucose dissolved in water
 - (3) Solution of hydrogen in palladium
 - (4) Camphor in nitrogen gas
- If a solution is described by 10% glucose in water by mass it means that

[NCERT Pg. 36]

- (1) 10 g of glucose is present in 90 g of water
- (2) 10 g of glucose is present in 100 g of water
- (3) 10 g of glucose is present in 110 g of water
- (4) 10 g of glucose is present in 100 ml of
- The molarity of 20% (mass/mass) aqueous KI solution will be (Density of solution $= 1.202 \text{ g ml}^{-1}$ [NCERT Pg. 38]
 - (1) 1.87 M
- (2) 1.52 M
- (3) 1.21 M
- (4) 1.44 M
- Generally solubility of one substance into another substance depends on

[NCERT Pg. 39]

- (1) The nature of substances
- (2) Temperature

- (3) Pressure
- (4) All of these
- Select the incorrect statement among the following. [NCERT Pg. 41]
 - (1) Different gases have different KH values at the same temperature
 - (2) The value of KH for a gas decreases with increase of temperature
 - (3) Higher the value of KH at a given pressure, the lower is the solubility of the gas in a liquid
 - (4) Mole fraction of a gas in the solution is proportional to the partial pressure of the gas over the solution
- The mass of CO2 in 500 ml of soda water when packed under 2.5 atm CO2 pressure at 298 K is $(K_H = 1.67 \times 10^8 Pa)$

[NCERT Pg. 43]

- (1) 1.85 a
- (2) 2.67 g
- (3) 1.21 g
- (4) 0.93 g
- For a solution of two volatile liquids, the correct relation is [NCERT Pg. 44]
 - (1) $p_{total} = p_1^0 + p_2^0$
 - (2) $p_{total} = p_1^0 x_2 + p_2^0 x_1$
 - (3) $p_{total} = p_1^o + (p_2^o p_1^o)x_2$
 - (4) $p_{total} = p_1^o + (p_2^o p_1^o)x_1$

NCERT Based MCQs

Which among the following solution shows positive deviation from raoult's law?

[NCERT Pg. 48]

- (1) Nitric acid + water
- (2) Chloroform + acetone
- (3) Phenol + aniline
- (4) Ethanol + water
- At a particular temperature if the vapour pressure of pure liquids P and Q are 450 and 700 mm Hg respectively then the mole fraction of P in vapour phase will be (Given: total vapour pressure of solution is 600 mm Hg)

[NCERT Pg. 45]

- (1) 0.4
- (2) 0.3
- (3) 0.6
- (4) 0.7
- The value of K_f is given by [NCERT Pg. 53]
 - (1) $\frac{R \times M_1 \times T_f^2}{1000 \times \Delta_{fish}H}$ (2) $\frac{R \times M_1 \times T_f^2}{\Delta_{fish}H}$
 - $(3) \ \frac{R \times M_1 \times T_f}{1000 \times \Delta_{fus} H} \qquad (4) \ \frac{R \times M_1 \times \Delta_{fus} H}{T_c}$
- 11. Mass of benzoic acid required to prepare 500 mL of 0.3 M solution in ethanol is [NCERT Pg. 53]
 - (1) 25.2 g
- (2) 15.2 g
- (3) 18.3 g
- (4) 21.5 g

12.	Two	solutions	having	same	osmotic	
	pressure at a given temperature are called					

[NCERT Pg. 56]

- (1) Hypotonic solutions
- (2) Isotonic solutions
- (3) Hypertonic solutions
- (4) Ideal solutions
- The vapour pressure of a solution at 298 K containing 50 g of urea in 850 g of water will be (Given: p^o_{HoO} = 23.8 mm at 298 K)

[NCERT Pg. 49]

- (1) 22.4 mm
- (2) 22.9 mm
- (3) 23.1 mm
- (4) 23.4 mm
- van't Hoff factor (i) for complete dissociation of K₂SO₄ will be [NCERT Pg. 59]
 - (1) 7

(2) 1

(3) 2

(4) 3

- 15. Which colligative property is used to determine the molar masses of proteins? [NCERT Pg. 56]
 - (1) Osmotic pressure
 - (2) Elevation in Boiling point
 - (3) Relative lowering of vapour pressure
 - (4) Depression in freezing point
- The approximate composition (by mass) of azeotrope formed by nitric acid and water is [NCERT Pg. 49]
 - (1) 48% HNO₃ + 52% H₂O
 - (2) 72% HNO₃ + 28% H₂O
 - (3) 68% HNO₃ + 32% H₂O
 - (4) 50% HNO₃ + 50% H₂O
- van't Hoff factor is defined as the ratio of INCERT Pg. 581
 - Calculated colligative property to observed colligative property
 - (2) Normal molar mass to experimentally determined molar mass

- (3) Cryoscopic constant to Ebullioscopic constant
- (4) Molal depression constant to molal elevation constant
- The molar mass of a non-volatile solute whose 2% aqueous solution exerts a osmotic pressure of 1.004 bar at 273 K, will be [NCERT Pg.55]
 - (1) 625.5 g/mol
- (2) 700.3 g/mol
- (3) 226.4 g/mol
- (4) 445.9 g/mol
- 19. Which of the following aqueous solution have highest freezing point?

[NCERT Pg. 58]

- (1) 0.1 m NaCl
- (2) 0.3 m Na₂SO₄
- (3) 0.2 m Sucrose
- (4) 0.1 m urea
- 20. If depression in freezing point of 0.2 m CH₂FCOOH solution is 0.5°C then van't Hoff factor of CH₂FCOOH will be (k_f = 1.86 K kg mol⁻¹) [NCERT Pg. 51]
 - (1) 1.34
- (2) 1.75
- (3) 1.62
- (4) 1.12

? Thinking in Context

- At high altitudes the partial pressure of oxygen is _____ than that at the ground level. [NCERT Pg. 50]
- Solutions which obey Raoult's law over the entire range of concentration are called ______. [NCERT Pg. 47]
- 3. Relative lowering of vapour pressure of the solvent over a solution is equal to the ____ of a non-volatile solute present in the solution. [NCERT Pg. 50]
- The properties of solutions which depend on the number of solute particles and are independent of their chemical identity are called ______. [NCERT Pg. 49]
- The process of osmosis can be reversed if a pressure _____ than the osmotic pressure is applied to the solution.

[NCERT Pg. 57]

 The value of i for ethanoic acid in benzene is nearly _____. [NCERT Pg. 58]

7.	The osmotic pressure associated with the fluid inside the blood cell is equivalent to that of (mass/volume) sodium chloride solution. [NCERT Pg. 56]		The mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride is [NCERT Pg. 39] Molarity is a function of temperature	17.	The osmotic pressure (in atm) of a solution containing 5.55 g of NaCl in 1 L of aqueous solution at 300 K will be
8.	The concentration of pollutants in water is often expressed in terms of		because depends on temperature. [NCERT Pg. 39]	18.	[NCERT Pg. 55] The mass percentage of benzene in mixture
	[NCERT Pg. 37]	14.	Raoult's law becomes a special case of Henry's law in which K_{H} becomes equal to		of 22 g benzene and 122 g of carbon tetrachloride is [NCERT Pg. 39
9.	does not have any significant effect on solubility of solids in liquids. [NCERT Pg. 40]	15.	[NCERT Pg. 46] The enthalpy change of mixing of the pure components to form a ideal solution is	19.	A solution will freeze when its vapour pressure equals the vapour pressure of the
10.	The tanks used by scuba divers are filled with air diluted with to avoid bends. [NCERT Pg. 43]	16.	The boiling point (in Kelvin) of solution containing 6 g urea in 1 kg of water	20.	pure [NCERT Pg. 52] The flow of solvent from dilute solution to the
11.	The type of intermolecular attractive interactions among I_2 and CCI_4 are [NCERT Pg. 63]		(K _b = 0.52 K kg mol ⁻¹) will be [NCERT Pg. 51]	ati	concentrated solution across a semipermeable membrane is due to [NCERT Pg. 55]