

Carbonyl Compounds

INTRODUCTION

- + Organic compounds in which −C− group is present, are called 'Aldehyde and Ketone'.
 II O
- + The group, -C- is called as carbonyl group. So the compounds containing this group

are also called carbonyl compounds.

- + If H atom is attached with this carbonyl group, then compound is called **aldehyde**, and if alkyl group is present on both sides then compound is called **Ketone**.
- + In ketone if both alkyl groups are same then they are called simple ketone, if different then the compound is called mixed ketone.
- + The general formula of carbonyl compounds is $C_nH_{2n}O$. Hybridisation state of carbon is sp^2 and C=O bond length is 1.23 Å.
- + The ratio of C, H, and O in formaldehyde is 1:2:1 (CH₂O).
- + Aldehyde shows chain and functional isomerism.
- + Ketone shows chain, position, functional isomerism, and also metamerism.
- + Aldehyde and ketone both are functional isomer with each other.

PHYSICAL PROPERTIES

- Aldehydes are colourless liquid with pungent smell, while ketones are pleasant smelling liquids; but formaldehyde is gaseous in nature.
- Lower carbonyl compounds are soluble in water. It is due to polarity in carbonyl group.
- Higher carbonyl compounds are insoluble in water due to more covalent character.
- Boiling point \propto Molecular mass $\propto \frac{1}{\text{Number of branches}}$
- Aldehydes and ketones have higher boiling points than those of non-polar compounds of comparable molar mass, but have lower boiling points than those of alcohols and carboxylic acids due to the absence of H-bonding.

Order of boiling point

- (a) Aldehyde < Ketone
- (b) The boiling point of unbranched aldehydes increases with the increase in the molecular weight. Methanal < ethanal < propanal
- (c) Order of boiling point of methyl ketones. Propanone < butanone < 2-pentanone

- (d) Branched carbonyl compounds < unbranched carbonyl compounds
 3-methyl butanal < Pentanal
 2-pentanone > 3-methyl-2-butanone
 - 40% solution of formaldehyde is known as '**FORMALIN**' (40% HCHO, 54–56% H₂O, 4–6% methanol). It is used in preserving dead bodies.
 - Mixture of formaldehyde and lactose sugar is called 'FORMAMINT' which is used in medicine of throat infection.
 - Boiling point of carbonyl compounds is as under:

S. No.	Compound	Boiling Point
1.	Formaldehyde	–21°C
2.	Acetaldehyde	+21°C
3.	Acetone	+56°C

METHODS OF PREPARATION OF CARBONYL COMPOUDNS

^{*}only used for prepration of aldehyde.

NUCLEOPHILIC ADDITION TO THE CARBON-OXYGEN DOUBLE BOND

The most characteristic reaction of aldehydes and ketones is nucleophilic addition to the carbon-oxygen double bond.

When the reagent is a strong nucleophile (Nu), addition usually takes place in the following way, converting the trigonal planar aldehyde or ketone into a tetrahedral product.

If the nucleophile attacks the carbonyl group, the hybridisation state of carbon changes from sp² to sp³.

Nucleophilic addition can take place either under acidic or basic conditions.

(1) Acid catalysed mechanism of nucleophilic additions to the carbon-oxygen double bonds:

A poor nucleophile requires an acid catalyst to make the nucleophilic addition reaction occur at a reasonable rate. The acid protonates the carbonyl oxygen, which increases the susceptibility of the carbonyl carbon to the nucleophilic attack.

$$\begin{array}{c} R \\ H \\ C = O + H - Nu \xrightarrow{H^{\oplus}} R - C - OH \\ H \\ H \\ H \end{array}$$

The mechanism of acid-catalysed reaction is as follows:

Step-I

Step-II

$$\frac{R'}{R} \xrightarrow{C} - \overset{\circ}{\Omega}H : Nu-H \xrightarrow{slow} + \overset{\circ}{Nu} \xrightarrow{R} \xrightarrow{R'} \xrightarrow{C} - \overset{\circ}{\Omega} - \overset{\circ}{H} \xrightarrow{A} \overset{\circ}{R} \xrightarrow{R'} \xrightarrow{C} - \overset{\circ}{\Omega} - \overset{\circ}{H} + H - A$$

(2) Base catalysed mechanism of nucleophilic additions to the carbon-oxygen double bonds:

If the attacking atom of the nucleophile (such as Oxygen nucleophile and nitrogen nucleophile) has a pair of nonbonding electrons in the addition product, water will be eliminated from the addition product. This is called a **nucleophilic addition–elimination** reaction.

The mechanism for **base-catalysed** reaction is as follows: **Step-I**

$$\ddot{B} + H - Nu^{-} \xrightarrow{\oplus} BH + Nu$$

Step-II

Intermediate

Reactivity of Aldehydes and Ketones for Nucleophilic Addition Reactions

The reactivity of the carbonyl group for nucleophilic addition depends mainly on three factors.

- (1) Ability of carbonyl oxygen to carry a negative charge
- (2) Nature of the groups attached to the carbonyl carbon atom
- (3) Size of the substituent groups (steric factor).

Reactivity of different carbonyl compounds in decreasing order is as follows:

$$\underbrace{\text{HCHO} > C_6H_5 - \text{CH}_2 - \text{CHO} > \text{RCHO} > C_6H_5 - \text{CHO} > \text{R} - \text{C} - \text{R} > \text{R} - \text{C} - \text{C}_6H_5 > C_6H_5 - \text{C} - \text{C}_6H_5}_{(4)}$$

Reactivity in decreasing order

Reactivity of Cyclic Ketones

In case of cyclic ketones the reactivity order is as follows:

Thus more is the angle strain in the cyclic ketones more is their reactivity for nucleophilic addition reaction.

Conclusion

- (i) Steric hindrance and more alkyl substituents make carbonyl compounds less reactive towards any nucleophile.
- (ii) Electron-withdrawing groups and small rings make carbonyl compounds more reactive towards any nucleophile.

CHEMICAL PROPERTIES OF CARBONYL COMPOUNDS

METHODS OF PREPARATION AND CHEMICAL PROPERTIES OF BENZALDEHYDE: (OIL OF BITER ALMONDS)

SPECIAL POINTS

1. Distinction between formaldehyde, acetaldehyde and acetone:

S. No.	Reagent/Test	нсно	CH₃CHO	CH ₃ COCH ₃
1	Brady reagent/DNP	Coloured crystal	Coloured crystal	Coloured Crystal
2	Tollen's reagent	Silver mirror	Silver mirror	×
3	Fehling's solution	Red	Red	×
4	Benedict's solution	Red	Red	×
5	Corrosive sublimate (HgCl ₂)	Black	Black	×
6	Schiff's reagent	Pink	Pink	×
7	lodoform test	×	Yellow	Yellow
8	Pyrogallol test	White	×	×
9	Legal test (Sodium nitroprusside/NaOH)	×	Red	Red
10	m-dinitrobenzaldehyde test	×	×	Blue

- 2. Chloral (CCl₃CHO) is an important intermediate in the manufacture of chloroform and D.D.T.
- **3. Popoff's rule:** Oxidation of unsymmetrical ketones largely take place in such a way that the smaller alkyl group remains attached to the CO group during the formation of two molecules of acids.

e.g.,
$$CH_3$$
-C-CH₂-CH₃- $\stackrel{[O]}{\longrightarrow}$ CH₃-COOH + CH₃-COOH

- **4.** Formaldehyde is used in preparation of urotropine (Hexamethylene tetramine), a urinary antiseptic and bakelite (phenol-formaldehyde resin) polymer, formamint, throat lozenges (formalin + lactose).
- 5. Formaldehyde is used as disinfectant and preservative for biological specimens in the form of formalin.
- **6.** Acetaldehyde is used in preparation of polymers and dyes; metaldehyde is used as solid fuel and paraldehyde as mild hypnotic. Some more hypnotics are.

- 7. Acetaldehyde is used as an antiseptic.
- 8. Acetone is used as a solvent for cellulose, nail polish, varnish and silk.

SOLVED EXAMPLE

- **1.** Which of the following will not be formed when calcium formate is distilled with calcium acetate?
 - (1) Propanone (2) Propanal
 - (3) Ethanal (4) Methanal

$$(CH_{3}-COO)_{2}Ca + (H-COO)_{2}Ca \rightarrow CH_{3}-C-CH_{3}$$

O
Propanone
H-C-H
O
Methanal

$$CH_{3}-C-H$$

Cross product
Cross product

Thus, propanal is not formed.

- When diethyl cadmium [(C₂H₅)₂Cd] is treated with acetyl chloride [CH₃COCl], the main product is likely to be:
 (1)
 - (1) acetone
 - (3) diethyl ketone

- e (4) acetaldehyde
- Sol. [2]

$$(C_2H_5)_2$$
-Cd + CH₃-C-Cl $\xrightarrow{SN_2}$ CH₃-CH₂-C-CH₃
 \bigcup_{O}

Methly ethyl ketone

3. Which one among the following is the best reagent for the conversion of pent-3-en-2-ol into pent-3-en-2-one?

NH ClCrO₃

P.C.C. is selective oxidising agent which does not affect the oxidation of >C=C

 \cap

4. Consider the following sequence of reactions

$$A \xrightarrow{CrO_3} B \xrightarrow{Warm} CH_3CCH_3 + CO_2$$
$$(C_4H_8O_3)$$

The compound (A) is:

- (1) $HOCH_2CH_2CH_2COOH$
- (2) $CH_3CH(OH)CH_2COOH$
- (3) $CH_3CH_2CH(OH)COOH$
- (4) (CH₃)₂C(OH)COOH

Sol. [2]

$$\begin{array}{ccc} CH_{3}-CH-CH_{2}-COOH \xrightarrow{CrO_{3}} & CH_{3}-C-CH_{2}-COOH \\ & & & & \\ OH & & & O & (B) \\ & & & & \\ (C_{4}H_{8}O_{3}) & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

$$CH_3-C-CH_3$$

- **5.** Which of the following compounds does not react with sodium bisulphate?
 - (1) Propanone (2) Propionaldehyde
 - (3) 3-pentanone (4) 2-pentanone

Sol. [3]

All aldehydes and only aliphatic methyl ketones give white precipitate with NaHSO₃

3-pentanone, CH_3 - CH_2 -CO- CH_2 - CH_3 , does not give white precipitate because it is not methyl ketone.

Above conversion can be achieved by

(1)
$$\text{LiAlH}_4$$
 (2) H_2,Ni
(3) NaBH_4 (4) All

Sol. [3]

 $\rightarrow -\mathrm{NO}_2$ group not reduced by NaBH_4

7. A hydrocarbon reacts with HI to give (X) which on being treated with aqueous KOH gives (Y). Oxidation of (Y) gives 3-methyl-2-butanone. The hydrocarbon is

(1)
$$CH_3CH=C(CH_3)_2$$
 (2) $CH_2 = CHCH(CH_3)_2$
(3) $CH_3CH_2C = CH_2$ (4) $HC = C-CH(CH_3)_2$
 CH_3

Sol. [2]

$$\begin{array}{cccc} CH_{3} & CH_{3} \\ CH_{3}-C-CH-CH_{3} & CH_{3} \\ O & CH_{3}-CH-CH-CH_{3} \\ O & OH \\ 3\text{-methyl-2-butanone} & & & & & \\ & & & & &$$

8. A compound $A(C_5H_{10}Cl_2)$ on hydrolysis gives $C_5H_{10}O$ which reacts with NH_2OH , forms iodoform but does not give Fehling test A is

Sol. [1]

 $C_5H_{10}O$ must be methyl ketone because it gives iodoform. Also ketone does not answer Fehling's solution.

- **9.** Acetaldehyde on being treated with aluminium ethoxide forms
 - (1) CH₃CHOHCH₂CHO (2) CH₃COCH₂CH₃

(3)
$$CH_3COCH_2COOC_2H_5(4)$$
 $CH_3COOC_2H_5$

Sol. [4]

$$\begin{array}{c} \text{CH}_{3}\text{-}\text{CH}=\text{O} \xrightarrow[]{\text{(C}_{2}\text{H}_{5}\text{-}\text{O})_{3}\text{Al}/\Delta} \\ 2 \text{ mole} & \begin{array}{c} \text{CH}_{3}\text{-}\text{C}\text{-}\text{OCH}_{2}\text{-}\text{CH}_{3} \\ & \begin{array}{c} \parallel \\ \text{O} \\ \\ \text{Ethyl acetate} \end{array}$$

- 10. Which of the following cannot be used to convert RCHO into RCH_2OH ?
 - (1) H_2/Pd
 - (2) LiAlH₄
 - (3) NaBH₄

(4) Reaction with RMgX followed by hydrolysis

Sol. [4]

 H_2/Pd , LiAl H_4 , NaB H_4 will convert R-CH=O into R-CH₂OH by reduction.

Aldehyde is converted into 2° alcohol with Grignard reagent.

- 11. A compound (X) of molecular formula C_3H_6O forms bisulphate complex, gives iodoform test but does not reduce Tollens reagent. (X) on reaction with CH_3MgBr/H_3O^+ gives a compound (Y) that cannot
 - (1) give red colour with CAN
 - (2) give white turbidity immediately with Lucas reagent

- (3) give iodoform test
- (4) be dehydrated to alkene on reaction with heated Cu
- Sol. [3]

In given condition $X(C_3H_6O)$ should be methyl ketone.

- 12. A compound (A), $C_4H_8Cl_2$, on hydrolysis gives a product (B) which forms a 2, 4-DNP derivative but does not reduce Tollens reagent. The compound (A) has the structure
 - (1) $CH_3CH_2CHClCH_2Cl$ (2) $CH_3CH_2CCl_2CH_3$
 - $(3) CH_3CH_2CH_2CHCl_2 \quad (4) CH_3CHClCHClCH_3$
- Sol. [2]

Ketone group forms 2, 4, DNP derivative but do not reduces Tollens' reagent. Hence $A(C_4H_8Cl_2)$ must be non-terminal geminal di chloride.

$$CH_{3}-CH_{2}-C-CH_{3}\xrightarrow{Aq KOH} CH_{3}-CH_{2}-C-CH_{3}$$

$$CI CI OHOH$$

$$CH-CH_{2}-C-CH_{3}$$

$$CH-CH_{2}-C-CH_{3}$$

13. Consider the following reaction:

The product (A) is:

Sol. [3]

Reduction of ester group is not affected by weak reducing agent $NaBH_4$

14. Which of the following gives Cannizzaro reaction?

Sol. [4]

Aldehydes having no α -H give Cannizzaro reaction. Chloral gives nucleophilic substitution reaction so that derivative of formic acid is formed. Thus only Ph–C–H no –H (gives Cannizzaro reaction)

- **15.** A water soluble $C_6H_{14}O_2$ compound is oxidised by lead tetraacetate (or periodic acid) to a single C_3H_6O carbonyl compound. Which of the following would satisfy this fact?
 - (1) meso-2, 3-dimethoxybutane
 - (2) 1, 2-diethoxyethane
 - (3) meso-2, 5-hexanediol
 - (4) meso-3, 4-hexanediol
- Sol. [4]

Only vicinal diol cleaved by periodic acid

$$\begin{array}{c} CH_2-CH_2-CH_1-CH_2-CH_3 \xrightarrow{HIO_4} \\ OH & OH \\ Meso 3,4 \text{ hexane diol} \\ CH_3-CH_2-CH=O (C_3H_6O) \end{array}$$

16. Which of the following would undergo aldol condensation?

(1) HCHO (2)
$$CH_3-CH_2-C-CHO$$

 CH_2CH_3

(3) CCl₃CHO (4) CH₃
$$\stackrel{CH_3}{\underset{i}{\downarrow}}$$
 (5) CCl₃CHO (4) CH₃-C-CH₂-CHO $\stackrel{CH_3}{\underset{i}{\downarrow}}$ (4) CH₃ (4) CH

Sol. [4]

Only α -H containing substances undergo aldol condensation.

17. Consider the structures (P) and (Q)

The products of acid-catalysed hydrolysis of (P) and (Q) can be distinguished by

- (1) Lucas reagent (2) 2,4-DNP
- (3) Fehling's solution (4) NaHSO₃

18. Compound 'A' give positive test with 2,4-DNP and with I_2 /NaOH. Compound 'A' may be:

Sol. [4]

- positive DNP test indicating that compound (A) must have carbonyl group
- positive iodoform test indicating that (A) must be methyl ketone
- 19. Which of the following reduce Fehling's solution?
 - (1) Fructose (2) Benzaldehyde
 - (3) Sucrose (4) Amylose
- Sol. [1]

Fructose $\frac{\text{Fehling's}}{\text{Solution}}$ positive test

 α -Hydroxy ketone will also reduce Fehling's solution.

20. End product in the following sequence of reaction is:

Sol. [2]

Pinacole-pinacolone re-arrangement

23. Cyclohexene on treatment with O_3 , followed by reaction with zinc dust and water gives a compound (E). The compound (E) on further treatment with aqueous KOH yields a compound (F). The compound (F) is

Wittig reaction

- (1) (CH₃)₃CCOCH₂-CH₃
- (2) $(CH_3)_3CCH(OH)CH_2-CH_3$

$$(3) \quad (CH_3)_3 CCCH_2 - CH_3 \\ | \\ CH_3)_3 CCCH_2 - CH_3 \\ OH$$

- (4) $(CH_3)_3CCOOCH_2-CH_3$
- 2. The $K_{\text{eq.}}$ values in HCN addition to following aldehydes are in the order:

- Η III
 - (1) I > II > III(2) II > III > I(3) III > I > II (4) II > I > III
 - 3. Consider the following sequence of reactions:

$$CH_3CHO + HCN \rightarrow CH_3CHOHCN \xrightarrow{H_3OA^+} CH_3CHOHCOOH$$

The acid formed as the final product will be obtained as:

- (1) an L-isomer
- (2) a D-isomer
- (3) 20% D-isomer and 80% L-isomer
- (4) 50% D-isomer and 50% L-isomer

(1) KOD/D₂O, H^+/Δ , LiAlH₄

- (2) H^+/Δ , KOD/D₂O, LiAlH₄
- (3) KOD/D₂O, LiAlH₄, H⁺/ Δ
- (4) LiAlH₄, H⁺/ Δ , KOD/D₂O
- 7. Identify the major product in the following reaction.

Structure of (X) is

9. Which of the following ketones/aldehydes can undergo haloform reaction?

$$(1) CH_3-C-CH_3 (2) CH_3-CHO
(3) -C-CH_3 (4) All of these$$

10. Monomer of trioxane is

(1) = (2)
$$H_2C = O$$

(3)
$$Me(H)C = O$$
 (4) $Me_2C = O$
O

11. HO-C-CH₂CH₂-CHO
$$\xrightarrow{(i) \text{ NaBH}_4}$$
 (A) $\xrightarrow{\Delta}$ (B)

Structure of B will be:

(3)

(1)
$$\operatorname{CH}_{2}(\operatorname{OH})$$
- $\operatorname{COO}^{\Theta}$ (2) CH_{3} - $\operatorname{COO}^{\Theta}$

HOOC-COO^{$$\Theta$$} (4) CH₂ (OH)-CH₂(OH)

13. Which of the following compound not reacts with HIO_4 ?

X and Y are, respectively:

- (1) H_3O^+ , MnO_4^-/H^+
- (2) H_3O^+ , $CrO_3/Pyridine$
- (3) BH₃. THF/H₂O₂, OH⁻, CrO₃/pyridine
- (4) BH₃. THF/H₂O₂, OH⁻, Cr2O₇²⁻/H₃O⁺
- **15.** Which type of reaction in the reduction of carbonyl compound with LAH and NaBH₄ occurs, and which nucleophile takes part in the reaction?
 - (1) Nucleophilic addition and AlH_4^{Θ} or BH_4^{Θ}
 - (2) Nucleophilic addition and H^{Θ}
 - (3) Nucleophilic substitution and AlH_4^{Θ} or BH_4^{Θ}
 - (4) Nucleophilic substitution and H^{Θ}
- **16.** Which of the following aldehydes does not undergo a Cannizzaro reaction?
 - (1) C₆H₅–CHO

(3) (CH₃)₂--CH--CHO

(4)
$$(CH_3)_2N$$
 — CH_2CHO

- **17.** Reagent that can distinguish a set of benzaldehyde and formaldehyde is
 - (1) I₂/NaOH (2) Tollens' reagent
 - (3) Fehling's solution (4) Baeyer's reagent
- **18.** In the reaction PhCN $\xrightarrow{1. \text{ SnCl}_2/\text{HCl}}$ the modification of

the functional group and the change in hybridisation of the functional carbon are, respectively

- (1) -CN to $-CH_2NH_2$, sp² to sp³
- (2) -CN to -CONH₂, sp to sp^2
- (3) -CN to -COOH, sp^2 to sp^3
- (4) -CN to -CHO, sp to sp^2
- **19.** A compound 'X' ($C_{14}H_{14}O$) on mild oxidation yields $C_{14}H_{12}O$ (Y). If X is treated with a dehydrating agent, it loses a molecule of H_2O and resulting product on vigorous oxidation yield two molecule of benzoic acid. Identify the structure of X and Y.

(1) X is
$$-CH_2$$
-CH-Ph & Y is Ph-C-CH₂-Ph
OH O
(2) X is Ph-C-CH₃ & Y is Ph-C=CH₂
Ph Ph
(3) X is Ph-CH-CH₂-OH & Y is Ph-CH-CH = O
Ph Ph
(4) X is

20. Consider the following reaction sequence.

$$\begin{array}{c} CH_2CH_2COOH \\ | \\ CH_2CH_2COOH \end{array} \xrightarrow{MnO/Heat} (X) \xrightarrow{HI/P_4} (Y)$$

The product (Y) is-

(1) cyclobutane (2) cyclopentane

- (3) cyclopentanone (4) cyclobutanone
- **21.** Which of the following pairs is differentiated by iodoform and Tollens' reagent?
 - (1) PhCOCH₃; Ph–CHO

(2)
$$H-C-CH_3$$
; CH_3-CH_2-CHO
(3) $H-C-CH_3$; CH_3-CH_2-CHO

(4)
$$H-C-H$$
; Ph – CH = O

- **22.** Schiff's reagent is used for the differentiation between:
 - (1) HCHO and CH₃CHO

(2)
$$CH_3COCH_3$$
 and CH_3CHO
O

(3)
$$C_6H_5$$
-CH₂-C-CH₃ and C_6H_5 -C-CH₂-CH₃

(4) HCHO and C₆H₅CHO

23.
$$CH_2=CHCHCH_2CH_2OH \xrightarrow{MIO_2} A. A is OH$$

(1)
$$CH_2 = CHCHCH_2CH_2OH$$

(3)
$$CH_2 = CHCCH_2CHO$$

(4)
$$CH_2 = CHCCH_2COH$$

- **24.** In the reaction PhCOCH₃ $\xrightarrow{\text{CH}_3\text{CO}_3\text{H}}$ A, the product (A) is:
 - (1) $PhCOOCH_3$ (2) CH_3COOPh
 - (3) $PhCO_2H$ (4) $PhCOOCOCH_3$

- **25.** Aniline undergoes condensation reaction with benzaldehyde to from benzalaniline. The latter is known as:
 - (1) a Mannich base (2) a Schiff base
 - (3) Schiff reagent (4) Benedict's reagent
- **26.** Which of the following will give negative Tollens' but positive iodoform test?

27. Acetophenone when reacted with a base, C_2H_5ONa , yields a stable compound which has the structure:

Above conversion can be carried out by:

- (1) Clemmensen reduction
- (2) Wolff-Kishner reduction
- (3) LiAlH₄
- (4) NaBH₄

0

- **29.** When a nucleophile encounters a ketone, the site of attack is:
 - (1) The carbon atom of the carbonyl
 - (2) The oxygen atom of the carbonyl
 - (3) Both the carbon and oxygen atoms, with equal probability
 - (4) No attack occurs as ketones do not react with nucleophiles

30.
$$R-C-H \xrightarrow{R-NH_2} R-CH=R$$
. This reaction gives the best yield at:

(1)

(3)

CH3

OH

CH₂

(2)

(4)

11. An organic compound A (molecular formula $C_6H_{12}O$) does not change the colour of acidic dichromate solution. Compound A on treatment with H_2SO_4 produces alkene, which on oxidative ozonolysis gives a molecule ($C_6H_{10}O_3$) which gives positive iodoform test. Find the structure of A

- **12.** Acetaldehyde on being heated with malonic acid in the presence of pyridine produces
 - (1) $CH_3CH=C(COOH)_2$
 - (2) CH₃COOH
 - (3) CH₃CH=CHCOOH

13.
$$CH_3 \longrightarrow C \longrightarrow HCHO + (E)$$

 $O \longrightarrow O \longrightarrow (B) \xrightarrow{LiAlH_4} (C) \xrightarrow{LiAlH_4} (D)$

Compound (C) can show geometrical isomerism. Product (E) of the reaction will be:

14. Arrange the following carbonyl compounds in decreasing order of their reactivity in nucleophilic addition reaction.

(1) CH₃CHO (2) \bigcirc OH

(3)
$$CH_3CH_2CH_2CH_2CH_-OCH_3$$

OH
(4) $CH_3-CH < OCH_3$
OCH₃

16. The compound A gives following reactions:

A(C₆H₈O₂)
$$\xrightarrow{\text{Na metal}}$$
 H₂ gas \uparrow
2, 4-DNP yellow orange ppt O₃ B(C₆H₈O₄)

Its structure can be:

(1)
$$CH_2=CH-(CH_2)_2-C-CH_2OH$$

(2) $OHC-(H_2C_2)_2-HC-COOH$
(3) OH
(4) OH
(4) OH
(5) OH
(4) OH
(5) OH
(6) OH
(7) OH
(7) OH
(8) OH
(9) OH
(9

17. Consider the following reactions:

I.
$$CH_{3}CH \xrightarrow{[Ag(NH_{3})_{2}]^{+}, OH^{-}}_{H^{+}}$$

II. $CH_{3}CCl_{3} \xrightarrow{OH^{-}}_{U}$

III.
$$CH_3COC_2H_5 \xrightarrow{OH}$$

- The final product is acid in:
- (1) I, II, III (2) I, III
- (3) I, II (4) I
- **18.** Arrange their stabilities of given gem-diols in decreasing order.

- $(3) I > III > II \qquad (4) III > I > II$
- 19. Consider the following two reactions:

The two major products (A) and (B) are, respectively:

20. Consider the following sequence of reactions

 $CICH_2COCH_2CI \xrightarrow{HCN} A \xrightarrow{KCN(excess)} B \xrightarrow{H_3O^+} C$

The end product (C) is

- (1) CNCH₂C(OH)CH₂CN | COOH
- (2) HOOCCH₂C(OH)CH₂COOH
- (3) CNCH₂COCH₂CN
- (4) HOOCCH₂COCH₂COOH

21.
$$(\bigcirc) = C - H \longrightarrow (\bigcirc) = C + 2 - O H$$

Identify the reagents that can perform this conversion successfully

(I) H_2 , Raney Ni, Δ (II) HI/P_4

0

- (1) I and II (2) II and III
- (3) III and IV (4) II and IV
- 22. Give the major product of the following reaction:

24. In which of the following reactions, an aldehyde is not formed as major product?

(1)
$$CH_3 - C \equiv CH + (CH_3 - CH - CH)_2 BH \xrightarrow{H_2O_2}_{NaOH}$$

(2) $CH_3 - CH_2 - C \equiv CH + KMnO_4 \xrightarrow{H_2O}_{Cold}$
(3) $CH_3 - CH_2CH_2CH_2 - OH + Cu \xrightarrow{\Delta}$
(4) $CH_3 - CH_2CH_2CH_2 - COOH + HCOOH \xrightarrow{MnO}_{Heat}$

25. The product P in the reaction:

EXERCISE 3

One and More Than One Option Correct Type Question

1. Consider the reaction given below:

$$\langle \rangle = O + NaHSO_3(aq) \rightarrow$$

The correct observation regarding the above reaction is/are:

- (1) Precipitate formation takes place
- (2) Racemic mixture of salts are formed
- (3) Salts on acid hydrolysis give back the original reactant
- (4) If NaHSO₃ is in limited amount, no precipitation occurs
- **2.** Which of the following form enamine on heating with a secondary amine in weakly acidic medium?

3. In the Cannizzaro reaction mentioned below

$$\begin{array}{c} O \\ \parallel \\ H - C - H + NaOD \xrightarrow{D_2O} H_3O^{\dagger} \end{array}$$

the possible product(s) is/are

- (1) CH_3OH (2) CH_3OD
- (3) HCOOD (4) H_2 CDOH
- 4. In the reaction given below

expected product(s) is/are

5. Consider the reaction sequence give below.

$$H_3C \longrightarrow CH_2Cl \xrightarrow{(i) Ph_3P} X \xrightarrow{CH_3CHO} Y$$

The correct statements regarding the above reaction is/are:

- (1) X is CH_3 — $CH=PPh_3$
- (2) Y is CH₃—CH=CH—CH₃
- (3) Y is CH_3 — CH_2 — $CH=CH_2$
- (4) Y is a mixture of diastereomers
- **6.** The carbonyl compound(s) that will undergo racemisation on treatment with aqueous KOH is (are):

- 7. Which of the following are correct statements?
 - (1) Acetophenone does not give a red colour precipitate with Fehling's solution
 - (2) Benzaldehyde gives a red coloured precipitate with Fehling's solution
 - (3) Benzaldehyde gives silver mirror with Tollens' reagent
 - (4) Benzaldehyde gives a black grey precipitate with mercuric chloride solution

CHO

ΌH

CH2-COOH

8. An organic compound has the structure

It will give

- (1) ceric ammonium nitrate test
- (2) give brisk effervescence with sodium bicarbonate
- (3) it will give a characteristic colouration with neutral ferric chloride after decarboxylation and reduction by Clemmensen's method
- (4) It will give silver mirror test

Statement Type Question

- (1) If both Statement-I and Statement-II are correct and Statement-II is the correct explanation for Statement-I
- (2) If both Statement-I and Statement-II are correct and Statement-II is not the correct explanation for Statement-I
- (3) If Statement-I is correct and Statement-II is incorrect
- (4) If Statement-I is incorrect and Statement-II is correct
- Statement-I: Fehling solution can oxidise aliphatic aldehyde but cannot oxidise aromatic aldehyde.
 Statement-II: Tollens' reagent can oxidise aliphatic and aromatic aldehyde both.
- Statement I: When a mixture of ethanal and propanal is treated with aqueous Na₂CO₃, four aldol (excluding stereoisomers) compounds are formed.
 Statement-II: In mixed aldol condensation, two self and two cross condensation products are always formed.
- 11. Statement-I: Consider the reaction given below,

Statement-II: Aldehydes and ketones react with semicarbazide to form semicarbazone.

Comprehension Type Question

Passage Based Questions (Q. 12-14)

$$A(C_8H_{14}) \xrightarrow[(CH_3)S]{O_3} B(C_8H_{14}O_2) \xrightarrow[(DilNaOH]{O_1} O_2)$$

A is optically active and C is one of the several aldol possible in the above reaction.

12. The structure of A satisfying above criteria is

13. Besides C, the other six membered cyclic aldol formed in the above reaction is

- 14. The product B is stereomeric. If a mixture containing all stereoisomers of B is treated with excess of LiAlH_4 followed by the acidification will give how many different isomeric diols?
 - (1) 2
 (2) 4

 (3) 6
 (4) 8

Column Matching Type Question

15. Column-I	Column-II
(A) –COOH	(p) Tollens' reagent
(B) –CHO	(q) Sodium bisulphite
0 (C) CH ₃ -C-	(r) Sodium bicarbonate
(D) -C-	(s) Sodium hypo iodite
(E) –COOCH ₃	(t) Sodium hydroxide
(1) $A \rightarrow r; B \rightarrow p; C \rightarrow p$	\rightarrow s; D \rightarrow q; E \rightarrow t
(2) $A \rightarrow p; B \rightarrow s; C \rightarrow s$	\rightarrow t; D \rightarrow q; E \rightarrow r
(3) $A \rightarrow s; B \rightarrow q; C \rightarrow q$	$\rightarrow p; D \rightarrow r; E \rightarrow t$
(4) $A \rightarrow q$; $B \rightarrow t$; $C \rightarrow t$	\rightarrow s; D \rightarrow p; E \rightarrow r
Sol. [1]	
16. Column-(I)	Column-(II)
(a) PhMgBr + Cl–NI	H ₂ (P) Ph–CN
(b) PhMgBr + Cl–CN	N (Q) Ph–NH ₂
(c) PhMgBr + H_3C-C	O O U U U C−Cl (R) Ph−C−CH ₂ CH ₃
(d) PhMgBr + CH ₃ -C	$\begin{array}{c} O & O \\ & \\ C-OC_2H_5 (S) \text{ Ph-}C-CH_3 \end{array}$

(1) $a \rightarrow Q$; $b \rightarrow P$; $c \rightarrow S$; $d \rightarrow R$ (2) $a \rightarrow Q$; $b \rightarrow P$; $c \rightarrow R$; $d \rightarrow S$ (3) $a \rightarrow P$; $b \rightarrow Q$; $c \rightarrow R$; $d \rightarrow S$ (4) $a \rightarrow Q$; $b \rightarrow P$; $c \rightarrow R$; $d \rightarrow S$ Sol. [1] Ph-Mg - Br + Cl-NH₂ \longrightarrow Ph - NH₂

17. Match the compounds given in List-I with those in List-II and select the suitable option using the code given blow:

	List-I		List-II
(a)	Benzaldehyde	(i)	Phenolphthalein
(b)	Phthalic anhydride	(ii)	Benzoin condensation
(c)	Phenyl benzoate	(iii)	Oil of wintergreen
(d)	Methyl salicylate	(iv)	Fries rearrangement

Code:				
b	c	d		
i) (i)	(iv)	(ii)		
v) (i)	(iii)	(ii)		
v) (ii)	(iii)	(i)		
i) (iii)	(iv)	(i)		
	b i) (i) v) (i) v) (ii)	b c i) (i) (iv) v) (i) (iii) v) (ii) (iii)		

18. Match the reactants from Column I with the reagents and expected outcomes from Column II. Mark the correct option form the codes given below.

	Column I		Column II
i.	0	p.	LiAlH ₄ -racemic mixture of products.
ii.	0	q.	[(CH ₃) ₂ CHO] ₃ Al-racemic mixture of products.
iii.	Cl	r.	Zn(Hg)–HCl- suitable for selective reduction of car- bonyl group
iv.		s.	N ₂ H ₄ /NaOH/Heat- suitable for selective reduction of carbonyl group.

Codes:

i	ii	iii	iv
(1) p, q, r, s	p, q, s	q, r	p, q, r, s
(2) p, r	q, r	S	r, r
(3) q, r	r, s	p, s	S
(4) p, r	q	r, s	S

19. Match the reaction from Column I with the properties of products from Column II. Mark the correct option form the codes given below.

	Column I		Column II
i.	$\begin{array}{c} \text{CHO} \\ & + \text{HCN} \\ \text{CHO} \end{array} \xrightarrow{+ \text{NaCN}} \end{array}$	p.	Racemic mixture
ii.	$H = O + NaHSO_3(aq.) \longrightarrow H$	q.	Pair of diastereomers
iii.	$\overset{H_{3}O^{+}}{\longrightarrow} H_{2}H_{3}MgBr \rightarrow \overset{H_{3}O^{+}}{\longrightarrow}$	r.	Meso isomer
iv.	$\underbrace{\overset{OH}{\longleftarrow}}_{(+) \text{ 3-methyl-2pentanol}} \underbrace{\overset{K_2 \text{Cr}_2 \text{O}_7}{H^+}}_{\text{NaBH}_4} \underbrace{\overset{H_3 \text{O}^+}{\longrightarrow}}_{\text{NaBH}_4}$	s.	Product mixture can be sepa- rated into two fractions by chromatography

Codes

i	ii	iii	iv
(1) p, q, r, s	q, s	р	q, s
(2) q, s	p, s	p, q	r, q
(3) p, q	q	r, q	S
(4) p, q, r	r, s	r	р

20. Match the reactions of Column I with the type of reactions from Column II. Mark the correct option form the codes given below.

	Column I	(Column II
i.	$CH_3CHO + CH_2O (excess) \xrightarrow{(i) Conc. NaOH}{(ii) H_3O^+}$	p.	Aldol con- densation
ii.	F—CHO + Conc. NaOH $\xrightarrow{\text{H}_3\text{O}^+}$	q.	Cannizzaro reaction
iii.	$(CH_3)_2CH$ — $CHO \xrightarrow{(i) Conc. NaOH}$	r.	Claisen reaction
iv.	$CH_3CHO + C_6H_5CHO \xrightarrow{(i) Conc. NaOH}{(ii) H_3O^+}$	s.	Tischenko reaction

Codes:

	i	ii	iii	iv
(1)	p, q	S	r	р
(2)	p, q	q	p, q	p, q, r
(3)	р	q	r	S
(4)	р	q	r	S

21. Match the Column I with Column II and mark the correct option form the codes given below.

	Column I		Column II
i.	O CH ₃	p.	Gives just one aldol only
ii.	H ₃ C CH ₃	q.	Gives yellow precipitate with I ₂ /NaOH
iii.	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	r.	Produces isomeric oximes with HONH ₂
iv.	0	s.	more than 4 u in molar mass on treatment with NaOD/D ₂ O
		t.	Gives more than one aldol.

Codes:						
i	ii	iii	iv			
(1) p, q	q	r, t	s, t			
(2) q, r, t	p, q, s	t	r, s, t			
(3) t, r, q	p, q, s	p, r	q			
(4) q, s, t	p, r	r, s, q	s, r, t			

Single Digit Integer Type Question

22. How many reagents (i to viii) are successively reacted with the following it compound

(i)	NaHCO ₃	(ii)	2, 4, DNP
(iii)	Na metal	(iv)	$AgNO_3 + OH$
(v)	Fehling's solution	(vi)	$Cu_2Cl_2 + HCl$
(vii)	Br ₂ /H ₂ O	(viii)	NaNO ₂ + HCl

23. How many moles of HIO_4 are consumed by given compound when it reacts with HIO_4 ?

$$\begin{array}{c} O \\ \parallel \\ C-H \\ H \longrightarrow OH \\ HO \longrightarrow H \\ H \longrightarrow OH \\ H \longrightarrow OH \\ CH_2OH \\ (D-Glucose) \end{array}$$

- 24. How many different alcohol isomers with molecular formula $C_5H_{12}O$ can be oxidised to ketones using $K_2Cr_2O_7-H_2SO_4$?
- **25.** In the following reaction, how many isomers of trioximes are formed?

$$0$$
 0 0 $+$ H_2N-OH

26. In the reaction

$$H \xrightarrow{O O O} H \xrightarrow{NH_2OH} \xrightarrow{Conc.H_2SO_4} Amides$$

- How many different amides are expected?
- 27. Consider the following two step synthesis:

$$Br-CH_2-COOEt + Zn \xrightarrow{(i)} \xrightarrow{(i)} NaOH$$

A cyclic diketone X

If x is finally treated with excess of NaBH₄ followed by acid work-up, how many different isomers of diols would be formed?

- **28.** In reaction of $C_6H_5COCH_3$ with KOH-I₂ to form iodoform, how many moles of KOH are consumed per mole of ketone?
- **29.** In the reaction given below, how many different oximes would be formed?

$$O$$

$$\parallel$$

$$CH_3CH=CH-C-CH=CHCH_3 + H_2NOH \rightarrow Oximes$$

30. If all the aldehyde isomers of $C_5H_{10}O$ is independently treated with HCN/NaCN solution, how many of them will of them will give racemic mixture of cyanohydrin?

EXERCISE 4

- Which one of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid? [AIEEE-2004]
 - (1) Phenol (2) Benzaldehyde
 - (3) Butanal (4) Benzoic acid
- 2. The best reagent to convert pent-3-en-2-ol into pent-3-en-2-one is [AIEEE-2005]
 - (1) Acidic dichromate
 - (2) Acidic permanganate
 - (3) Pyridinium chloro-chromate
 - (4) Chromic anhydride in glacial acetic acid
- 3. The increasing order of the rate of HCN addition to compounds A–D is [AIEEE-2006]
 - (a) HCHO
 (b) CH_3COCH_3

 (c) $PhCOCH_3$ (d) $PhCOC_6H_5$

 (1) d < b < c < a (2) d < c < b < a

 (3) c < d < b < a (4) a < b < c < d
- 4. Which of the following on heating with aqueous KOH produces acetaldehyde? [AIEEE-2009]
 (1) CH₃COCl
 (2) CH₃CH₂Cl

 - $(3) CH_2ClCH_2Cl \qquad (4) CH_3CHCl_2$

- Among the following the order of reactivity toward nucleophilic addition is [JEE-Main Online-2012]
 - (1) HCHO > CH_3CHO > CH_3COCH_3
 - (2) $CH_3CHO > HCHO > CH_3COCH_3$
 - (3) $CH_3CHO > CH_3COCH_3 > CH_3COCH_3$
 - (4) $CH_3COCH_3 > CH_3CHO > HCHO$
- 6. The reaction [JEE-Main Online-2012] $CH_3CHO - \frac{[H]}{Zn(Hg/Conc. HCl)} CH_3CH_3$ is:
 - (1) Cannizzaro reaction
 - (2) Wolf-Kishner reduction
 - (3) Rosenmund reduction
 - (4) Clemmensen reduction
- 7. Formaldehyde can be distinguished from acetaldehyde by the use of [JEE-Main Online-2013]
 - (1) Schiff's reagent (2) Tollens' reagent
 - (3) I₂/Alkali (4) Fehling's solution
- 8. Clemmensen reduction of a ketone is carried out in the presence of:- [JEE-Main Online-2013]
 - (1) LiAlH_4
 - (2) Zn-Hg with HCl

- (3) Glycol with KOH
- (4) H_2 with Pt as catalyst
- **9.** Which of the following is the product of aldol condensation? [JEE-Main Online-2013]

10. Cannizzaro reaction is not given by-

[JEE-Main Online-2013]

- (3) CH_3CHO (4) HCHO
- 11. Which is the major product formed when acetone is heated with iodine and potassium hydroxide? [JEE-Main Online-2014]
 - (1) Iodoacetone (2) Acetic acid
 - (3) Iodoform (4) Acetophenone
- **12.** Tishchenko reaction is a modification of:

[JEE-Main Online-2014]

- (1) Aldol
- (2) Claisen condensation
- (3) Cannizzaro reaction
- (4) Pinacol-pinacolone reaction
- 13. In the following sequence of reactions

[JEE-Main-2015]

Toluene $\xrightarrow{\text{KMnO}_4} A \xrightarrow{\text{SOCl}_2} B \xrightarrow{\text{H}_2/\text{Pd}} BaSO_4$

The product C is:

(1)
$$C_6H_5COOH$$
 (2) $C_6H_5CH_3$

(3)
$$C_6H_5CH_2OH$$
 (4) C_6H_5CHO

14. A compound A with molecular formula $C_{10}H_{13}Cl$ gives a white precipitate on adding silver nitrate solution. A on reacting with alcoholic KOH gives compound B as the main product. B on ozonolysis gives C and D. C gives Cannizzaro reaction but not aldol condensation. D gives aldol condensation but not Cannizzaro reaction. A is:

[JEE-Main Online-2015]

(3)
$$C_6H_5-CH_2-CH_2-CH_2-CH_2-CH_2$$

(4) $C_6H_5-CH_2-C<\frac{CH_3}{CH_3}$
Cl

15. In the reaction sequence [JEE-Main Online-2015]

$$2 \text{ CH}_{3}\text{CHO} \xrightarrow{\text{OH}} A \xrightarrow{\Delta} B, \text{ the product } B \text{ is}$$

$$\stackrel{O}{\parallel}$$

$$(1) \text{ CH}_{3}\text{-C-CH}_{3}$$

$$(2) \text{ CH}_{3}\text{-CH}_{2}\text{-CH}_{2}\text{-CH}_{3}$$

$$(3) \text{ CH}_{3}\text{-CH=CH-CHO}$$

$$(4) \text{ CH}_{3}\text{-CH}_{2}\text{-CH}_{2}\text{-CH}_{2}\text{-OH}$$

$$16. \text{ MeO} \xrightarrow{\bigcirc} \text{-CHO} + X \xrightarrow{\text{CH}_{3}\text{COONa}} \Delta$$

The X in the given reaction is

- (1) CH_3COOH (2) $BrCH_2$ -COOH
- (3) COOH(CH₃CO)₂O (4) (CH₃CO)₂O | CHO

- (1) Tollens' reagent (2) Fehling's solution
- (3) $NaOH/I_2/H^+$ (4) $NaOH/NaI/H^+$
- **18.** Butan-2-one can be converted to propanoic acid by which of the following?

(2006, Only One Option Correct Type)

- (1) NaOH, NaI/H⁺ (2) Fehling's solution
- (3) NaOH, I_2/H^+ (4) Tollens' reagent
- **19.** The smallest ketone and its next homologue are reacted with NH₂OH to form oxime

(2006, Only One Option Correct Type)

- (1) Two different oximes are formed
- (2) Three different oximes are formed
- (3) Two oximes are optically active
- (4) All oximes are optically active
- 20. Cyclohexene on ozonolysis followed by reaction with zinc dust and water gives compound E. Compound E on further treatment with aqueous KOH yields compound F. Compound F is

(2007, Only One Option Correct Type)

Passage Based Questions: (Q. 21–23)

In the following sequence, product I, J and L are formed. K represents a reagent.

(2008 Comprehension Type)

21. The structure of the product I is

- 22. The structure of compounds J and K, respectively, are
 - (1) H_3C _____COOH and SOCl₂

(2)
$$H_3C$$
 COOH and $SOCl_2$
(3) H_1C

(4)
$$H_3C$$
 — COOH and CH_3SO_2Cl

23. The structure of product L is

(1)
$$H_3C$$
 — CHO
(2) H_3C — CHO
(3) H_3C — CHO
(4) H_3C — CHO

A tertiary alcohol H upon acid catalysed dehydration gives a product I. Ozonolysis of I leads to compounds J and K. Compound J upon reaction with KOH gives benzyl alcohol and a compound L, whereas K on react ion with KOH gives only M.

(2008 Comprehension Type)

24. Compound H is formed by the react ion of

(1)
$$O$$

Ph CH_3 ; PhMgBr
(2) O
Ph CH_3 ; PhCH₂MgBr
(3) O
Ph H ; PhCH₂MgBr
(4) O
Ph H ; PhCH₂MgBr
(4) O
Ph H ; PhCH₂MgBr

- **25.** The structures of compounds J, K and L, respectively, are
 - (1) PhCOCH₃, PhCH₂COCH₃ and PhCH₂COO⁻K⁺
 - (2) PhCHO, PhCH₂CHO and PhCOO⁻K⁺
 - (3) PhCOCH₃, PhCH₂CHO and CH₃COO⁻K⁺
 - (4) PhCHO, PhCOCH₃ and PhCOO⁻K⁺
- 26. In the following reaction sequence, the correct structures of E, F and G are [IIT-2008]

$$\begin{array}{c} O & O \\ Ph & Heat \\ * & OH \end{array} \xrightarrow{Heat} [E] \xrightarrow{I_2} [F] + [G] \end{array}$$

(* implies¹³C labeled carbon)

Passage Based Questions: (Q. 27-29)

A carbonyl compound P, which gives positive iodoform test, undergoes reaction with MeMgBr followed by dehydration to give an olefin Q. Ozonolysis of Q leads to a dicarbonyl compound R, which undergoes intramolecular aldol reaction to give predominantly S. (2009 Comprehension Type)

$$P \xrightarrow{1. \text{ MeMgBr}} Q \xrightarrow{O_3/\text{Zn-H}_2O} R \xrightarrow{OH} S$$

3. H₂SO₄/Heat

27. The structure of the carbonyl compound P, is

28. The structure of the product S, is

29. The structures of the products Q and R, respectively, are

30. In the scheme given below, the total number of intramolecular aldol condensation products form (Y) is **[IIT-2010]**

31. Match the reactions in column I with appropriate type of steps/reactive intermediate involved in these reactions as given in column II and give a correct answer
[IIT-2011]

- (1) A \rightarrow r, t, s; B \rightarrow p, s, t; C \rightarrow r, s; D \rightarrow r, q
- (2) $A \rightarrow r, t, s; B \rightarrow r, s; C \rightarrow p, s; D \rightarrow r, s$
- (3) $A \rightarrow p$, s, t; $B \rightarrow r$, s, t; $C \rightarrow r$, s; $D \rightarrow q$, r
- (4) $A \rightarrow q, r, ; B \rightarrow p, s, t; C \rightarrow q, t; D \rightarrow r, s$

Passage Based Questions: (Q. 32-34)

Two aliphatic aldehydes P and Q react in the presence of aqueous K₂CO₃ to give compound R, which upon treatment with HCN provides compound S. On acidification and heating, S gives the product shown below.

(2012 Comprehension Type)

32. The compounds P and Q, respectively, are

- 35. The number of aldol reaction (s) that occurs in the given transformation is
 - (2012 Only One Option Correct Type)

36. The major product H in the given reaction sequence is(2012 Only One Option Correct Type)

$$CH_{3}-CH_{2}-CO-CH_{3}\xrightarrow{CN} G \xrightarrow{95\% H_{2}SO_{4}} H$$

$$(1) CH_{3}-CH=C-COOH$$

$$CH_{3}$$

$$(2) CH_{3}-CH=C-CN$$

$$CH_{3}$$

$$OH$$

$$(3) CH_{3}-CH_{2}-C-COOH$$

$$CH_{3}$$

$$(4) CH_{3}-CH=C-CO-NH_{2}$$

$$CH_{3}$$

37. After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is (are)

- (1) Reaction I: P and Reaction II : P
- (2) Reaction I: U, acetone and Reaction II: Q, acetone
- (3) Reaction I: T, U, acetone and Reaction II: P
- (4) Reaction I: R, acetone and Reaction II: S, acetone
- **38.** Consider all possible isomeric ketones including stereoisomers of MW = 100. All these isomers are independently reacted with NaBH₄. The total number of ketones that give a racemic product(s) is/are

(2014 Adv., Integer Type)

39. The major product in the following reaction is (2014 Adv., Only One Option Correct Type)

40. The major product of the following reaction is (2014 Adv., Only One Option Correct Type)

41. Positive Tollens' test is observed for

[IIT Adv.-2016]

42. The major product of the following reaction sequence is [IIT Adv.-2016]

				ANSW	ER KEY
EXERCISE :	# 1				2. [4]
1. (1)	2. (4)	3. (4)	4. (1)	5. (2)	Rate of nucleophilic addition or HCN addition \propto
6. (3)	7. (1)	8. (2)	9. (4)	10. (2)	EWG. $\propto \frac{1}{\text{ERG}}$
11. (1)	12. (1)	13. (4)	14. (3)	15. (2)	
16. (4)	17. (3)	18. (4)	19. (1)	20. (2)	ERG $(-NMe_2) > ERG(-OMe)$
21. (3)	22. (2)	23. (1)	24. (2)	25. (2)	3. [4]
26. (3)	27. (3)	28. (2)	29. (1)	30. (2)	$\Rightarrow Final product has chiral C\Rightarrow So that equal amount of d and l isomer is present$
31. (1)	32. (2)	33. (3)	34. (3)	35. (3)	4. [1]
EXERCISE ;	# 2				
1. (1)	2. (1)	3. (2)	4. (3)	5. (1)	$\begin{array}{cccc} O & OH & O & O \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$
6. (2)	2. (1) 7. (4)	8. (2)	9. (1)	10. (2)	$CH_3 \underbrace{NaOl}_{+ CHl_3} \underbrace{H^+_{+}}_{+ CHl_3}$
11. (4)	12. (3)	13. (3)	14. (4)	15. (4)	
16. (3)	17. (4)	18. (1)	19. (1)	20. (2)	iodoform test β-ketoacid
21. (3)	22. (4)	23. (2)	24. (2)	25. (4)	$-CO_2 \Delta$
EXERCISE ;	# 3				* O
1. (1,2,3	5,4)2. (2,3,4) 3. (1,2,1	3) 4. (1,3)	5. (1,2,4)	
6. (2,4)	7. (1,3,4) 8. (2,3,4	4) 9. (2)	10. (3)	
11. (4)	12. (3)	13. (4)	14. (4)	15. (1)	· · · · ·
16. (2)	17. (1)	18. (1)	19. (1)	20. (2)	5. [2]
21. (2)	22. (6)	23. (5)	24. (5)	25. (6)	
26. (4)	27. (4)	28. (4)	29. (6)	30. (3)	$H \xrightarrow{Ag_2O, NH_4OH} C OH$
EXERCISE ;	# 4				HO HO
1. (2)	2. (4)	3. (2)	4. (4)	5. (1)	Reduction LiAlH ₄
6. (4)	7. (3)	8. (2)	9. (2)	10. (3)	Ý
11. (3)	12. (3)	13. (4)	14. (3)	15. (3)	ОН
16. (4)	17. (3)	18. (3)	19. (2)	20. (2)	НО
21. (4)		23. (3)	24. (2)	25. (4)	6. [3]
	27. (2)			30. (1)	
	32. (2)				
36. (1) 41. (1,2,3		38. (5)	39. (4)	40. (1)	$O \qquad O \qquad O \qquad OH \qquad OH \qquad D \qquad $
HINT AN	D SOLU	ΓΙΟΝ			$\bigvee_{\mathbf{h}} \mathbf{h}^{+}, \Delta$
EXERCISE ;	# 1				
1. [1]	1. [1]				7. [1]
CH ₃ -CH ₂ -I $\xrightarrow{(i) \text{ Li/Et}_2\text{O}}$ (CH ₃ -CH ₂)-LiCu			-CH2-LiC		
				$ \rightarrow O \xrightarrow{MeMgBr}_{H_2O^+} \rightarrow O \xrightarrow{OH}_{CH_2} $	
$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{$					
CH ₃ -0	C - C - Cl -	\rightarrow SN_2	$CH_3 - C - C$	C-CH ₂ -CH ₃	De-hydration
(CH ₃ Ö		ĊH ₃	Ċ	$\xrightarrow{\text{De-hydration}} \xrightarrow{H_2SO_4}$

8. [2]

Given product is α , β unsaturated ketone so it is formed by aldol condensation reaction.

$$\begin{array}{c} O \\ \beta \alpha \\ O + H_2 \end{array} \begin{array}{c} 0 \\ 2 \text{ mole} \end{array}$$

9. [4]

$$\begin{array}{c} O \\ \parallel \\ R-C-CH_3 & \xrightarrow{l_2/KOH} \\ R=H, alkyl, etc. \end{array} CHl_3+RCOOK$$

10. [2]

$$3CH_2 = O \longrightarrow CH_2 \xrightarrow{O-CH_2} O$$
(formaldehyde) (Trioxane)

11. [1]

By using $NaBH_4$ reduction of only aldehyde group takes place.

$$CH_{3}-C \equiv N \xrightarrow{\text{DIBAL-H}} CH_{3}-CH = O \xrightarrow{\text{SeO}_{2}} CH-CH$$

$$|| \qquad || \qquad 0 \qquad O$$
Intramolecular
Cannizzaro reaction
$$OH^{-/\Delta}$$

$$CH_{2}-COO^{-}$$
OH

13. [4]

12. [1]

1, 4 diol not cleaved by HIO_4

14. [3]

 $\begin{array}{c} CH_{3} \hline CH=CH_{2} \xrightarrow{BH_{3}/T.H.F} H_{2}O_{2} \\ Hydration by anti- \\ Markovnikoff \\ rule takes place \\ Hydration \\ Markovnikoff \\ rule takes place \\ CH_{3} \hline CH_{2} \hline CH_{2} \\ Mod \\ CH_{3} \hline CH_{2} \\ CH_{3} \hline CH_{3} \\ CH_$

15. [2]

5. [2]

$$LiAlH_{4} (LAH) \rightarrow \overset{\oplus}{Li} + Al\overset{\oplus}{H}_{4} + \rightarrow AlH_{3} + \overset{\oplus}{H}$$

$$NaBH_{4} \rightarrow Na^{+} + B\overset{\Theta}{H}_{4} \rightarrow BH_{3} + \overset{\Theta}{H}$$

$$\overset{C=O}{\overset{H^{\Theta}}{\underset{H}{\longrightarrow}}} \overset{C=O^{\Theta}}{\underset{H}{\longrightarrow}}$$

16. [4]

Compound having no α -H undergoes Cannizzaro reaction.

• C₆H₅-CHO and CHO

no α -H undergoes Cannizzaro reaction.

• $(CH_3)_2CH-CH = O$ gives both Cannizzaro reaction and aldol condensation reaction.

•
$$(CH_3)_2N$$
 — CH_2CHO It have α -H so that gives only aldol condensation reaction.

17. [3]

Ph-CH=O
$$\xrightarrow{\text{Fehling solution}}$$
 -ve test
H-CH=O $\xrightarrow{\text{Fehling solution}}$ +ve test

18. [4]

PhCN
$$\frac{1. \text{ SnCl}_2/\text{HCl}}{2. \text{ H}_2\text{O}, \text{ heat}}$$
 Ph-CH = O

19. [1]

$$\begin{array}{c|c} & & & \underbrace{[O]}_{\text{oxidation}} & \text{Ph-C-CH}_2-\text{Ph} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & &$$

20. [2]

22. [2]

By Shiff reagent distinction between aldehyde

23. [1]

With MnO₂, oxidation of only allyllic alcohol takes place.

Baeyer–Villegar oxidation, migration aptitude order for oxygen atom.

 $3^{\circ} > Ph > 2^{\circ} > 1^{\circ}$

25. [2]

26. [3]

- → Negative Tollens' test indicating that compound have ketone group.
- → Positive iodoform test indicating that A must be methyl ketone or having acidic CH.

Geminal ethers are stable in basic medium. Hence give conversion carried in basic medium so that NH_2-NH_2 on reagent is most suitable (wolf krishner reduction).

29. [1]

$$\begin{array}{c} R & \stackrel{\delta_{+}}{\longrightarrow} \stackrel{\gamma \delta_{-}}{\longrightarrow} \\ R & \stackrel{\Theta}{\longrightarrow} \\ R & \stackrel{R}{\longrightarrow} \\ R & \stackrel{I}{\longrightarrow} \\ R &$$

the +vely charged carbon of carbonly group.

30. [2]

A general equation for the formation of an imine from a primary amine and an aldehyde or ketone is shown here. Imine formation is acid catalysed, and the product can from as a mixture of (E) and (Z) isomers.

$$\begin{array}{ccc} & \searrow C = \dot{Q} : + & H_2 \dot{N} - R \xrightarrow{H_3 O} & \searrow C = N. \end{array}$$
Aldehyde 1° Amine Imine or ketone [(E) and (Z) isomer]T

Imine formation generally takes place fastest between **pH 4 and 5** and is slow at very low or very high pH. We can understand why an acid catalyst is necessary if we consider the mechanism that has been proposed for imine formation. The important step is the step in which the protonated amino alcohol loses a molecule of water to become an iminium ion. By protonating the alcohol group, the acid converts a poor leaving group (an —OH group into a good one (an $-OH_2^+$ group.).

32. [2]

$$\begin{array}{c} \text{Ph---CH}_{3} \xrightarrow[\text{CtrO}_{2}\text{Cl}_{2}]{\text{Mild oxidation}} \\ \text{Etard reaction} \end{array} \xrightarrow[\text{A}]{} \begin{array}{c} \text{Ph---CH=O} \xrightarrow[\text{Conc. KOH}]{\text{Cannizzaro}}{} \\ \text{Cannizzaro}{} \\ \text{reaction} \end{array}$$

$$Ph-CH_2OH + Ph-COO$$
(B)

4. [3]

6. [2]

 $(M.F = C_9H_{10}O)$ 1, 2-benzenedicarbodylic acid

given structure have CH = O group hence will give 2, 4 DNP test, Tollen's reagent and Cannizzaro reaction

7. [4]

This is pinacole-pinacolone rearrangement

9. [1]

Beckmann re-arrangement (refer mechanism)

10. [2]

$$\begin{array}{c|c} & OH & OH \\ \hline O & KCN \\ H^{+} \\ NAR \\ (A) \\ \end{array} \begin{array}{c} CN \\ (B) \\ HNO_{2} \end{array}$$

A \rightarrow Must be 3° alcohol because dichromate test do not given by 3° alcohol

13. [3] O OH OH CH₃-C-H HCN CH₃-CH-CN $\stackrel{H_3O^{\oplus}}{\longrightarrow}$ CH₃-CH-CO₂H (A) $\downarrow \Delta$ CH₃-CH $\stackrel{O-C}{\leftarrow}$ CH-CH₃ CH₃-CH $\stackrel{O-C}{\leftarrow}$ CH-CH₃ (C) (C) CH₃-CH + HCHO $\stackrel{HIO_4}{\leftarrow}$ CH₃-CH-CH₂ (C)

14. [4]

(i) Reactivity in NAR $\propto \frac{1}{\text{Steric hindrance}}$

Thus aldehyde is more reactive than ketone.

(ii) Reactivity in NAR \propto +ve charge at the carbon

of
$$>C=O$$
 group $\propto EWG \propto \frac{1}{ERG}$
We know that ERG Power ($-O-CH_3$) > ($-CH_3$)
ERG

Hence order of reactivity in NAR (i) > (iv) > (ii) > (iii)

15. [4]

Aldehyde and hemiacetal gives positive test with Tollens' reagent.

$$R-CH < OCH_3 OH$$
 type substance known as hemiacetal,

they will convert into corresponding aldehyde in basic medium, Hence also give positive test with tollen's reagent.

16. [3]

A $(C_6H_8O_2) \xrightarrow{\text{Na/metal}} H_2$ gas

It indicates presence of –OH group.

A $(C_6H_8O_2) \xrightarrow{2, 4 \text{ DNP}}$ yellow orange solution

It indicates presence Carbonyl group

$$A (C_6H_8O_2) \xrightarrow{O_3} B (C_6H_8O_4)$$

No loss of carbon atom indicating that, A must have double bond around the ring.

12. [3]

7. [4]
I.
$$CH_3$$
— $CH=O \xrightarrow{[Ag(NH_3)_2]^+, OH^-} CH_3$ — $COOH_{(Acid)}$
II. CH_3 — $CCl_3 \xrightarrow{OH^-} CH_3$ — COO^{Θ}
III. CH_3 — $CCl_3 \xrightarrow{OH^-} CH_3$ — COO^{Θ}
III. CH_3 — $C_1 \xrightarrow{OH^-} CH_3$ — $COO^{\Theta} + C_2H_5OH$

18. [1]

Refer angle strain.

19. [1]

20. [2]

$$\begin{array}{c} \text{Cl-CH}_2\text{-C}-\text{CH}_2\text{-Cl} & \xrightarrow{\text{HCN}} \text{Cl-CH}_2\text{-C}-\text{CH}_2\text{-Cl} \\ \text{O} & \text{HO} & \text{CN} \\ & & \downarrow \text{KCN (excess)} \\ \text{NC}-\text{CH}_2\text{-C}-\text{CH}_2\text{-CN} \\ & \text{HO} & \text{CN} \\ & & \downarrow \text{H}_3\text{O}^+ \\ & \text{HOO}-\text{C}-\text{CH}_2\text{-C}-\text{CH}_2\text{-COOH} \\ & \text{HO} & \text{COOH} \\ & & \text{(C)} \end{array}$$

21. [3]

The given conversion is achieved by $NaBH_4/H_2O \longrightarrow Reduction$ $HCH = O/OH^- \longrightarrow Intermolecular Cannizzaro$ reaction

22. [4]

$$CH=O$$

$$-CH_2-CH=O+H_2-C-Ph \xrightarrow{\text{aldol condensation}}$$

$$CH_2-CH=C-CH=O$$

$$-CH_2-CH=C-CH=O$$

$$Ph$$

23. [2]

Cleavage of vicinal diol takes place

24. [2]

In option (2), aldehyde is not formed. When a terminal alkyne is oxidised with $KMnO_4$ formation of carboxylic acid is always formed.

All options are preparation of aldehydes.

25. [4]

EXERCISE # 3

1. [1,2,3,4]

Aldehydes and ketones form bisulphite salt with $NaHSO_3$ which is insoluble in concentrated $NaHSO_3$ solution due to common ion effect. Hence, if $NaHSO_3$ is in limited quantity, precipitation may not take place.

2. [2,3,4]

Aldehydes and ketones containing α -H form enamines when treated with secondary amine in slightly acidic medium.

3. [1,2,3]

$$\begin{array}{c} O & O^{-} & O \\ H - C - H + \overline{O}D \rightarrow H - C - H \xrightarrow{CH_2O} H - C - OD + CH_3O^{-} \\ OD & \parallel \\ OD & \parallel \\ CH_3OH + H_2O \text{ or } H - C - O^{-} + CH_3OD \\ \parallel \\ CH_3O^{-} + H_3O^{+} \end{array}$$

However, C—D bond is not formed in this reaction.

5. [1, 2, 4] Wittig reaction

$$\begin{array}{c} \mathrm{CH}_{3}\mathrm{\longrightarrow}\mathrm{CH}_{2}\mathrm{Cl} \xrightarrow{\mathrm{Ph}_{3}\mathrm{P}} \xrightarrow{\mathrm{BuLi}} \mathrm{CH}_{3}\mathrm{\longrightarrow}\mathrm{CH}_{3}\mathrm{\longrightarrow}\mathrm{CH}_{3}\mathrm{\longrightarrow} \\ & X\\ \mathrm{CH}_{3}\mathrm{\longrightarrow}\mathrm{CH}_{3}\mathrm{-CH}\mathrm{=}\mathrm{CH}\mathrm{-CH}_{3}\\ & Y\end{array}$$

Both diastereomers (cis and trans) of Y are formed. 6. [2,4]

- 7. [1,3,4]
- 8. [2,3,4]
- 9. [2]
- 10. [3]

Statement I is correct but Statement II is false, It would be true only if both carbonyls are capable of forming enolates, i.e., if both possess α -H

11. [4]

Nucleophilic attack occurs from aminic nitrogen not from amidic nitrogen.

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel \\
H_3C - C - CH_3 + H_2N - C - NH HNCH_3 \longrightarrow \\
CH_3 & O \\
H_2C = C - N - NH - C - NH_2 \\
CH_3 & \\
CH_3 & \\
\end{array}$$

12. [3]

Reversing the final product gives

13. [4]

14. [4]

$$B \xrightarrow{\text{LiAlH}_4}_{\text{H}_2\text{O}} \xrightarrow[]{*}_{\text{Chiral carbon} = 3}^{\text{OH}}$$

Ωī

So
$$O.I = 2^3$$

15. [1]

16. [2]

 $Ph-Mg - Br + Cl - NH_2 \longrightarrow Ph - NH_2$ $Ph-Mg-Br + Cl - C=N \longrightarrow Ph-CN$ $\begin{array}{c} \operatorname{Ph-Mg-Br}+\operatorname{CH}_3-\operatorname{Cl-Cl} \longrightarrow \operatorname{Ph-C-CH}_3\\ || & ||\\ O & O \end{array}$ $Ph-Mg-Br + C_2H$ -C₂H₂

- 17. [1]
- 18. [1]
 - (i) It has carbonyl carbon that turns chiral on reduction with hydrides. Hence, with LiAlH₄ or aluminium isopropoxide, gives racemic mixture. Also, it has no other functional groups, either Clemmensen reduction or Wolf-Kishner reduction can be used.
 - (ii) It has an olefinic double bond. Clemmensen reduction would not be suitable for selective reduction of carbonyl group.
 - (iii) LiAlH₄ also reduces primary halide but aluminium isopropoxide does not. Wolf-Kishner

reduction would not be suitable because HO⁻ reacts with halide group (S_N^2 or E2).

(iv) Same reasons as in (i). Hence, (i) \rightarrow (p, q, r, s); (ii) \rightarrow (p, q, s); (iii) \rightarrow (q, r); (iv) \rightarrow (p, q, r, s)

Hence, (i) \rightarrow (p, q, r, s); (ii) \rightarrow (q, s); (iii) \rightarrow (p); (iv) \rightarrow (q, s)

- 20. [2]
 - (i) Initially, aldol reaction followed by Cannizzaro reaction gives $C(CH_2OH)_4$ + HCOOH.
 - (ii) F—CHO undergoes Cannizzaro reaction due to absence of α -H.
 - (iii) It has difficulty ion aldol condensation, hence undergo Cannizzaro reaction predominantly.
 - (iv) All aldol, Cannizzaro and Claisen reaction occur.

Hence (i) \rightarrow (q, r, t); (ii) \rightarrow (p, q, s); (ii) \rightarrow (t); (iv) \rightarrow (r, s, t)

Each C-C bond cleavage requires 1 mole HIO₄

24. [5]

All secondary alcohol isomers can be oxidised to ketones.

25. [6]

Six isomers (stereoisomers) are possible for X.

$$H_{3}C-CH=CH-CH=CH-CH_{3}+H_{2}NOH$$

$$HO \bigvee_{N}$$

$$H_{3}C-CH=CH-C-CH=CH-CH_{3}$$
(I)

Four stereoisomers exist for 1, cis-cis, trans-trans and cis-trans with OH syn to cis and OH anti to cis.

30. [3]

IV is enantiomeric, its pure enantiomer, with HCN/ NaCN, would produce pair of diastereomers.

EXERCISE # 4

2. [4]

Only suitable reagent is chromic anhydride in glacial acetic acid.

Option (1) and (2) will also affect (C=C) bond. Option (3) is more suitable reagent for preparation of aldehyde.

3. [2]

Reactivity towards nucleophilic substitution ~ positive charge at the carbon of carbonyl group

$$\sim \frac{1}{\text{Steric hidrance}}$$

$$PhCOC_6H_5 < PhCOCH_3 < CH_3COCH_3 < HCHO$$

4. [4]

$$\begin{array}{c} O & O \\ CH_{3}C-CI \xrightarrow{KOH (aq)} CH_{3}-C-OH + KCI \\ CH_{3}-CH_{2}-CI \xrightarrow{KOH(aq)} CH_{3}-CH_{2}-OH \\ CI-CH_{2}-CH_{2}-CI \xrightarrow{KOH (aq)} CH_{2}-CH_{2} \\ OH & OH \\ CH_{3}-CH-CI \xrightarrow{KOH (aq)} CH_{3}-CH-OH \xrightarrow{O}_{H_{2}O} CH_{3}-C-H \\ CI & OH \\ OH \\ (unstable) \end{array}$$

5. [1]

Reactivity towards nucleophilic substitution ∝ positive charge at the carbon of carbonyl group

$$\propto \frac{1}{\text{Steric hidrance}}$$

$$\therefore \quad \text{H-CH=O} > \underset{+1}{\text{CH}_3} + \underset{+1}{\text{CH}} = \text{O} > \underset{+1}{\text{CH}_3} + \underset{+1}{\text{CH}_3} + \underset{O}{\text{CH}_3} + \underset{O$$

6. [4]

It is Clemmensen reduction

7. [3]

H-CH=O
$$\xrightarrow{I_2/KOH}$$
 -ve test

$$CH_2$$
-CH=O $\xrightarrow{I_2/KOH}$ +ve test (CHI₂)

Hence I₂/alkali is suitable reagent.

8. [2]

Zn–Hg/HCl

9. [2]

Compound having α -H gives aldol condensation and β-hydroxy carbonyl Compound is formed.

OH 0 In option (2)

 β -hydroxy ketone

10. [3]

CH₃-CH=O has α-H so it does not give Cannizzaro reaction.

11. [3]

$$\begin{array}{c} \text{CH}_3\text{--}\text{C-}\text{CH}_3 \xrightarrow{I_2/\text{KOH}} \text{CHI}_3\text{+}\text{CH}_3\text{--}\text{COOK}\\ \bigcup\\ \text{O} \end{array}$$

12. [3]

Tishchenko reaction is a modification of Cannizzaro reaction.

Benzaldehyde

14. [3]

$$C_{6}H_{5}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CI \xrightarrow{Alc. KOH} (A) (C_{10}H_{13}CI)$$

$$C_{6}H_{5}-CH_{2}-CH_{2}-CH=CH_{2} (B) ozonolysis \downarrow O_{3}Zn/H_{2}O$$

$$H-CH = O + C_{6}H_{5}-CH_{2}-CH_{2}-CH=O (C) (D)$$

$$no \alpha-H \qquad \alpha-H \text{ present It gives aldol condensation not}$$

Cannizaro

It gives Cannizaro but not aldol condensation

15. [3]

$$2CH_3-CH=O \xrightarrow{OH} OH CH_3-CH-CH_2-CH=O OH OH CH_3-CH=CH=OH OH CH_3-CH=CH=OH OH CH_3-CH=CH=CH=O$$

16. [4]

It is Perkin condensation reaction.

17. [3] $\frac{\text{NaOH}}{\text{I}_2/\text{H}_2\text{O}}$ CHI₃ + CH₃CH₂COONa H₃C H^+ CH₃CH₂COOH

18. [3]

$$H_{3}C \xrightarrow{CH_{3}} \underbrace{\text{NaOH}}_{I_{2}/H_{2}O} CHI_{3} + CH_{3}CH_{2}COONa$$
$$\downarrow H^{+}$$
$$CH_{3}CH_{2}COOH$$

19. [2]
H₂C=O + H₂N—OH
$$\longrightarrow$$
 H
H
C=N—OH (single)

$$\begin{array}{c} O \\ \parallel \\ CH_{3} - C - H + H_{2}NOH \rightarrow H \end{array} \xrightarrow{H_{3}C} C = N \xrightarrow{OH} H_{3}C \\ H \xrightarrow{H_{3}C} C \\$$

Since H is tertiary alcohol and gives de-hydration hence H is formed by treatment of grignard reagent having with ketone as shown above.

25. [4]

As per above reaction.

26. [4]

Ph—COONa +
$$\overset{*}{CHI}_{3}$$

F G

27. [2]

- 28. [2]
- 29. [1]

30. [1]

31. [1]

32. [2]

33. [1]

34. [4]

The given product is an ester, obtained by condensation of a hydroxy acid obtained through hydrolysis of a cyanohydrin.

Acid above is obtained by acid hydrolysis of cyanohydrin S as

R is obtained by treatment of P and Q with aqueous K_2CO_3 through aldol condensation reaction as

$$\underbrace{ \begin{array}{c} CH_{3} & O & CH_{3} \\ | & \\ CH_{3} - CH - CHO + H - C - H & \\ \hline P + Q & CH_{3} \\ \hline P + Q & CH_{3} \\ R \end{array} }_{P + Q & CH_{3} \\ R \\ \end{array}$$

35. [3]

The given reaction is an example of repeated aldol condensation followed by Cannizzaro reaction.

Step I
$$CH_3CHO + OH^- \longrightarrow CH_2$$
—CHO + H_2O

$$H \rightarrow C \rightarrow H + \overline{C}H_{2} \rightarrow CHO \longrightarrow H \rightarrow C \rightarrow CH_{2} \rightarrow CHO$$

$$H \rightarrow C \rightarrow H \rightarrow CH_{2} \rightarrow CHO$$

$$H \rightarrow CH_{2} \rightarrow CH_{2} \rightarrow CHO$$

Step II $HOCH_2$ — CH_2 — $CHO + HO^- \Longrightarrow HO$ — CH_2 — $CHO + H_2O$

 $CH_{3}-CH_{2}-C-CN \xrightarrow{H_{2}SO_{4}} CH_{3}-CH_{2}-C-COOH$ $CH_{3} CH_{3} CH_{3}$ $(I) \xrightarrow{\Delta} CH_{3}-CH=C-COOH$ CH_{3}

37. [3]

38. [5]

Molecular weight of the ketone is 100. So, molecular formula = $C_6H_{12}O$

(1) n-butyl—C—CH₃

$$||$$

 O
(2) Iso-butyl—C—CH₃
 $||$
 O
 $||$
 O
 $||$
 O
 $||$
 O
 $||$
 $||$
 O
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$
 $||$

Step IV

$$HOCH_{2} - CH_{2}OH O O^{-}$$

$$HOCH_{2} - CH_{2}OH C^{-}$$

$$HOCH_{2} - CH_{2}OH H^{-}$$

$$HOCH_{2} - CH_{2}OH H^{-}$$

$$\xrightarrow{\text{Cannizzaro}} C(CH_2OH)_4 + HCOO^{-1}$$

In the last step, formaldehyde is oxidised and the other aldehyde is reduced giving the desired products.

36. [1]

The first step is cyanohydrin reaction.

$$CH_{3}-CH_{2}-C-CH_{3}+CN \rightarrow CH_{3}-CH_{2}-C-CN$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$OH$$

$$H_{2}O$$

$$CH_{3}-CH_{2}-C-CN$$

$$CH_{3}$$

$$(I)$$

In the second step, the —CN of intermediate (I) is first hydrolysed and then dehydrated on heating in the presence of conc. H_2SO_4 .

While in case of (4) and (5), they do not produce enantiomer due to the presence of stereogenic centre on ketone.

39. [4]

This problem includes concept of nucleophilic addition reaction to carbonyl compound (ketone here) and intramolecular nucleophilic substitution reaction. Complete reaction sequence is as shown below

40. [1]

41. [1, 2, 3]

$$RCHO + Ag_2O \xrightarrow{OH} RCOOH + 2Ag$$

(Silver mirror)

Tollens' test is given by all aldehydes and all reducing sugars as glucose, fructose and α -hydroxy ketones

(Tollen's reagent)

Comment: Please check, α -carbon should be α -carbon