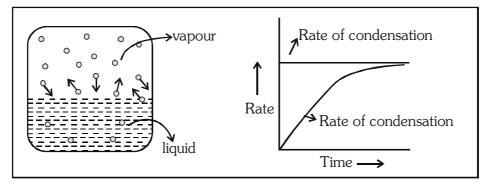
IIT CHEMISTRY PHYSICAL CHEMISTRY

LIQUID SOLUTION

LIQUID SOLUTION

Ty]	Types of Solution :				
	Solvent	Solute	Examples		
1.	Gas	Gas	Mixture of gases, eg. air.		
2.	Gas	Liquid	Water vapour in air, mist. $CHCl_3(\ell) + N_2(g)$		
3.	Gas	Solid	Smoke, camphor (s) + $N_2(g)$.		
4.	Liquid	Gas	CO_2 gas dissolve in water (aerated drink), soda water.		
5.	Liquid	Liquid	Mixture of miscible liquids e.g. alcohol in water.		
6.	Liquid	Solid	Salt in water, sugar in water.		
7.	Solid	Gas	hydrogen over palladium.		
8.	Solid	Liquid	Mercury in zinc, mercury in gold i.e. all amalgams.		
9.	Solid	Solid	Alloys e.g. copper in gold. zinc in copper.		

Vapour pressure :

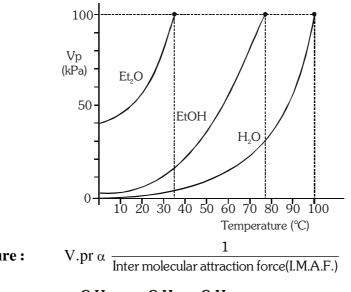

The Evaporation of a Liquid in a Closed Container

When a liquid is taken in a closed vessel at constant temperature, then there are two process which takes place.

(i) evaporation (ii) condensation

In the constant evaporation from the surface particles continue to break away from the surface of the liquid

As the gaseous particles bounce around, some of them will hit the surface of the liquid again, and will be trapped there. This is called condensation. The rate of condensation increases with time, but rate of evaporation remain constant. There will rapidally be an equilibrium set up in which the number of particles leaving the surface is exactly balanced by the number rejoining it.



This pressure at equilibrium is called the **saturated vapour pressure** (also known as **saturation vapour pressure**).

Effect of Temperature on vapour pressure

When the space above the liquid is saturated with vapour particles, you have this equilibrium occuring on the surface of the liquid : liquid \Rightarrow vapour, $\Delta H > 0$

The forward change (liquid to vapour) is endothermic. It needs heat to convert the liquid into the vapour. According to Le Chatelier, increasing the temperature of a system in a dynamic equilibrium favours the endothermic change. That means increasing the temperature increase the amount of vapour present, and so increases the saturated vapour pressure.

 $n-C_6H_{14} > n-C_7H_{16} > C_8H_{18}$

♦ Raoult's law :

According to this law, the partial pressure of any volatile constituents of a solution at a constant temperature is equal to the vapour pressure of pure constituents multiplied by the mole fraction of that constituent in the solution.

(i) For liquid – liquid solution :

Let a mixture (solution) be prepared by mixing n_A moles of liquid A and n_B moles of liquid B. Let P_A and P_B be the partial pressures of two constituents A and B in solution and P_A^0 and P_B^0 the vapour pressures in pure state respectivity.

Thus, according Raoult's law

$$\mathbf{P}_{\mathbf{A}} = \frac{\mathbf{n}_{\mathbf{A}}}{\mathbf{n}_{\mathbf{A}} + \mathbf{n}_{\mathbf{B}}} \mathbf{P}_{\mathbf{A}}^{0} = \mathbf{X}_{\mathbf{A}} \mathbf{P}_{\mathbf{A}}^{0} \qquad \dots (1)$$

and
$$\mathbf{P}_{\mathbf{B}} = \frac{\mathbf{n}_{\mathbf{B}}}{\mathbf{n}_{\mathbf{A}} + \mathbf{n}_{\mathbf{B}}} \mathbf{P}_{\mathbf{B}}^{0} = \mathbf{X}_{\mathbf{B}} \mathbf{P}_{\mathbf{B}}^{0} \qquad \dots (2)$$

If total pressure be P_s, then

$$P_{S} = P_{A} + P_{B} = \frac{n_{A}}{n_{A} + n_{B}} P_{A}^{0} + \frac{n_{B}}{n_{A} + n_{B}} P_{B}^{0} = X_{A} P_{A}^{0} + X_{B} P_{B}$$

$$P_{S} = X_{A} P_{A}^{0} + (1 - X_{A}) P_{B}^{0} [\because X_{A} + X_{B} = 1]$$

$$P_{S} = X_{A} P_{A}^{0} - X_{A} P_{B}^{0} + P_{B}^{0}$$

$$P_{S} = X_{A} [P_{A}^{0} - P_{B}^{0}] + P_{B}^{0}$$

$$P_{a} P_{A} P_{A}$$

$$A(g) + B(g)$$

$$y_{A} + y_{B} = 1_{1}$$

$$A(\ell) + B(\ell)$$

$$n_{A} n_{B} mol$$

$$X_{A} + X_{B} = 1$$

Relation between Dalton's Law and Raoult's Law :

The composition of the vapour in equilibrium with the solution can be calculated applying Dalton's law of partial pressures. Let the mole fraction of A and B in vapours be Y_A and Y_B respectively. Let p_A and p_B be the partial pressure of vapours A and B respectively and total pressure P.

$p_A = Y_A P_S$	(1)
$p_B = Y_B P_S$	(2)
$\mathbf{p}_{\mathbf{A}} = \mathbf{X}_{\mathbf{A}} \mathbf{P}_{\mathbf{A}}^{0}$	(3)
$\mathbf{p}_{\mathrm{B}} = \mathbf{X}_{\mathrm{B}} \mathbf{P}_{\mathrm{B}}^{0}$	(4)

Equating eqs. (i) and (iii),

$$Y_A P_S = X_A P_A^0$$

or
$$Y_A = \frac{X_A P_A^0}{P_S} = \frac{p_A}{P_S}$$

Similarly, equating eqs. (ii) and (iv),

$$Y^{}_{\rm B}=\frac{X^{}_{\rm B}P^0_{\rm B}}{P^{}_{\rm S}}=\frac{p^{}_{\rm B}}{P^{}_{\rm S}}$$

Thus, in case of ideal solution the vapour phase is richer with more volatile component, i.e., the one having relatively greater vapour pressure.

(ii) For Solid – liquid solution :

Let us assume A = non volatile solid & B = volatile liquid

According to Raoult's law -

$$P_{s} = X_{A} P_{A}^{0} + X_{B} P_{B}^{0}$$

for A, $P_{A}^{0} = 0$
$$P_{s} = X_{B} P_{B}^{0} \qquad \dots(5)$$

Let $P_B^{0} = P^0 = V$ apour pressure of pure state of solvent.

here X_B is mole fraction of solvent

$$P_{\rm s} = \frac{n_{\rm B}}{n_{\rm A} + n_{\rm B}} P^0$$
(6)

 $P_{s} \propto \frac{n_{B}}{n_{A} + n_{B}}$ i.e. vapour pressure of solution \propto mole fraction of solvent

$$\Rightarrow P_{S} = X_{B}P_{B}^{0} \Rightarrow P_{S} = (1 - X_{A}) P_{B}^{0}$$

$$\Rightarrow P_{S} = P_{B}^{0} - X_{A} P_{B}^{0} \Rightarrow \frac{P_{B}^{0} - P_{S}}{P_{B}^{0}} = X_{A}$$
or
$$\frac{P^{0} - P_{S}}{P^{0}} = X_{A} \qquad \dots (7);$$

$$\frac{\boxed{P^{0} - P_{S}}{P^{0}} = \frac{n_{A}}{n_{A} + n_{B}} \qquad \dots (8)$$
or
$$\frac{P^{0}}{P^{0} - P_{S}} = \frac{n_{A} + n_{B}}{n_{A}} \text{ or } \frac{P^{0}}{P^{0} - P_{S}} = 1 + \frac{n_{B}}{n_{A}} \text{ or } \frac{P^{0}}{P^{0} - P_{S}} - 1 = \frac{n_{B}}{n_{A}}$$

$$\frac{P_{S}}{P^{0} - P_{S}} = \frac{n_{B}}{n_{A}}$$

$$\frac{\boxed{P^{0} - P_{S}}}{P_{S}} = \frac{n_{A}}{n_{B}} = \frac{w_{A} \cdot m_{B}}{m_{A} \cdot w_{B}} \qquad \dots (9)$$

IDEAL AND NON IDEAL SOLUTIONS Table : Comparison between Ideal and Non-ideal solutions

	Ideal solutions	Non-ideal soluti	
		+ve deviation from Raoult's law	– deviation from Raoult's law
1.	Obeys Raoult's law at every concentrations.	Do not obey Raoult's law.	Do not obey Raoult's law.
2.	$\Delta H_{mix} = 0$; Neither heat is evolved nor absorbed during dissolution.	$\Delta H_{mix} > 0$. Endothermic dissolution; heat is absorbed.	$\Delta H_{mix} < 0$; exothermic dissolution heat is evolved.
3.	$\Delta V_{mix} = 0$; total volume of solution is equal to sum of volumes of the components.	$\Delta V_{mix} > 0$. Volume is increased after dissolution.	$\Delta V_{mix} < 0$; volume is decreased during dissolution.
4.	$P=p_A+p_B=p_A^0X_A+p_B^0X_B$	$P_A > p_A^0 X_A; \ p_B > p_B^0 X_B$	$P_{A} < p_{A}^{0} X_{A}; \ p_{B} < p_{B}^{0} X_{B}$
	i.e., $P_A = p_A^0 X_A; p_B = p_B^0 X_B$	$\therefore P_A + p_B > p_A^0 X_A + p_B^0 X_B$	$\therefore P_A + p_B < p_A^0 X_A + p_B^0 X_B$
5.	A — A, A — B, B — B interactions should be same, i.e., 'A' and 'B' are identical in shape, size and character.	A — B, attraction force should be weaker than A — A and B — B attractive forces. 'A' and 'B' have different shape, size and character.	A — B, attraction force should be greater than A — A and B — B attractive forces. 'A' and 'B' have different shape, size and charater.
6.	Escaping tendency of 'A' and 'B' should be same in pure liquids and in the solution.	'A' and 'B' escape easily showing high vapour pressure than the expected value.	Escaping tendency of both components A and B is lowered showing lower vapour pressure than expected ideally.
dilu ben n-h chlo ethy n-b CC C_2	ample : It solutions ; zene + toluene ; exane + n-heptane ; probenzene + bromobenzene ; yl bromide + ethyl iodide ; utyl chloride + n-butyl bromide $I_4 + SiCl_4$; $I_4Br_2 + C_2H_4Cl_2$ $I_5Br + C_2H_5Cl$	Example : acetone + ethanol ; acetone + CS_2 ; water + methanol ; water + ethanol ; CCl_4 + $CHCl_3$; CCl_4 + $CHCl_3$; CCl_4 + toluene ; acetone + benzene CCl_4 + CH_3OH ; cyclohexane + ethanol	Example : acetone + aniline ; acetone + chloroform ; $CH_3OH + CH_3COOH$; $H_2O + HNO_3$; chloroform + diethyl ether ; water + HCl ; acetic acid + pyridine ; chloroform + benzene HNO ₃ + CHCl ₃
% o % o	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	% of A 100 % of B 0	% of A 100 % of B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Colligative properties :

Those properties of a dilute solution which depends upon the relative number of solute particles in a given volume of the solution or the mole fraction of the solute are called colligative properties.

The following four properties are colligative properties of solution :

- (i) Relative lowering of vapour pressure.
- (ii) Elevation in boiling point.
- (iii) Depression in freezing point.
- (iv) Osmotic pressure.

Coll. prop. α No. of particles/molecules/ions α No. of moles of solute α Mole fraction of solute α 1/mol. wt. of solute

(i) Lowering of vapour pressure :

When a non-volatile solute 'A' is dissolved in a pure solvent 'B', the vapour pressure of the solvent is lowered i.e. the vapour pressure of a solution is always lower than that of pure solvent, because the escaping tendency of solvent molecules decreases.

If at a certain temperature P° is the vapour pressure of pure solvent, and P_s is the vapour pressure of solution then

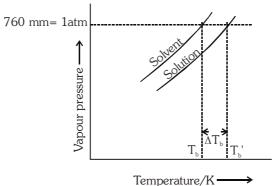
Lowering of vapour pressure = $P^{\circ} - P_{s}$

Relative lowering of vapour pressure = $\frac{P^0 - P_s}{P^0}$

from equation (8)

$$\frac{\mathbf{P}^{0}-\mathbf{P}_{S}}{\mathbf{P}^{0}}=\frac{\Delta\mathbf{P}}{\mathbf{P}^{0}}=\frac{\mathbf{n}_{A}}{\mathbf{n}_{A}+\mathbf{n}_{B}}=\mathbf{X}_{A}$$

 $\frac{\mathbf{n}_{A}}{\mathbf{n}_{B}} = \frac{\mathbf{w}_{A}}{\mathbf{m}_{A}} \times \frac{\mathbf{m}_{B}}{\mathbf{w}_{B}}$


for a more dilute solution $n_A^{} < < < n_B^{}$

so

[Only for v.dilution solutions]

(ii) Elevation in boiling point (Ebullioscopy) :

The normal boiling point of a liquid is that temperature at which its vapour pressure becomes equal to the atmospheric pressure. i.e. 760 mm of Hg.

The vapour pressure curve for solution lies below the curve for pure solvent .

 $\Delta T_{\scriptscriptstyle b}$ denotes the elevation of boiling point of a solution.

• K_b is defined as the elevation in boiling point produced when 1 mole of solute is dissolved in 1000 g of the solvent.

 $\therefore \qquad \Delta T_{b} = molality \times K_{b}$

The elevation in boiling point of solution of non-electrolyte is proportional to its molality and equimolal solution of all the substances in the same solvent will show equal elevation in boiling points. These are known as Raoult's laws of elevation of boiling point.

Molal elevation constant is characteristic of a particular solvent and can be calculated from the thermodynamical relationship.

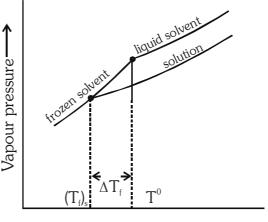
$$K_{b} = \frac{RT_{b}^{2}}{1000 L_{v}}$$

where, R is molar gas constant = 2 cal/mol-K

 T_b is the boiling point of the solvent (in K) and L_v the latent heat of vaporisation of pure solvent in calories per gram = ΔH_{vap} (Cal/mol)/ $M_{solvent}$ (g/mol)

For water

$$K_{b} = \frac{2 \times (373)^{2}}{1000 \times 540} = 0.515 \text{ K-kg/mol}$$


The molal elevation constant for some common solvents are given in the following table

Solvent	B.P. (°C)	Molal elevation constant
Water	100.0	0.52
Acetone	56.0	1.70
Chloroform	61.2	3.63
Carbon tetra chloride	76.8	5.03
Benzene	80.0	2.53
Ethyl alcohol	78.4	1.20

(iii) Depression in freezing point (Cryoscopy) :

The freezing point of a liquid is that temperature at which the liquid and its solid state exist in equilibrium with each other.

It may be defined as the temperature at which the liquid and solid states of a substance have the same vapour pressure.

Temperature/K →

K_f is defined as the depression of freezing point produced when 1 mole of solute is dissolved in 1000 g of the solvent.

or
$$\Delta T_{f} = \frac{1000K_{f} \times w_{A}}{m_{A} \times w_{B}}$$
 or $\Delta T_{f} = molality \times 1000$

 K_{f} is characteristic of a particular solvent and can be calculated from the thermodynamical relationship

 $K_{f} = \frac{RT_{f}^{2}}{1000L} = \frac{0.002 \ T_{f}^{2}}{L_{f}}$

Where, T_f is the freezing point of solvent in absolute scale and L_f the the latent heat of fusion in calories per gram of the solvent. For water,

$$K_{f} = \frac{0.002 \times (273)^{2}}{80} = 1.86 \text{ K-kg/mol}$$

the molal depression constant for some common solvents are given in the following table

Solvent	F.P. (°C)	Molal depression solvents
Water	0.0	1.86
Ethyl alcohol	- 114.6	1.99
Chloroform	- 63.5	4.79
Carbon tetra chloride	- 22.8	31.8
Benzene	5.5	5.12
Camphor	179.0	39.70

- (iv) Osmosis and osmotic pressure :
- Osmosis :

Osmosis is defined as the spontaneous **flow of solvent** molecules through **semipermeable membrane** from a its high concentration to its low concentration.

• **Osmotic presssure** (π) :

The hydrostatic pressure developed as a result of osmosis is a measure of osmotic pressure of the solution.

or

The hydrostatic pressure built up on the solution which just stops the osmosis.

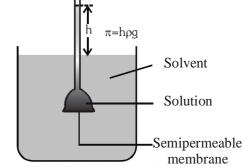
osmotic pressure = hydrostatic pressure

 $\pi = hdg$

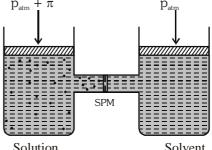
h = increase in level in the tube

of unit cross section.

- d = density of solution,
- g = acceleration due to gravity


Solution Solvent ne excess pressure equal to the osmotic pres

Van't Hoff law for dilute solution :


The osmotic pressure (P or π) of a solution is directly proportional to its concentration(C) when the temperature is kept constant. The concentration of the solution containg in one gram mole in V litres is equal to 1/V.

thus $P \propto C$ (when temperature is constant)

or
$$P \propto \frac{1}{V}$$

or $\pi V = \text{constant} = nST$

Level of solution rises in the funnel due to osmosis of solvent

The excess pressure equal to the osmotic pressure must be applied on the solution side to prevent osmosis

• Isotonic or iso-osmotic solution :

Solutions which have the same osmotic pressure are termed isotonic or iso-osmotic solutions

$$\pi_1 = \pi_2$$

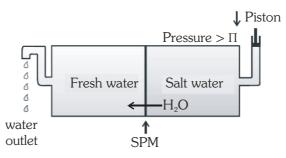
i.e. $C_1 ST = C_2 ST$
 $C_1 = C_2$

• Hypertonic solution

A solution having higher osmotic pressure than some other solution is said to be called hypertonic solution.

♦ Hypotonic solution

A solution having a lower osmotic pressure relative to some other solution is called hypotonic solution.


When isotonic solutions are separated by semipermeable membrane no osmosis occurs between them. For example, the osmotic pressure associated with the fluid inside the blood cell is equivalent to that of 0.9% (mass/volume) sodium chloride solution, called normal saline solution and it is safe to inject intravenously. On the other hand, if we place the cells in a solution containing more than 0.9% (mass/volume) sodium chloride, water will flow out of the cells and they would shrink. Such a solution is called **hypertonic**. If the salt concentration is less than 0.9% (mass/volume), the solution is said to be **hypotonic**. In this case, water will flow into the cells if placed in this solution and they would swell.

• Semipermeable Membrane

A membrane which allows the passage of solvent molecules but not that of solute. eg.Copper ferrocyanide $Cu_2[Fe(CN)_6]$.

• Reverse Osmosis :

If external pressure greater than osmotic pressure is applied, the flow of solvent molecules can be made to proceed from solution towards pure solvent, i.e., in reverse direction of the ordinary osmosis. Reverse osmosis is used for the desalination of sea water for getting fresh drinking water.

Reverse osmosis occurs when a pressure larger than the osmotic pressure is applied to the solution.

Abnormal colligative properties :

It has been observed that difference in the observed and calculated molecular masses of solute is due to association or dissociation of solute molecules in solution. It results in a change in the number of particles in solution.

Association of solute particles :

The formation of a bigger molecule by the union of two, three or more solute molecules is called association.

Let 'n' simple molecules combine to give an associated molecule as :

(n single molecules) $(X)_n$ (X) (one bigger molecule) [n > 1]

As a result, the total number of particles in solution becomes less than the number of molecules initially dissolved in the solution and hence the colligative properties will have lower value.

As the molar mass of solute is inversely proportional to the colligative properties, so the molar mass of solute will be greater than theoretical value.

Dissociation of solute molecules :

Molecules of electrolytes undergo ionization or dissociation in ionizing solvents to give more particles in solution.

For example, one AB molecule ionizes in solution to give two particles.

$$AB \longrightarrow A^+ + B^-$$

This dissociation results in an increase in the total number of particles, and therefore the value of colligative properties of such solutions will be higher.

As the colligative properties are inversely related to molecular weight, so the molecular weight of ionizable solute will be less than the theoretical value.

Van't Hoff factor (i) :

In order to express the extent of association or dissociation with certain solutes are expected to undergo in solution.

Van't Hoff in 1886, introduced a factor, called Van't Hoff factor (i). The factor i is defined as

____observed colligative property __ Normal molecular weight

$1 = \overline{\text{Calculated colligative property}} = \overline{\text{observed molecular mass.}}$

In case of association of solute particles in solution, the observed molecular weight of solute being more than the normal, the value of factor 'i' is less than unity (i.e. i < 1), while for dissociation the value of i is greater than unity (i.e. i > 1), because the observed molecular weight has lesser value than normal molecular weight.

Van't Hoff factor and degree of dissociation :

The fraction of the total number of molecules which dissociates in the solution into simple ions or molecules is called the degree of dissociation.

 $i = \frac{number of particles after dissociation}{Number of particles initially taken.}$

Calculation of 'i' :

Let, solute be $A_x B_y$ $\begin{array}{ccc} A_{x}B_{y} & \longrightarrow & x A^{y+} + y B^{x-} \\ 1 & 0 & 0 \end{array}$ Initial mol 0 $1 - \alpha$ after dissociation xα yα Total no. of solute particles = $1 - \alpha + x\alpha + y\alpha = 1 - \alpha + \alpha (x + y)$ $\mathbf{i} = \mathbf{1} - \alpha + \mathbf{n}\alpha$ [where $\mathbf{x} + \mathbf{y} = \mathbf{n}$ (total ions.)] for strong electrolytes : $\alpha = 1$ or 100% so i = n (total no. of ions) $NaCl \rightarrow Na^{+} + Cl^{-}$ (i = 2) $K_2SO_4 \rightarrow 2K^+ + SO_4^{2-}$ (i = 3) for complex compound $K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{4-} \Rightarrow n = 5$

S.no.	Solute type	Example	Ionisation	No. of particles in the solution from 1 mole solute (n)	van't Hoff factor ('i')	Abnormal molecular mass
1.	Non-electrolyte	Urea, sucrose, glucose, fructose	_	1	1	m _{normal}
2.	Binary electrolyte AB type	NaCl, KCl, HCl CH ₃ COOH NH ₄ OH, NaOH etc.	$\begin{array}{c} AB \rightleftharpoons A^+ + B^- \\ 1 - \alpha \alpha \alpha \end{array}$	2	1 + α	$\frac{m_{nomal}}{1+\alpha}$
3.	Ternary electrolyte AB ₂ type or A ₂ B type	$CaCl_2, BaCl_2$ $H_2SO_4, K_2[PtCl_6]$	$AB_{2} \rightleftharpoons A^{2+} + 2B^{-}$ $1 - \alpha \qquad \alpha \qquad 2\alpha$ $A_{2}B \rightleftharpoons 2A^{+} + B^{-}$ $1 - \alpha \qquad 2\alpha \qquad \alpha$	3 3	$1 + 2\alpha$ $1 + 2\alpha$	$\frac{m_{normal}}{1+2\alpha}$ $\frac{m_{normal}}{1+2\alpha}$
4.	Quanternary electrolyte AB_3 or A_3B type	AlCl ₃ , K ₃ [Fe(CN) ₆]	$AB_{3} \rightleftharpoons A^{3+} + 3B^{-}$ $1 - \alpha \qquad \alpha \qquad 3\alpha$ $A_{3}B \rightleftharpoons 3A^{+} + B^{3-}$ $1 - \alpha \qquad 3\alpha \qquad \alpha$	4	$1 + 3\alpha$ $1 + 3\alpha$	$\frac{m_{normal}}{1+3\alpha}$ $\frac{m_{normal}}{1+3\alpha}$
5.	General electrolyte AB _{n - 1}	One mole of solute giving 'n' ions in the solution	$AB_{n-1} \rightleftharpoons A^{+(n-1)} + (n-1)B^{-}$ $1 - \alpha \qquad \alpha \qquad (n-1)\alpha$	n	$1 + (n-1)\alpha$	$\frac{m_{normal}}{\left[1+(n-1)\alpha\right]}$

Van't Hoff factor and degree of association :

The fraction of the total number of molecules of the substance which is present as associated molecules is known as the degree of association.

 $i = \frac{Number \, of \, particles \, after \, association}{Number \, of \, particles \, before \, association}$

Calculation of 'i' :

Let, solute be A

Initial mol

 $\begin{array}{ccc} nA & \longrightarrow & (A)_n \\ 1 & 0 \end{array}$

 $1 - \alpha$

α/n

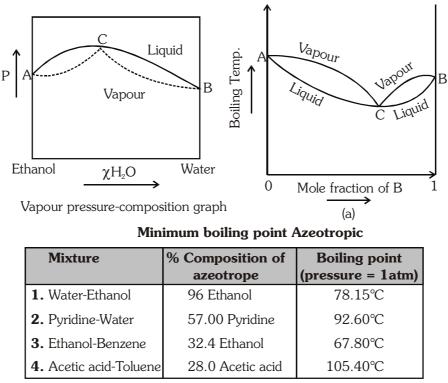
after dissociation

$$i = \frac{1 - \alpha + \frac{\alpha}{n}}{n}$$
, $\alpha = degree of assocation$

$$i = 1 - \alpha + \alpha/n$$

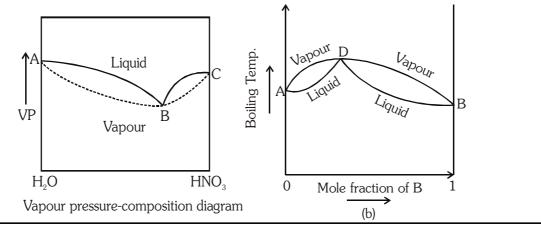
$$m_{Abnormal} = \frac{m_{Normal}}{\left[1 - \left(1 - \frac{1}{n}\right)\alpha\right]}$$

AZEOTROPIC MIXTURES


Binary mixtures that have same composition in liquid and vapour phase and boil at a constant temperature and can be distilled unchanged in composition are known as azeotropic mixture or simply azeotropes. Thus aceotropes behave as pure liquid.

There are two types of azeotropes called as minimum boiling azeotropes and maximum boiling azeotropes respectively.

Types of Azeotropic mixtures


(i) Minimum boiling Azeotropic mixtures

The non-ideal binary solutions which shows positive deviation from Raoult's law form minimum boiling azeotropes at a constant composition. As we can see from vapours-pressure-composition graph.

(ii) Maximum boiling Azeotropic mixtures

The non-ideal solution which shows negative deviation Raoult's law form maximum boiling azeotropes. From the vapour-pressure-composition diagram, we can see that the solution has a minimum vapour pressure at a particular composition.

Mixture	% Composition of	Boiling point		
	azeotrope	(pressure = 1atm)		
1. Nitric acid-Water	68% Nitric acid	125.5℃		
2. Acetic acid-Pyridine	65% Pyridine	139.0°C		
3. Chloroform-Acetone	80% Chloroform	65.0°C		
4. Hydrogen chloride-Water	79.8 Water	108.6°C		

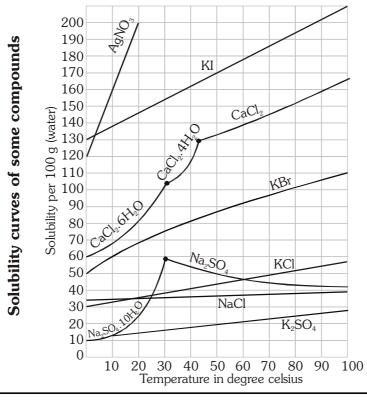
Maximum boiling point Azeotropic

Solubility :

Maximum amount of solute which can be dissolved in a specified amount of solvent at constant temperature is solubility. Solubility is effected by

1. nature of solute and solvent 2. temperature and 3. pressure Solubility of Solid in a Liquid : Polar solutes are soluble in polar solvent and non polar solutes are

solubile in non polar solvent due to similar intermolecular forces.


When solid solutes are dissolved in solvent than following equilibrium exits.

Solute + Solvent $\xrightarrow{\text{Dissolutioni}}$ Solution. ; Δ H may be positive or negative

Such a solution in which no more solute can be dissolved at the same temperature and pressure is called a saturated solution. An unsaturated solution is one in which more solute can be dissolved at the same temperature. The solution which is in dynamic equilibrium with undissolved solute is the saturated solution and contains the maximum amount of solute dissolved in a given amount of solvent.

Effect of temperature :

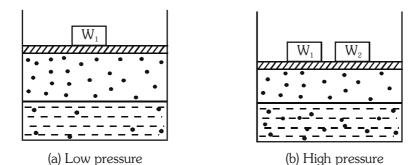
The solubility of a solid in a liquid is significantly affected by temperature changes. Consider the equilibrium represented by equation 2.10. This, being dynamic equilibrium, must follow Le Chateliers **Principle.** In general, if in a nearly saturated solution, the dissolution process is endothermic $(\Delta_{sol}H > 0)$, the solubility should increase with rise in temperature and if it is exothermic $(\Delta_{sol}H < 0)$ the solubility should decrease. These trends are also observed experimentally.

Effect of pressure :

Pressure does not have any significant effect on solubility of solids in liquids. It is so because solids and liquids are highly incompressible and practically remain unaffected by changes in pressure.

Solubility of Gases in Liquid : Certain gases are highly soluble in water like NH_3 , HCl etc. and certain gases are less soluble in water like O_2 , N_2 , He etc. Solubility of gases is highly effected by pressure and temperature. Increasing pressure increases solubility increase in temperature decreases solubility since dissolution of any gas in any liquid is exothermic in nature.

Henry' Law :


Mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution.

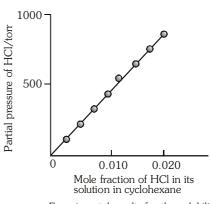
or

The partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (x) in the solution.

$\mathbf{P} = \mathbf{K}_{H} \mathbf{X}$ $\mathbf{K}_{H} = \text{Henry's Constant}$

Henry's Constant depends on nature of gas and temperature. $K_{\rm H}$ increases with increases in temperature therefore high $K_{\rm H}$ means low solubility.

Effect of pressure on the solubility of a gas. The concentration of dissolved gas is proportional to the pressure on the gas above the solution.


The solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of liquid or solution.

Effect of Temperature

Solubility of gases in liquids decreases with rise in temperature. When dissolved, the gas molecules are present in liquid phase and the process of dissolution can be considered similar to condensation and heat is evolved in this process. Dissolution process involves dynamic equilibrium and thus must follow Le Chatelier's Principle. As dissolution is an exothermic process, the solubility should decrease with increase of temperature

Henry' Law application :

(1) To increase the solubility of CO_2 in soft drinks and soda water, the bottle is sealed under high pressure.

Experimental results for the solubility of HCl gas in cyclohexane at 293 K. The slope of the line is the Henry's Law constant $K_{\rm H}$

- (2) Scuba divers must cope with high concentrations of dissolved gases while breathing air at high pressure underwater. Increased pressure increases the solubility of atmospheric gases in blood. When the divers come towards surface, the pressure gradually decreases. This releases the dissolved gases and leads to the formation of bubbles of nitrogen in the blood. This blocks capillaries and creates a medical condition known as bends, which are painful and dangerous to life. To avoid bends, as well as, the toxic effects of high concentrations of nitrogen in the blood, the tanks used by scuba divers are filled with air diluted with helium (11.7% helium, 56.2% nitrogen and 32.1% oxygen).
- (3) At high altitudes the partial pressure of oxygen is less than that at the ground level. This leads to low concentrations of oxygen in the blood and tissues of people living at high altitudes or climbers. Low blood oxygen causes climbers to become weak and unable to think clearly, symptoms of a condition known as anoxia.

Gas	Temperature/K	K _H /kbar
Не	293	144.97
H ₂	293	69.16
N ₂	293	76.48
N ₂	303	88.84
O ₂	293	34.86
O ₂	303	46.82
Argon	298	40.3
CO ₂	298	1.67
Formaldehyde	298	1.83×10^{-5}
Methane	298	0.413
Vinyl chloride	298	0.611

Values of Henry's Law Constant for Some Selected Gases in Water

EXERCISE # (S-I)

Raoult's law

- **1.** The vapour pressure of pure liquid solvent A is 0.80 atm. When a nonvolatile substance B is added to the solvent its vapour pressure drops to 0.60 atm. What is the mole fraction of component B in the solution?
- 2. Calculate the relative lowering in vapour pressure if 100 g of a nonvolatile solute (mol.wt.100) are dissolved in 432 g water.
- **3.** What weight of the non-volatile solute, urea needs to be dissolved in 100 g of water, in order to decrease the vapour pressure of water by 25%? What will be the molality of the solution?
- 4. The vapour pressure of pure benzene at 25° C is 639.7 mm of Hg and the vapour pressure of a solution of a solute in C₆H₆ at the same temperature is 631.7 mm of Hg. Calculate molality of solution.
- **5.** The vapour pressure of pure benzene at a certain temperature is 640 mm of Hg. A nonvolatile nonelectrolyte solid weighing 2.175 g is added to 39.0 of benzene. The vapour pressure of the solution is 600 mm of Hg. What is molecular weight of solid substance?
- **6.** The vapour pressure of water is 17.54 mm Hg at 293 K. Calculate vapour pressure of 0.5 molal solution of a solute in it.
- 7. At 25°C, the vapour pressure of methyl alcohol is 96.0 torr. What is the mole fraction of CH_3OH in a solution in which the (partial) vapor pressure of CH_3OH is 23.0 torr at 25°C?
- **8.** The vapour pressure of ethanol and methanol are 44.5 mm and 88.7 mm Hg respectively. An ideal solution is prepared at the same temperature by mixing 60 g of ethanol with 40 g of methanol. Calculate total vapour pressure of the solution.
- 9. Benzene and toluene form two ideal solution A and B at 313 K. Solution A (total pressure P_A) contains equal mole of toluene and benzene. Solution B contains equal masses of both (total pressure P_B). The vapour pressure of benzene and toluene are 160 and 60 mm Hg respectively at 313 K. Calculate the value of P_A/P_B .

Boiling point elevation and freezing point depression

- 10. When 10.6 g of a nonvolatile substance is dissolved in 740 g of ether, its boiling point is raised 0.284°C. What is the molecular weight of the substance? Molal boiling point constant for ether is 2.11°C·kg/mol.
- **11.** The molecular weight of an organic compound is 58.0 g/mol. Compute the boiling point of a solution containing 24.0 g of the solute and 600 g of water, when the barometric pressure is such that pure water boils at 99.725°C.
- 12. Pure benzene freeze at 5.45°C. A solution containing 7.24 g of $C_2H_2C_{14}$ in 115.3 g of benzene was observed to freeze at 3.55°C. What is the molal freezing point constant of benzene?

- 13. The freezing point of a solution containing 2.40 g of a compound in 60.0 g of benzene is 0.10° C lower than that of pure benzene. What is the molecular weight of the compound? (K_f is 5.12°C/m for benzene)
- 14. Calculate the molal elevation constant, K_b for water and the boiling of 0.1 molal urea solution. Latent heat of vaporisation of water is 9.72 kcal mol⁻¹ at 373.15 K.
- 15. A solution of 0.643 g of an organic compound in 50ml of benzene (density ; 0.879 g/ml) lowers its freezing point from 5.51°C to 5.03°C. If K_f for benzene is 5.12 K, calculate the molecular weight of the compound.
- 16. The cryoscopic constant for acetic acid is 3.6 K kg/mol. A solution of 1 g of a hydrocarbon in 100 g of acetic acid freezes at 16.14°C instead of the usual 16.60°C. The hydrocarbon contains 92.3% carbon. What is the molecular formula?
- 17. Find the freezing point of a glucose solution whose osmotic pressure at 25oC is found to be 30 atm. $K_f(water) = 1.86 \text{kg. mol}^{-1}$.K.

Osmotic pressure

- **18.** A 5% solution (w/v) of cane-sugar (Mol. weight = 342) is isotonic with 0.877%(w/v) of urea solution. Find molecular weight of urea.
- **19.** A storage battery contains a solution of H_2SO_4 38% by weight. What will be the Van't Hoff factor if the $\Delta T_{f(experiment)}$ in 29.08. [Given $K_f = 1.86 \text{ mol}^{-1} \text{ Kg}$]
- 20. A certain mass of a substance, when dissolved in 100 g C_6H_6 , lowers the freezing point by 1.28°C. The same mass of solute dissolved in 100g water lowers the freezing point by 1.40°C. If the substance has normal molecular weight in benzene and is completely ionized in water, into how many ions does it dissociate in water? K_f for H_2O and C_6H_6 are 1.86 and 5.12K kg mol⁻¹.
- **21.** 2.0 g of benzoic acid dissolved in 25.0g of benzene shows a depression in freezing point equal to 1.62K. Molal depression constant (K_f) of benzene is 4.9 K.kg.mol⁻¹. What is the percentage association of the acid?
- 22. A decimolar solution of potassium ferrocyanide is 50% dissociated at 300K. Calculate the osmotic pressure of the solution. ($R=8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)
- 23. The freezing point of a solution containing 0.2 g of acetic acid in 20.0g of benzene is lowered by 0.45°C. Calculate the degree of association of acetic acid in benzene. (K_f for benzene = 5.12 K mol⁻¹ kg)
- 24. 0.85 % aqueous solution of NaNO₃ is apparently 90% dissociated at 27°C. Calculate its osmotic pressure. (R= 0.082 l atm K⁻¹ mol⁻¹)
- **25.** A 1.2% solution (w/v) of NaCl is isotonic with 7.2% solution (w/v) of glucose. Calculate degree of ionization and Van't Hoff factor of NaCl.

EXERCISE # (S-II)

- 1. At 90°C, the vapour pressure of toluene is 400 torr and that of σ -xylene is 150 torr. What is the composition of the liquid mixture that boils at 90°C, when the pressure is 0.50 atm? What is the composition of vapour produced?
- 2. The vapour pressure of an aqueous solution of glucose is 750 mm Hg at 373 K. Calculate molality and mole fraction of solute.
- 3. Calculate the amount of ice that will separate out of cooling a solution containing 50g of ethylene glycol in 200 g water to -9.3 °C. (K_f for water = 1.86 K mol⁻¹ kg)
- **4.** A solution of crab hemocyanin, a pigmented protein extracted from crabs, was prepared by dissolving 0.750 g in 125 cm³ of an aqueous medium. At 4°C an osmotic pressure rise of 2.6 mm of the solution was observed. The solution had a density of 1.00 g/cm³. Determine the molecular weight of the protein.
- 5. 0.1 mol K₄ Fe(CN)₆ is added to 1 llitre of 0.2M CuCl₂ solution at 31°C, osmotic pressure (in atm) of the resulting solution.
- 6. 30 ml of CH₃OH (d = 0.7980 gm cm⁻³) and 70 ml of H₂O (d=0.9984 gm cm⁻³) are mixed at 25°C to form a solution of density 0.9575 gm cm⁻³. Calculate the freezing point of the solution. K_f (H₂O) is 1.86 kg mol⁻¹ K. Also calculate its molarity.
- 7. An aqueous solution containing 288 gm of a non-volatile compound having the stoichiometric composition $C_xH_{2x}O_x$ in 90 gm water boils at 101.24°C at 1.00 atmospheric pressure. What is the molecular formula?

 $K_b(H_2O) = 0.512 \text{ K mol}-1 \text{ kg}$ $T_b(H_2O) = 100^{\circ}C$

- 8. A complex is represented as $CoCl_3 \cdot x NH_3$. It's 0.1 molal solution in a solution shows $\Delta T_f = 0.558^{\circ}C$. K_f for H_2O is 1.86 K mol⁻¹ kg . Assuming 100% ionisation of complex and coordination no. of Co is six, calculate formula of complex.
- 9. Phenol associates in benzene to a certain extent to form a dimer. A solution containing 20×10^{-3} kg phenol in 1 kg of benzene has its freezing point depressed by 0.69 K. Calculate the fraction of phenol that has dimerised. K_f for benzene = 5.12 kg mol⁻¹K.
- 10. The molar volume of liquid benzene (density = 0.877 g ml^{-1}) increases by a factor of 2750 as it vaporizes at 20°C and that of liquid toluene (density = 0.867gml^{-1}) increases by a factor of 7720 at 20°C. A Solution of benzene & toluene has a vapour pressure of 46.0 torr. Find the mole fraction of benzene in the vapour above the solution.

EXERCISE # (O-I)

	Single correct :			
1.	The boiling point of	C ₆ H ₆ , CH ₃ OH, C ₆ H ₅ N	H_2 and $C_6H_5NO_2$ are	80°C, 65°C, 184°C and 212°C
	respectively which w	vill show highest vapou	ir pressure at room ten	nperature :
	(A) C ₆ H ₆	(B) CH ₃ OH	(C) $C_6H_5NH_2$	(D) $C_6H_5NO_2$
2.	Mole fraction of A v	apours above the solut	ion in mixture of A and	d B ($X_A = 0.4$) will be
	[Given : $P_A^o = 100 \text{ m}$	Im Hg and $B^{\circ}_{P} = 200 \text{ r}$	nm Hg]	
	(A) 0.4	(B) 0.8	(C) 0.25	(D) none of these
3.	At a given temperatu	ire, total vapour pressu	re in Torr of a mixture	of volatile components A and
	B is given by			
	P _{Total} =	$= 120 - 75 X_{B}$		
	hence, vapour pressu	re of pure A and B res	pectively (in Torr) are	
	(A) 120, 75	(B) 120, 195	(C) 120, 45	(D) 75, 45
4.	Two liquids A & B	form an ideal solution	. What is the vapour p	pressure of solution containing
	2 moles of A and 3	3 moles of B at 300	K? [Given : At 300	K, Vapour pr. of pure liquid
	A (P°_{A}) = 100 torr, Y	Vapour pr. of pure liqu	id B (P°_{B}) = 300 torr]
	(A) 200 torr	(B) 140 torr	(C) 180 torr	(D) None of these
5.	If Raoult's law is	obeyed, the vapour	pressure of the solve	ent in a solution is directly
	proportional to			
	(A) Mole fraction of		(B) Mole fraction of	
		the solvent and solute	. ,	
6.		-		es of octane (V. P. = 31mm of
		ssure of resulting ideal		
	• • •	(B) 40.0 mm of Hg	· · · •	
7.	($P_A^\circ = 100$ mm, $P_B^\circ =$	apours above solution	in mixture of A and B	$(X_A = 0.4)$ will be :-
	$(P_A = 10011111, P_B = (A) 0.4$	(B) 0.8	(C) 0.25	(D) None
				forms an ideal solution with
0.				
	another liquid B. The mole fraction of B is 0.2 and total vapour pressure of the solution is 84 torr at 270C. The vapour pressure of pure liquid B at 270C is			pressure of the solution is 04
	(A) 14	(B) 56	(C) 140	(D) 70
				has a vapour pressure of 360
		1 1		luene that will boil at 88 °C at
		zene - toluence form ar		
	(A) 0.416	(B) 0.588	(C) 0.688	(D) 0.740

10. The exact mathematical expression of Raoult's law is (n = moles of solute ; N = moles of solvent)

(A)
$$\frac{P^0 - P_s}{P^0} = \frac{n}{N}$$
 (B) $\frac{P^0 - P_s}{P^0} = \frac{N}{n}$ (C) $\frac{P^0 - P_s}{P_s} = \frac{n}{N}$ (D) $\frac{P^0 - P_s}{P^0} = \times N$

11. The vapour pressure of a solvent decreased by 10 mm of Hg when a non-volatile solute was added to the solvent. The mole fraction of solute in solution is 0.2, what would be mole fraction of the solvent if decrease in vapour pressure is 20 mm of Hg

(A) 0.2 (B) 0.4 (C) 0.6 (D) 0.8

12. The vapour pressure of a solution having solid as solute and liquid as solvent is :

(A) Directly proportional to mole fraction of the solvent

- (B) Inversely proportional to mole fraction of the solvent
- (C) Directly proportional to mole fraction of the solute
- (D) Inversely propartional to mole fraction of the solute
- **13.** One mole of non volatile solute is dissolved in two moles of water. The vapour pressure of the solution relative to that of water is

(A)
$$\frac{2}{3}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{3}{2}$

14. The vapour pressure of pure A is 10 torr and at the same temperature when 1 g of B is dissolved in 20 gm of A, its vapour pressure is reduced to 9.0 torr. If the molecular mass of A is 200 amu, then the molecular mass of B is :

(A) 100 amu (B) 90 amu (C) 75 amu (D) 120 amu

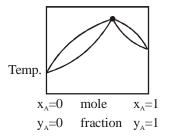
- 15. The vapour pressure of a pure liquid solvent (X) is decreased to 0.60 atm. from 0.80 atm on addition of a non volatile substance (Y). The mole fraction of (Y) in the solution is:(A) 0.20 (B) 0.25 (C) 0.5 (D) 0.75
- 16. Vapour pressure of CCl₄ at 250C is 143 mm Hg. 0.5 gm of a non-volatile solute (mol. wt. 65) is dissolved in 100 ml of CCl₄. Fine the vapour perssure of the solution. (Density of CCl₄ = 1.58 gm/cm³)

17. Among the following, that does not form an ideal solution is :

- (A) C_6H_6 and $C_6H_5CH_3$ (B) C_2H_5Cl and C_6H_5OH
- (C) C_6H_5Cl and C_6H_5Br (D) C_2H_5Br and C_2H_5I

18. Colligative properties of the solution depend upon

- (A) Nature of the solution (B) Nature of the solvent
 - (C) Number of solute particles (D) Number of moles of solvent


19.	Elevation of boiling	g point of 1 molar aque	ous glucose solution	n (density = 1.2 g/ml) is
	(A) K _b	(B) 1.20 K _b	(C) 1.02 K _b	(D) 0.98 K _b
20.	When common sale	t is dissolved in water		
	(A) Melting point of	of the solution increase	S	
	(B) Boiling point o	f the solution increases		
	(C) Boiling point of	f the solution decreases	8	
	(D) Both Melting p	oint and Boiling point	is decreases	
21.	What should be t	he freezing point of	aqueous solution co	ontaining 17 gm of C ₂ H ₅ OH in
	1000 gm of water (water $K_f = 1.86 \text{ deg} -$	kg mol ⁻¹)	
	$(A) - 0.69^{\circ}C$	$(B) - 0.34^{\circ}C$	(C) 0.0°C	(D) 0.34°C
22.	The boiling point	of an aqueous solution	n of a non volatile	solute is 100.15 °C. What is the
	freezing point of a	in aqueous solution of	ptained by diluting t	the above solution with an equal
	volume of water ?	The values of K_b and K_b	$L_{\rm f}$ for water are 0.512	2 and 1.86 K molality $^{-1}$:
	(A) -0.544 °C	(B) -0.512 °C	(C) –0.272 °C	(D) –1.86 °C
23.	A 5% solution (by	mass) of cane sugar in	water has freezing	point of 271 K and freezing point
	of pure water is 27	3.15K. The freezing po	oint of a 5% solution	(by mass) of glucose in water is-
	(A) 271 K	(B) 273·15 K	(C) 269·07 K	(D) 277·23 K
24.	As a result of osmo	osis, the volume of the	concentrated solution	n
	(A) Gradually decr	eases	(B) Gradually inc	creases
	(C) Suddenly incre	ases	(D) None	
25.		the solvent in solution		
		e of solution increases		
	(C) Osmotic pressu		(D) All are correc	
26.			1% solution of a c	compound 'A' then the molecular
	weight of compour			
	(A) 32.4	(B) 68.4	(C) 121.6	(D) 34.2
27.	-	e	240C is 2.5 atmos	sphere. The concentration of the
	solution in mole pe			
	(A) 10.25	(B) 1.025	(C) 1025	(D) 0.1025
28.			• •	er 100 ml was found to have an
				blecular weight of solute is :
	(A) 14.97	(B) 149.7	(C) 1697	(D) 1.497
29.			•	is isotonic with 1.52% (wt./vol.)
		bamide, then the molec	-	
	(A) 152	(B) 76	(C) 60	(D) 180

30.	Which of the follow	ving aqueous solution	will show maximum v	vapour pressure at 300 K?
	(A) 1 M NaCl	(B) 1 M CaCl ₂	(C) 1 M AlCl ₃	(D) 1 M $C_{12}H_{22}O_{11}$
31.	The correct relation	ship between the boil	ing points of very dil	ute solution oif $AlCl_3$ (T ₁ K) and
	CaCl ₂ (T ₂ K) having	the same molar conce	entration is	
	(A) $T_1 = T_2$	(B) $T_1 > T_2$	(C) $T_2 > T_1$	(D) $T_2 \leq T_1$
32.	1.0 molal aqueous	solution of an electro	olyte A_2B_3 is 60% ic	onised. The boiling point of the
	solution at 1 atm is	$(=0.52 \text{ K kg mol}^{-1})$		
	(A) 274.76 K	(B) 377 K	(C) 376.4 K	(D) 374.76 K
33.	The freezing point of	lepression of a 0.1 M a	a solution of weak aci	d (HX) is –0.20°C.
	What is the value of	f equilibrium constant	for the reaction?	
		HX (aq) H	$I^{+}(aq) + X^{-}(aq)$	
	[Given : K _f for wate	$er = 1.8 \text{ kg mol}^{-1} \text{ K. }$		
	(A) 1.46×10 ⁻⁴	(B) 1.35×10^{-3}	(C) 1.21×10^{-2}	(D) 1.35×10^{-4}
34.	The Vant Hoff facto	or (i) for a dilute soluti	on of K ₃ [Fe(CN) ₆] is	(Asuming 100% ionsation) :
	(A) 10	(B) 4	(C) 5	(D) 0.25
35.	The substance A w	hen dissolved in solve	ent B shows the mole	cular mass corresponding to A_3 .
	The vant Hoff's fact	or will be-		
	(A) 1	(B) 2	(C) 3	(D) 1/3
36.	-	pour pressure of 0.1M	-	NaCl, CuSO ₄ and K ₂ SO ₄ are:
	(A) All equal		(B) In the ratio of	
	(C) In the ratio of 3		(D) In the ratio of	
37.			-	ilver nitrate are 92.64 and 170
	1 0	gree of dissociation of		
• •	(A) 60%	(B) 83.5 %	(C) 46.7%	(D) 60.23%
38.	• •	1	on assuming NaCl to	be 100% dissociated in water is:
	$(K_f = 1.86 \text{ K Molali})$	-		
20	(A) –1.86 °C	(B) -3.72 °C	(C) +1.86 °C	$(D) + 3.72 \ ^{\circ}C$
39.		n constant of water is	0.51. The boiling po	bint of 0.1 molal aqueous NaCl
	solution is nearly :	(\mathbf{D}) 100 1 0C	(0) 100 00 C	(D) 101.00 C
40	(A) 100.05 °C	(B) 100.1 °C	(C) 100.2° C	(D) 101.0° C
40.				HBr in 100gm. water assuming
		onised (K _f for water=		(D) 0.25%
41	(A) 0.85°C	$(B) - 3.53^{\circ}C$	(C) 0° C	(D) -0.35° C
41.	•		•	etermine the pressure of H_2S in
	-	6.8×10^3 bar at 20°C.	le ground water at 20)°C. Given that for H ₂ S, Henry's
	(A) 720 Pa	(B) 77×10^2 Pa	$(C) 552 D_{c}$	(D) 55×10^2 Pa
	(A) 120 Fa	$(D) / / \times 10$ Pa	(C) 553 Pa	$(D) 55 \times 10$ Fa

EXERCISE # (O-II)

More than one may be correct

1. A liquid mixture having composition corresponding to point z in the figure shown is subjected to distillation at constant pressure.

Which of the following statement is correct about the process

- (A) The composition of distillate differs from the mixture
- (B) The boiling point goes on changing
- (C) The mixture has lowest vapour pressure than for any other composition.
- (D) Composition of an azeotrope alters on changing the external pressure.
- 2. Which of the following is correct for a non-ideal solution of liquids A and B, showing negative deviation?

(A)
$$\Delta H_{mix} = -ve$$

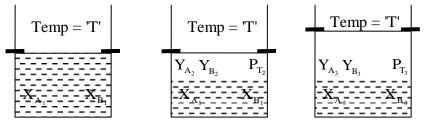
(B) $\Delta V_{mix} = -ve$
(C) $\Delta S_{mix} = +ve$
(D) $\Delta G_{mix} = -ve$

3. Acetone and carbon disulphide form binary liquid solution showing positive deviation from Raoult law. The normal boiling point (T_b) of pure acetone is less than that of pure CS_2 . Pick out the incorrect statements among the following.

(A) Boiling temperature of mixture is always less than boiling temperature of acetone.

(B) Boiling temperature of Azeotropic mixture is always less than boiling temperature of pure CS₂.

(C) When a small amount of CS_2 (less volatile component) is added to excess of acetone boiling point of resulting mixture increases.


(D) A mixture of CS_2 and CH_3COCH_3 can be completely separated by simple fractional distillation.

4. Two solutions S_1 and S_2 containing 0.1M NaCl(aq.) and 0.08M BaCl₂(aq.) are separated by semipermeable membrane. Which among the following statement(s) is/are correct -

\mathbf{S}_1	S ₂
0.1M NaCl	0.08M BaCl ₂

- (A) S_1 and S_2 are isotonic
- (B) S_1 is hypertonic and S_2 is hypotonic
- (C) S_1 is hypotonic and S_2 is hypertonic
- (D) Osmosis will take place to from S_1 to S_2

5. Using given information :

 X_A , X_B = mol fraction of 'A' & 'B' in liquid, Y_A , Y_B = mol fraction of 'A' & 'B' in vapour P_A^0 , P_B^0 = vapour pressure of pure liquid A and pure liquid B respectively,

 $P_{T}=vapour \ pressure \ of \ solution, \ Given : \ X_{A_{1}} = X_{B_{1}} \ , \ P_{A}^{0} > P_{B}^{0},$

Select the correct set/ sets of relation

- $\begin{array}{ll} (A) \ \ Y_{A_2} > Y_{B_2}, P_{T_2} = P_{T_3} \\ (C) \ \ Y_{A_2} > Y_{A_3}, P_{T_2} > P_{T_3} \\ \end{array} \\ \begin{array}{ll} (B) \ \ Y_{A_2} > Y_{A_2}, Y_{B_2}, X_{B_2} \\ (D) \ \ X_{A_2} < X_{B_2}, P_{T_2} < P_{T_3} \\ \end{array}$
- 6. For an ideal binary liquid solution with $P_A^0 > P_B^0$, which relation between X_A (mole fraction of A in liquid phase) and Y_A (mole fraction of A in vapour phase) is correct?

(A)
$$Y_A < Y_B$$
 (B) $X_A > X_B$ (C) $\frac{Y_A}{Y_B} > \frac{X_A}{X_B}$ (D) $\frac{Y_A}{Y_B} < \frac{X_A}{X_B}$

7. Which of the following plots represents an ideal binary mixture?

- (A) Plot of $P_{\text{total}} v/s 1/X_B$ is linear (X_B = mole fraction of 'B' in liquid phase).
- (B) Plot of P_{total} v/s Y_A is linear (Y_B = mole fraction of 'A' in vapour phase)

(C) Plot of
$$\frac{1}{P_{total}}$$
 v/s Y_A is linear

(D) Plot of $\frac{1}{P_{total}} v/s Y_B$ is non linear

- An ideal solution was obtained by mixing (MeOH) methanol and (EtOH) ethanol. If the partial 8. vapour pressure of methanol and ethanol are 2.619 K Pa and 4.556 K Pa respectively, the composition of vapour (in terms of mole fraction) will be -(A) 0.635 MeOH, 0.365 EtOH (B) 0.365 MeOH, 0.635 EtOH (D) 0.173 MeOH, 0.827 EtOH (C) 0.574 MeOH, 0.326 EtOH 9. Molar volume of liquid A(d = 0.8 gm/ml) increase by factor of 2000 when it vapourises at 200K. Vapour pressure of liquid A at 200K is [R = 0.08 L-atm/mol-K] (Molar mass of A = 80g/mol) (A) 0.4 atm (B) 8 atm (C) 0.8 atm (D) 0.08 atm
- **10.** Assuming each salt to be 90 % dissociated, which of the following will have highest boiling point?
 - (A) Decimolar Al₂(SO₄)₃
 - (B) Decimolar BaCl₂
 - (C) Decimolar Na₂SO₄
 - (D) A solution obtained by mixing equal volumes of (B) and (C)
- 11. A mixture contains 1 mole of volatile liquid A ($P_A^0 = 100 \text{ mm Hg}$) and 3 moles of volatille liquid

B ($P_B^0 = 80 \text{ mm Hg}$). If solution behaves ideally, the total vapour pressure of the distillate is

- (A) 85 mm Hg (B) 85.88 mm Hg
- (C) 90 mm Hg (D) 92 mm Hg

12. The vapour pressure of a saturated solution of sparingly soluble salt (XCl₃) was 17.20 mm Hg at 27°C. If the vapour pressure of pure H₂O is 17.25 mm Hg at 300 K, what is the solubility of sparingly soluble salt XCl₃ in mole/Litre.

(A) 4.04×10^{-2} (B) 8.08×10^{-2} (C) 2.02×10^{-2} (D) 4.04×10^{-3}

13. A solution has a 1 : 4 mole ratio of pentane to hexane. The vapour pressures of the pure hydrocarbons at 20°C are 440 mmHg for pentane and 120 mmHg for hexane. The mole fraction of pentane in the vapour phase would be :-

(A) 0.200	(B) 0.478
(C) 0.549	(D) 0.786

14. For which of the following vant' Hoff's factor is not correctly matched -

	Salt	Degree of dissociation (α)	i
(A)	Na ₂ SO ₄	50 %	2
(B)	$K_3[Fe(CN)_6]$	75%	3.25
(C)	[Ag(NH ₃) ₂]Cl	80 %	1.8
(D)	[Cr(NH ₃) ₅ Cl]SO ₄	90 %	2.8

15. Statement-1 :Additon of ethylene glycol (non-volatile) to water lowers the freezing point of water hence used as antifreeze.

Statement-2 : Addition of any substance to water lowers its freezings point of water.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement 1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

Match the column :

16.

(Colligative properties)

(A) $\Delta T_f = 0.3 \times K_f$

Column-I

 $(B) \qquad \Delta T_b = 0.28 \times K_b$

(C)
$$p = 0.19 \times RT$$

(d)
$$\frac{P^{0} - P}{P^{0}} = \frac{\left(\frac{\Delta T_{f}}{K_{f}}\right)}{\left(\frac{1000}{18}\right) + \left(\frac{\Delta T_{f}}{K_{f}}\right)}$$

Column–II (Aqueous solution) (Assume m = M)

(P)
$$0.1 \text{ m} - \text{Ca}(\text{NO}_3)_2$$

- $(Q) \quad 0.14 \text{ m} \text{NaBr}$
- (R) $0.1 \text{ m} \text{MgCl}_2(\alpha = 0.9)$

(S) 0.28 m – Urea

(T) $0.1 \text{ m} - \text{HA} \text{ (monobasic acid, } K_a = 0.81\text{)}$

EXERCISE # (JEE-MAIN)

1.	Which one of the following aqueous solutions will exhibit highest boiling point ?		
			[AIEEE-2004]
	(1) $0.01 \text{M Na}_2 \text{SO}_4$ (2) 0.01M K_4	NO ₃ (3) 0.015 M urea	(4) 0.015M glucose
2.	Which of the following liquid pairs	s shows a positive deviation f	rom Raoult's law ?
			[AIEEE-2004]
	(1) Water-hydrochloric acid	(2) Benzene-metha	nol
	(3) Water-nitric acid	(4) Acetone-chloro	form
3.	Which one of the following statement is False ?[AIEEE-20]		
	(1) Raoult's law states that the vap	our pressure of a component	over a solution is proportional
	to its mole fraction		
	(2) The osmotic pressure (π) of a solution is given by the equation $\pi = MRT$ where M is th		
	molarity of the solution		
	(3) The correct order of osmotic	pressure for 0.01M aqueous	solution of each compound is
	$BaCl_2 > KCl > CH_3COOH > Sucret$	ose	
	(4) Two sucrose solutions of same	e molality prepared in differ	ent solvent will have the same
	freezing point depression		
4.	If a is the degree of dissociation of	Na_2SO_4 , the vant of Hoff's fa	actor (i) used for calculating the
	molecular mass is		[AIEEE-2005]
	(1) $1 - \alpha$ (2) $1 + \alpha$	(3) $1 - 2 \alpha$	(4) 1+2 α
5.	Benzene and toluene form nearly	ideal solutions. At 20°C, the	vapour pressure of benzene is
	75 torr and that of toluene is 22	torr. The partial vapour pres	ssure of benzene at 20°C for a
	solution containing 78 g of benzene	e and 46 g of toluene in torr is	S - [AIEEE-2005]
	(1) 25 (2) 50	(3) 53.5	(4) 37.5
6.	Two solutions of a substance (nor	electrolyte) are mixed in th	e following manner. 480 ml of
	1.5 M first solution + 520 mL of 1.2 M second solution. What is the molarity of the final		
	mixture ?		[AIEEE-2005]
	(1) 1.50 M (2) 1.20 M	(3) 2.70 M	(4) 1.344 M
7.	Equimolar solutions in the same so		[AIEEE-2006]
	(1) Same freezing point but different		
	(2) Same boiling point but differen	01	
	(3) Different boiling and different freezing point		
	(4) Same boiling and same freezing points		

8.	18 g of glucose (C6H12O6) is added to 178.2g of water. The vapour pressure of water for this			
	aqueous solution at 100° C is [AIEEE-2006]			
	(1) 7.60 Torr (2) 76.00 Torr (3) 752.40 Torr (4) 759.00 Torr			
9.	A mixture of ethyl alcohol and propyl alcohol has a vapour pressure of 290 mm at 300 K. The			
	vapour pressure of propyl alcohol is 200 mm. If the mole fraction of ethyl alcohol is 0.6, its			
	vapour pressure (in mm) at the same temperature will be [AIEEE-2007]			
	(1) 350 (2) 300 (3) 700 (4) 360			
10.	A 5.25% solution of a substance is isotonic with a 1.5% solution of urea			
	(molar mass=60g mol ⁻¹) in the same solvent. If the densities of both the solutions are assumed			
	to be equal to 1.0 gcm ⁻³ , molar mass of the substance will be [AIEEE-2007]			
	(1) 90.0 g mol ⁻¹ (2) 115.0 g mol ⁻¹ (3) 105.0 g mol ⁻¹ (4) 210.0 g mol ⁻¹			
11.	At 80°C, the vapoure pressure of pure liquid 'A' is 520 mm Hg and that of pure liquid 'B' is			
	1000 mm Hg. If a mixture solution of 'A' and 'B' boils at 80°C and 1 atm pressure, the amount			
	of 'A' in the mixture is $(1 \text{ atm} = 760 \text{ mm Hg})$ [AIEEE-2008]			
	(1) 52 mol % (2) 34 mol % (3) 48 mol % (4) 50 mol %			
12.	The vapour pressure of water at 20°C is 17.5 mm Hg. If 18 g of glucose ($C_6H_{12}O_6$) is added to			
	178.2 g of water at 20°C, the vapour pressure of the resulting solution will be [AIEEE-2008]			
	(1) 17.675 mm Hg (2) 15.750 mm Hg (3) 16.500 mm Hg (4) 17.325 mm Hg			
13.	Two liquids X and Y form an ideal solution. At 300K, vapour pressure of the solution			
	containing 1 mol of X and 3 mol of Y is 550 mm Hg. At the same temperature, if 1 mol of Y is			
	further added to this solution, vapour pressure of the solution increases by 10 mm Hg. Vapour			
	pressure (in mmHg) of X and Y in their pure states will be, respectively : [AIEEE-2009]			
	(1) 400 and 600 (2) 500 and 600 (3) 200 and 300 (4) 300 and 400			
14.	A binary liquid solution is prepared by mixing n-heptane and ethanol. Which one of the			
	folloowing statements is correct regarding the behaviour of the solution ? [AIEEE-2009]			
	(1) The solution is non-ideal, showing -ve deviation from Raoult's law			
	(2) n-heptane shows +ve deviation while ethanol shows –ve deviation from Raoult's law			
	(3) The solution formed is an ideal solution.			
	(4) The solution non-ideal, showing +ve deviation from Raoult's law			
15.	If sodium sulphate is considered to be completely dissociated into cations and anions in			
	aqueous solution, the change in freezing point of water (ΔT_f), when 0.01 mol of sodium			
	sulphate is dissolved in 1 kg of water, is ($K_f = 1.86 \text{ K kg mol}^{-1}$): [AIEEE-2010]			
	(1) 0.0186 K (2) 0.0372 K (3) 0.0558 K (4) 0.0744 K			

16. On mixing, heptane and octane form an ideal solution. At 373 K, the vapour pressures of the two liquid components (heptane and octane) are 105 kPa and 45 kPa respectively. Vapour pressure of the solution obtained by mixing 25.0 of heptane and 35 g of octane will be (molar mass of heptane = 100 g mol^{-1} and of octane = 114 g mol^{-1}) : [AIEEE-2010] (1) 144.5 kPa (2) 72.0 kPa (3) 36.1 kPa (4) 96.2 kPa

17. The degree of dissociation (1) of a weak electrolyte, $A_x B_y$ is related to van't Hoff factor (i) by the expression : [AIEEE-2011]

(1) $\alpha = \frac{x+y-1}{i-1}$ (2) $\alpha = \frac{x+y+1}{i-1}$ (3) $\alpha = \frac{i-1}{(x+y-1)}$ (4) $\alpha = \frac{i-1}{(x+y-1)}$

18. Ethylene glycol is used as an antifreeze in a cold climate. Mass of ethylene glycol which should be added to 4 kg of water to prevent it from freezing at -6° C will be : [AIEEE-2011] (K_f for water = 1.86 K kgmol⁻¹, and molar mass of ethylene glycol = 62 gmol⁻¹) (1) 400.00 g (2) 304.60 g (3) 804.32 g (4) 204.30 g

19. A 5% solution of cane sugar (molar mass 342) is isotonic with 1% of a solution of an unknown solute. The molar mass of unknown solute in g/mol is : [AIEEE-2011]
(1) 136.2 (2) 171.2 (3) 68.4 (4) 34.2

- 20. The molality of a urea solution in which 0.0100g of urea, [(NH₂)₂CO] is added to 0.3000 dm3 of water at STP is : [AIEEE-2011]
 - (1) 0.555 m (2) 5.55×10^{-4} m (3) 33.3 m (4) 3.33×10^{-2} m
- 21. The freezing point of a 1.00 m aqueous solution of HF is found to be -1.91° C. The freezing point constant of water, K_f, is 1.86 K kg mol⁻¹. The percentage dissociation of HF at this concentration is [JEE (MAIN)-2012 ONLINE]

(3) 10%

(4) 5.2%

- 22. Liquids A and B form an ideal solution. At 30°C, the total vapour pressure of a solution containing 1 mol of A and 2 moles of B is 250 mm Hg. The total vapour pressure becomes 300 mm Hg when 1 more mol of A is added to the first solution. The vapour pressures of pure A and B at the same temperature are [JEE (MAIN)–2012 ONLINE]
 - (1) 450, 150 mm Hg (2) 250, 300 mm Hg (3) 125, 150 mm Hg (4) 150, 450 mm Hg
- A solution containing 0.85 g of ZnCl₂ in 125.0 g of water freezes at -0.23°C. The apparent degree of dissociation of the salt is : [JEE (MAIN)-2012 ONLINE]

(k_f for water = 1.86 K kg mol-1, atomic mass ; Zn = 65.3 and Cl = 35.5)

$$(1) 1.36\% (2) 2.47\% (3) 73.5\% (4) 7.35\%$$

24. K_f for water is 1.86 K kg mol⁻¹. If your automobile radiator holds 1.0 kg of water, how many grams of ethylene glycol (C₂H₆O₂) must you add to get the freezing point of the solution lowered to -2.8°C? [AIEEE-2012] (1) 27 g (2) 72 g (3) 93 g (4) 39 g

25.	12g of a nonvolatile solute dissolved in 108g of water produces the relative lowering of vapour				
		The molecular mass of t		[JEE (MAIN)-2013 ONLINE]	
26	(1) 60	(2) 80	(3) 40	(4) 20	
26.		-	-	he equation M $(M)_n$. For a certain	
			tor was found to be	0.9 and the fraction of associated	
		.2. The value of n is :		[JEE (MAIN)-2013 ONLINE]	
~=	(1) 2	(2) 4	(3) 5	(4) 3	
27.	Vapour pressure of pure benzene is 119 torr and that of toluene is 37.0 torr at the same				
	-			h is in equilibrium with a solutio	
	of benzene and to	oluene having a mole fr	action of toluene 0.5		
				[JEE (MAIN)-2013 ONLINE	
	(1) 0.137	(2) 0.205	(3) 0.237	(4) 0.435	
28.	How many grams of methyl alcohol should be added to 10 litre tank of water to prevent it				
	freezing at 268 K ?				
	$(K_f \text{ for water is } 1)$	$.86 \text{ K kg mol}^{-1}$)		[JEE (MAIN)-2013 ONLINE	
	(1) 899.04 g	(2) 886.02 g	(3) 868.06 g	(4) 880.07 g	
29.	Consider separate solution of 0.500 M C ₂ H ₅ OH(aq), 0.100 M Mg ₃ (PO ₄) ₂ (aq), 0.250 M KBr(aq				
	and 0.125 M Na ₃ PO ₄ (aq) at 25°C. Which statement is true about these solutions, assuming a				
	salts to be strong	electrolytes ?		[JEE-MAIN-2014	
	(1) 0.125 M Na_3PO_4 (aq) has the highest osmotic pressure.				
	(2) 0.500 M C_2H_5OH (aq) has the highest osmotic pressure.				
	(3) They all have the same osmotic pressure.				
	(4) 0.100 M Mg ₃	$(PO_4)_2$ (aq) has the high	hest osmotic pressure	2.	
30.	Consider separate solution of 0.500 M C ₂ H ₅ OH(aq), 0.100 M Mg ₃ (PO ₄) ₂ (aq), 0.250 M KBr(ad				
	and 0.125 M Na ₃ PO ₄ (aq) at 25°C. Which statement is true about these solutions, assuming a				
	salts to be strong electrolytes ? [JEE (MAIN)-2014				
	(1) 0.125 M Na_3PO_4 (aq) has the highest osmotic pressure.				
	(2) 0.500 M C_2H_5OH (aq) has the highest osmotic pressure.				
	$(2) 0.500 \text{ M C}_2\text{H}$	(3) They all have the same osmotic pressure.			
		e the same osmotic pres	sure.		
	(3) They all have	the same osmotic pres $(PO_4)_2$ (aq) has the high		<i>).</i>	
31.	(3) They all have(4) 0.100 M Mg₃		hest osmotic pressure		
31.	(3) They all have(4) 0.100 M Mg₃	$(PO_4)_2$ (aq) has the highting attion of two component	hest osmotic pressure	the following is true ?	
31.	 (3) They all have (4) 0.100 M Mg₃ For an ideal Solut (1) ΔH_{mixing} < 0 ($(PO_4)_2$ (aq) has the highting attion of two component	hest osmotic pressure s A and B, which of t	the following is true ?	
31.	 (3) They all have (4) 0.100 M Mg₃ For an ideal Solut (1) ΔH_{mixing} < 0 ((2) A – A, B – B 	$_{3}(PO_{4})_{2}$ (aq) has the high ation of two component zero)	hest osmotic pressure s A and B, which of t are identical	the following is true ? [JEE(MAIN)-2014 ONLINE	

32.	The observed osm	otic pressure for a 0.1	0 M solution of Fe(f	NH ₄) ₂ (SO ₄) ₂ at 25°C is 10.8 atm.	
	The expected and experimental (observed) values of Van't Hoff factor (i) will be respectively :				
	(R=0.082 L atm k)	mol^{-1})		[JEE (MAIN)-2014 ONLINE]	
	(1)3 and 5.42	(2) 5 and 3.42	(3) 4 and 4.00	(4) 5 and 4.42	
33.	The molarity of a s	solution obtained by m	ixing 750 mL of 0.5(M)HCl with 250 mL of 2(M)HCl	
	will be :-			[JEE (MAIN)-2013]	
	(1) 0.875 M	(2) 1.00 M	(3) 1.75 M	(4) 0.975 M	
34.	The vapour pres sure of acetone at 20°C is 185 torr. When 1.2 g of non-volatile substance was				
	dissolved in 100	g of acetone at 20°C	, its vapour pressure	e was 183 torr. The molar mass	
	(g mol-1) of the su	bstance is :		[JEE (MAIN)-2015]	
	(1)128	(2) 488	(3) 32	(4) 64	
35.	A solution at 20°C	C is composed of 1.5	mol of benzene and 3	3.5 mol of toluene. If the vapour	
	pressure of pure b	benzene and pure tolu	uene at this temperat	ture are 74.7 torr and 22.3 torr,	
	respectively, then	the total vapour press	sure of the solution a	and the benzene mole fraction in	
	equilibrium with it	will be, respectively :		[JEE (MAIN)-2015 ONLINE]	
	(1) 38.0 torr and 0.	589	(2) 30.5 torr and	0.389	
	(3) 35.8 torr and 0.	280	(4) 35.0 torr and	0.480	
36.	Determination of t	he molar mass of ace	tic acid in benzene u	id in benzene using freezing point depression is	
	affected by :			[JEE (MAIN)-2015 ONLINE]	
	(1) association	(2) dissociation	(3) complex form	ation (4) partial ionization	
37.	18 g glucose ($C_6H_{12}O_6$) is added to 178.2 g water. The vapour pressure of water (in torr) for				
	this aqueous solution		C 1	[JEE (MAIN)-2016]	
	(1)759.0	(2) 7.6	(3) 76.0	(4) 752.4	
38.	The solubility of N	I_2 in water at 300 K and	00 K and 500 torr partial pressure is 0.01 g L^{-1} . The		
		rr partial pressure is :	1 1	[JEE (MAIN2016-ONLINE]	
	(1) 0.02	(2) 0.005	(3) 0.015	(4) 0.0075	
39.				e has a van't Hoff factor of 2.	
	The degree of dissociation for this solution of the salt is : [JEE (MAIN2016-ONLINE]				
	(1) 0.50	(2) 0.80	(3) 0.67	(4) 0.33	
40.				g of acetic acid is added to 20 g of	
				, percentage association of acetic	
	acid in benzene wi			[JEE (MAIN)- 2017]	
	$(K_{\rm f} \text{ for benzene} = 5.12 \text{ K kg mol}^{-1})$				
	(11) 64.6%	(2) 80.4%	(3) 74.6%	(4) 94.6%	
	(2) 0	(_) 000 1/0		(., /	
41.	For 1 molal aqueo	ous solution of the fol	lowing compounds.	which one will show the highest	
-	freezing point ?		<i>C</i> <u>r</u> <i>z z z z z z z z z z</i>	[JEE (MAIN)-2018]	
	(1) $[Co(H_2O)_3Cl_3].$	3H ₂ O	(2) [Co(H ₂ O) ₆]Cl		
			.,		

(1) $[Co(H_2O)_3Cl_3]$. $3H_2O$ (2) $[Co(H_2O)_6]Cl_3$ (3) $[Co(H_2O)_5Cl]Cl_2.H_2O$ (4) $[Co(H_2O)_4Cl_2]Cl_2H_2O$

- 42. Which one of the following statements regarding Henry's law not correct ?
 - (1) The value of K_H increases with function of the nature of the gas [JEE MAIN-2019(Jan.)]
 - (2) Higher the value of $K_{\rm H}$ at a given pressure, higher is the solubility of the gas in the liquids.
 - (3) The partial pressure of the gas in vapour phase is proportional to the mole fraction of the gas in the solution.
 - (4) Different gases have different K_H (Henry's law constant) values at the same temperature.
- **43.** Liquids A and B form an ideal solution in the entire composition range. At 350 K, the vapor pressures of pure A and pure B are 7×10^3 Pa and 12×10^3 Pa, respectively. The composition of the vapor in equilibrium with a solution containing 40 mole percent of A at this temperature is : [JEE MAIN-2019(Jan.)]
 - (1) $x_A = 0.76$; $x_B = 0.24$ (2) $x_A = 0.28$; $x_B = 0.72$ (3) $x_A = 0.37$; $x_B = 0.36$ (4) $x_A = 0.4$; $x_B = 0.6$

Elevation in the boiling point for 1 molal solution of glucose is 2 K. The depression in the freezing point for 2 molal solution of glucose in the same solvent is 2 K. The relation between K_b and K_f is: [JEE MAIN-2019(Jan.)]

(1) $K_b = 1.5 K_f$ (2) $K_b = K_f$ (3) $K_b = 0.5 K_f$ (4) $K_b = 2 K_f$

45. The freezing point of a diluted milk sample is found to be -0.2°C, while it should have been -0.5°C for pure milk. How much water has been added to pure milk to make the diluted sample ? [JEE MAIN-2019(Jan.)]

- (1) 2 cups of water to 3 cups of pure milk (2) 1 cup of water to 3 cups of pure milk
- (3) 3 cups of water to 2 cups of pure milk (4) 1 cup of water to 2 cups of pure milk
- 46. Molecules of benzoic acid (C₆H₅COOH) dimerise in benzene. 'w' g of the acid dissolved in 30 g of benzene shows a depression in freezing point equal to 2K. If the percentage association of the acid to form dimer in the solution is 80, then w is : [JEE MAIN-2019(Jan.)] (Given that $K_f = 5 \text{ K kg mol}^{-1}$, Molar mass of benzoic acid = 122 g mol⁻¹) (1) 1.5 g (2) 1.0 g (3) 2.4 g (4) 1.8 g

47. K_2HgI_4 is 40% ionised in aqueous solution. The value of its van't Hoff factor (i) is :-
(1) 1.6
(2) 2.0[JEE MAIN-2019(Jan.)]
(3) 2.2(3) 2.2(4) 1.8

48. Freezing point of a 4% aqueous solution of X is equal to freezing point of 12% aqueous solution of Y. If molecular weight of X is A, then molecular weight of Y is :
(1) 24

- (1) 2A (2) A [JEE MAIN-2019(Jan.)]
- (3) 3A (4) 4A

EXERCISE # (JEE-ADVANCED)

1.A 0.004 M solution of Na2SO4 is isotonic with a 0.010 M solution of glucose at same
temperature. The apparent degree of dissociation of Na2SO4 is[JEE 2004](A) 25%(B) 50%(C) 75%(D) 85%

1.22 g of benzoic acid is dissolved in (i) 100 g acetone (K_b for acetone = 1.7) and (ii)100 g benzene (K_b for benzene = 2.6). The elevation in boiling points Tb is 0.17°C and 0.13°C respectively.

(a) What are the molecular weights of benzoic acid in both the solutions?

(b) What do you deduce out of it in terms of structure of benzoic acid?

3. The elevation in boiling point, when 13.44 g of freshly prepared CuCl₂ are added to one kilogram of water, is [Some useful data, K_b (H₂O) = 0.52 kg K mol⁻¹, mol. wt. of CuCl₂ = 134.4 gm] [JEE 2005]

$$(A) 0.05 (B) 0.1 (C) 0.16 (D) 0.21$$

4. 72.5 g of phenol is dissolved in 1 kg of a solvent ($k_f = 14$) which leads to dimerization of phenol and freezing point is lowered by 7 kelvin. What percent of total phenol is present in dimeric form? [JEE 2006]

5. When 20 g of naphtholic acid $(C_{11}H_8O_2)$ is dissolved in 50 g of benzene $(K_f = 1.72 \text{ K kg mol}^{-1})$, a freezing point depression of 2 K is observed. The van't Hoff factor (i) is [JEE 2007] (A) 0.5 (B) 1 (C) 2 (D) 3

Paragraph for Question No. Q.6 to Q.8

Properties such as boiling point, freezing point and vapour pressure of a pure solvent change when solute molecules are added to get homogeneous solution. These are called colligative properties. Applications of colligative properties are very useful in day-to-day life. One of its examples is the use of ethylene glycol and water mixture as anti-freezing liquid in the radiator of automobiles.

A solution M is prepared by mixing ethanol and water. The mole fraction of ethanol in the mixture is 0.9.

Given : Freezing point depression constant of water $(K_{f}^{water}) = 1.86 \text{ kg mol}^{-1}$

Freezing point depression constant of ethanol $(K_{f}^{ethanol}) = 2.0 \text{ K kg mol}^{-1}$

Boiling point elevation constant of water $(K_b^{water}) = 0.52 \text{ K kg mol}^{-1}$					
I	Boiling point elevation constant of ethanol $(K_b^{ethanol}) = 1.2 \text{ K kg mol}^{-1}$				
S	Standard freezing point of water = 273 K				
S	Standard freezing point of ethanol = 155.7 K				
S	Standard boiling point of water = 373 K				
S	Standard boiling point of ethanol = 351.5 K				
v	Vapour pressure of pure water = 32.8 mm Hg				
v	Vapour pressure of pure etha	anol = 40 mm Hg			
1	Molecular weight of water =	$= 18 \text{ g mol}^{-1}$			
I	Molecular weight of ethanol	$= 46 \text{ g mol}^{-1}$			
In answering th	ne following questions, con	sider the solutions to	be ideal dilute solutions and		
-	n-volatile and non-dissociat				
	· · · · · · · · · · ·				
The freezing point of the solution M is [JEE 2008]					
(A) 268.7 K	(B) 268.5 K	(C) 234.2 K	(D) 150.9 K		
The vapour pressure of the solution M is[JEE 2008]					
(A) 39.3 mm H ₂	g (B) 36.0 mm Hg	(C) 29.5 mm Hg	(D) 28.8 mm Hg		
Water is added to the solution M such that the mole fraction of water in the solution becomes					
0.9. The boiling point of this solution is [JEE 2008]					
(A) 380.4 K	(B) 376.2 K	(C) 375.5 K	(D) 354.7 K		
The Henry's law constant for the solubility of N2 gas in water at 298 K is 1.0×10^5 atm. The					
mole fraction of N_2 in air is 0.8. The number of moles of N_2 from air dissolved in 10 moles of					
water at 298 K and 5 atm pressure is- [JEE 2009]					
(A) 4.0×10^{-4}	(B) 4.0×10^{-5}	(C) 5.0×10^{-4}	(D) 4.0×10^{-5}		
The freezing point (in °C) of a solution containing 0.1 g of $K_3[Fe(CN)_6]$ (Mol. Wt. 329) in 100					

6.

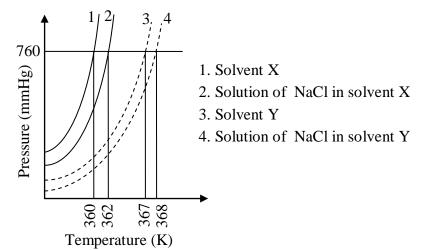
7.

8.

9.

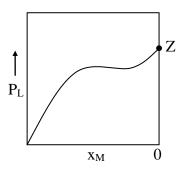
10.The freezing point (in °C) of a solution containing 0.1 g of K3[Fe(CN)6] (Mol. Wt. 329) in 100
g of water (Kf = 1.86 K kg mol⁻¹) is[JEE 2011]
(A) - 2.3 × 10⁻²(A) -2.3×10^{-2} (B) -5.7×10^{-2} (C) -5.7×10 (D) -1.2×10^{-2}

11. For a dilute solution containing 2.5 g of a non-volatile non-electrolyte solute in 100 g of water,
the elevation in boiling point at 1 atm pressure is 2°C. Assuming concentration of solute is
much lower than the concentration of solvent, the vapour pressure (mm of Hg) of the solution
is: (take $K_b=0.76 \text{ K kg mol}^{-1}$)[JEE 2011](A) 724(B) 740(C) 736(D) 718


12.For a dilute solution containing 2.5 g of a non-volatile non-electrolyte solute in 100 g of water,
the elevation in boiling point at 1 atm pressure is 2°C. Assuming concentration of solute is
much lower than the concentration of solvent, the vapour pressure (mm of Hg) of the solution
is (take $K_b=0.76 \text{ K kg mol}^{-1}$)[JEE 2012]
(A) 724(A) 724(B) 740(C) 736(D) 718

13. Benzene and naphthalene form an ideal solution at room temperature. For this process, the true
statement(s) is(are)[J-Adv. 2013](A) ΔG is positive(B) ΔS_{system} is positive (C) $\Delta S_{surroundings} = 0$. (D) $\Delta H = 0$

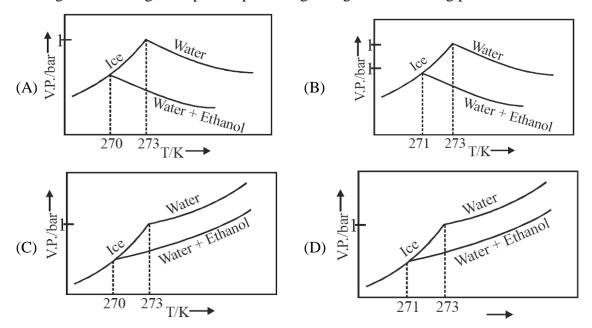
- A compound H₂X with molar weight of 80 g is dissolved in a solvent having density of 0.4 g mol⁻¹, Assuming no change in volume upon dissolution, the molality of a 3.2 molar solution is [JEE-Adv. 2014]
- **15.** If the freezing point of a 0.01 molal aqueous solution of a cobalt (III) chloride-ammonia complex (which behaves as a strong eletrolyte) is -0.0558° C, the number of chloride (s) in the coordination sphere of the complex is [JEE-Adv. 2015] [K_f of water = 1.86 K kg mol⁻¹]
- 16. Mixture(s) showing positive deviation from Raoult's law at 35°C is (are) [JEE-Adv. 2016]
 (A) carbon tetrachloride + methanol
 (B) carbon disulphide + acetone
 (C) benzene + toluene
 (D) phenol + aniline


17. Liquids A and B form ideal solution over the entire range of composition. At temperature T, equimolar binary solution of liquids A and B has vapour pressure 45 Torr. At the same temperature, a new solution of A and B having mole fractions xA and xB respectively, has vapour pressure of 22.5 Torr. The value of xA/xB in the new solution is _____. (given that the vapour pressure of pure liquid A is 20 Torr at temperature T) [JEE Adv. 2018]

18. The plot given below shows P – T curves (where P is the pressure and T is the temperature) for two solvents X and Y and isomolal solutions of NaCl in these solvents. NaCl completely dissociates in both the solvents. On addition of equal number of moles of a non-volatile solute S in equal amount (in kg) of these solvents, the elevation of boiling point of solvent X is three times that of solvent Y. Solute S is known to undergo dimerization in these solvents. If the degree of dimerization is 0.7 in solvent Y, the degree of dimerization in solvent X is _____.
[JEE Adv. 2018]

On addition of equal number of moles of a non-volatile solute S in equal amount (in kg) of these solvents, the elevation of boiling point of solvent X is three times that of solvent Y. Solute S is known to undergo dimerization in these solvents. If the degree of dimerization is 0.7 in solvent Y, the degree of dimerization in solvent X is _____.

19. For a solution formed by mixing liquids L and M, the vapour pressure of L plotted against the mole fraction of M in solution is shown in the following figure. Here xL and xM represent mole fractions of L and M, respectively, in the solutions. The correct statement(s) applicable to this system is(are)
 [JEE Adv. 2017]


(A) Attractive intermolecular interactions between L-L in pure liquid L and M-M in pure liquid M are stronger than those between L-M when mixed in solution.

(B) The point Z represents vapour pressure of pure liquid M and Raoult's law is obeyed when $x_L \to 0$

(C) The point Z represents vapour pressure of pure liquid L and Raoult's law is obeyed when $x_L \to 1$

(D) The point Z represents vapour pressure of pure liquid M and Raoult's law is obeyed when $x_L = 0 \ x_L = 1$

20. Pure water freezes at 273 K and 1 bar. The addition of 34.5 g of ethanol to 500 g of water changes the freezing point of the solution. Use the freezing point depression constant of water as 2 K kg mol⁻¹. The figures shown below represent plots of vapour pressure (V.P.) Among the following, the option representing change in the freezing point is

			A	NSW	ER KI	EY				
EXERCISE # (S-I)										
1. 5. 9. 13. 16. 20. 24.	0.25 65.25 0.964 2048 g/mol C ₆ H ₆ 3 ions 4.64 atm	 2. 6. 10. 14. 17. 21. 25. 	0.04 17.38 106 g/mol $K_b = 0.512 k_c$ $T_f = -2.28^{\circ}C$ $\alpha = 99.2\%$ 0.95; 1.95		0.24 11.	g, 18.52 molal 100.079°C = 373.20 K 59.99 7.482 ×10 ⁵ N	4. 8. 12. 15. 19. _{Jm} -2	0.162 66.13 5.08° 156.0 i = 2.2 23.	mm H C/m 6	-
EXERCISE # (S-II)										
1. 4.	92 mol% toluene; 96.8 mol % toluene 2. 0.741 m, 0.013 5.4 × 10 ⁵ g/mol 5. 20 6. -19.91°C, 7.64					3. 7	38.71 g C ₄₄ H ₈₈ O ₄₄			
4. 8.	-		5. 9.	20 a - 0	6. 7333	–19.91°C, 7.6 10.	0.73	7.	C ₄₄ r	188044
0.	8. $[Co(NH_3)_5Cl]Cl_2$ 9. $a = 0.7333$ 10. 0.73 EXERCISE # (O-I)									
1.	(B)	2.	(C)	<u>екс</u> 3.	(C)	(U-1) 4.	(D)		5.	(A)
6.	(C)	7.	(C)	8.	(C)	9.	(D)		10.	(C)
11.	(C)	12.	(A)	13.	(A)	14.	(B)		15.	(B)
16.	(A)	17.	(B)	18.	(C)	19.	(D)		20.	(B)
21.	(A)	22.	(C)	23.	(C)	24.	(B)		25.	(C)
26.	(B)	27.	(D)	28.	(B)	29.	(B)		30.	(D)
31.	(B)	32.	(D)	33.	(B)	34.	(B)		35.	(D)
36.	(B)	37.	(B)	38.	(B)	39.	(B)		40.	(B)
41.	(A)									
EXERCISE # (O-II)										
1	(C, D)	2				,			E /	
1.	(C, D)	2.	(A, B, C, D)				(\mathbf{C}, \mathbf{D}))		(\mathbf{B}, \mathbf{C})
6. 11	(C)	7.	(C)	8.	(B)	9. 14	(D)		10.	(A)
11.	(B)	12.	(A)		(B)		(D)		15.	(C)
16.	$(A) \rightarrow P ; (B)$	$) \rightarrow Q,$	$\mathbf{R}, \mathbf{S}; (\mathbf{C}) \to \mathbf{T}$; (D) –	→ P, Q, I	R, S, T				

EXERCISE # (JEE-MAIN)									
1.	(1)	2.	(2)	3.	(4)	4.	(4)	5.	(2)
6.	(4)	7.	(4)	8.	(3)	9.	(1)	10.	(4)
11.	(4)	12.	(4)	13.	(1)	14.	(4)	15.	(3)
16.	(2)	17.	(3)	18.	(3)	19.	(3)	20.	(2)
21.	(1)	22.	(1)	23.	(3)	24.	(3)	25.	(4)
26.	(1)	27.	(3)	28.	(3)	29.	(3)	30.	(3)
31.	(2)	32.	(4)	33.	(1)	34.	(4)	35.	(1)
36.	(1)	37.	(4)	38.	(3)	39.	(1)	40.	(4)
41.	(1)	42.	(2)	43.	(2)	44.	(4)	45.	(3)
46.	(3)	47.	(4)	48.	(3)				

EXERCISE # (JEE-ADVANCED)

1. (C)

2. (a)122, (b) It means that benzoic acid remains as it is in acetone while it dimerises in benzene

3. (C)

4. 35% (degree of asso = 70%)

5.	(A)	6.	(D)	7.	(B)	8.	(B)	9.	(A)
10.	(A)	11.	(A)	12.	(A)	13.	(B,C,D)	14.	(8)
15.	(1)	16.	(A, B)	17.	(19)	18.	(0.05)	19.	(A,C)
20.	(C)								

EXERCISE # (S-I)

1. (0.25) $\frac{P^0 - P_S}{D^0} = X \text{ solute}$ $X_{\rm B} = \frac{0.8 - 0.6}{0.8} = \frac{1}{4} = 0.25$ 2. (0.04) $\frac{\mathbf{P}^0 - \mathbf{P}_{\mathrm{S}}}{\mathbf{P}^0} = \frac{\mathbf{n}}{\mathbf{N} + \mathbf{A}}$ $\frac{P^0 - P_S}{P^0} = \frac{1}{1 + \alpha 4} = \frac{1}{\alpha 5} = 0.04$ 3. (18.52) $\frac{\mathbf{P}^0 - \mathbf{P}_{\mathrm{S}}}{\mathbf{P}_{\mathrm{S}}} = \frac{\mathbf{n}}{\mathbf{N}}$ $\frac{100-75}{75} = \frac{\text{n area}}{\underline{100}}$ n area = $\frac{1}{3} \times \frac{100}{18} = \frac{100}{54}$ mass of area = 111.1 g $m = \frac{100/54}{100} \times 1000 = 18.52$ 4. (0.162) $\frac{P^0 - P_S}{P_S} = \frac{m \times M_{solvent}}{1000}$ $\frac{639.7 - 631.7}{631.7} = \frac{M \times 18}{1000}$ $\frac{8}{631.7} = \frac{M \times 78}{1000}$ $M = \frac{8}{631.7} \times \frac{1000}{78} = 0.162$ 5. (62.25) $\frac{\mathbf{P}^0 - \mathbf{P}_{\mathrm{S}}}{\mathbf{P}_{\mathrm{S}}} = \frac{\mathbf{n}}{\mathbf{N}}$ $\frac{640 - 600}{600} = \frac{2.175 \,/\,\mathrm{M}}{0.5}$ M = 65.25

6. (17.38) $\frac{\mathbf{P}^0 - \mathbf{P}_{\mathrm{S}}}{\mathbf{P}_{\mathrm{S}}} = \frac{\mathbf{M} \times \mathbf{M}_{\mathrm{solvent}}}{1000}$ $\frac{17.54 - P_{\rm s}}{P_{\rm s}} = \frac{0.5 \times 18}{1000}$ $\frac{17.54 - P_{\rm s}}{P_{\rm s}} = 1 + \frac{9}{1000} = 1.009$ $Ps = \frac{17.54}{1.009} = 17.38$ $\mathbf{P}_{\mathbf{A}} = \mathbf{P}^{0}_{\mathbf{A}} \mathbf{X}_{\mathbf{A}}$ 7. $23 = 96 \times X_{CH_3OH}$ $X_{CH_{3}OH} = \frac{1}{4} = 0.25$ $n_{C_2H_5OH} = \frac{60}{46}$ $n_{CH_{3}OH} = \frac{40}{32}$ 8. = 1.3= 1.25 $P_{\rm T} = 44.5 \times \frac{1.3}{2.55} + 88.7 \times \frac{1.25}{2.55}$ = 66.16 M M of Hg 9. (0.964)For solution A $P_A = 0.5 \times P_B^0 + 0.5 \ P_T^0 = (160 + 60) \times 0.5 = 110$ $P_{\rm B} = P_{\rm B}^0 \times \frac{92}{170} + P_{\rm T}^0 \times \frac{78}{170} = 160 \times \frac{92}{170} + 60 \times \frac{78}{170} = 114.11$ $\frac{P_A}{P_P} = \frac{110}{114.11} = 0.964$ 10. (106.42 g/mol) $\Delta T_b = K_b M$ $0.284 = 2.11 \times \frac{10.6/M}{740} \times 1000$ $M = \frac{2.11 \times 10.6 \times 1000}{740 \times 0.284} = 106.42 \text{ g/mol}$ 11. (100.08°C) $\Delta T_b = K_b \ m \qquad = 0.52 \times \frac{24/58}{600} \times 1000 = 0.358$ $T_{b} = 99.725 + 0.358 = 100.08^{\circ}C$

12. $(5.08^{\circ} \text{ c/m})$

$$\Delta T_{f} = K_{f} m$$

$$1.9 = K_{f} \times \frac{7.24/168}{115.3} \times 1000$$

$$K_{f} = \frac{1.9 \times 115.3 \times 168}{7.24 \times 1000} = 5.08^{\circ} \text{ c/m}$$

13. (2048 g/mol)

$$\Delta T_{f} = K_{f}m$$

$$0.1 = 5.12 \times \frac{2.4 / M}{60} \times 1000$$

$$M = \frac{5.12 \times 2.4 \times 1000}{6} = 2048 \text{ g / mol}$$

$$K_{b} = \frac{RTb^{2}}{1000Lv} = \frac{2 \times (373.15)^{2} \times 18}{1000 \times 9.72 \times 1000} = 0.512 \text{ kg K mol}^{-1}$$

15. (156 g/mol) $\Delta T_f = K_f m$

$$0.48 = 5.12 \times \frac{0.643 / M}{50 \times 0.879} \times 1000$$
$$M = \frac{5.12 \times 0.643 \times 1000}{50 \times 0.879 \times 0.48} = 156 \text{ g/mol}$$

16.
$$(C_6 H_6)$$

 $\Delta T_f = K_f m$
 $0.46 = 3.6 \times \frac{1/M}{100} \times 1000$
 $M = \frac{3.6 \times 1000}{0.46 \times 100} = 78.26$
 C H
92.3 % 7.7 % (by mass)
 $\frac{92.3}{12} = 7.7$ $\frac{7.7}{1} = 7.7$
 1 1
 $EF = CH$ $n = \frac{78.26}{13} = 6$
 $MF = C_6 H_6$
17. $(2.27^{\circ} C)$

$$\begin{split} \pi &= CRT \\ 30 &= C \times 0.0821 \times 298 \\ C &= 1.22 \ M \\ Consider \ M &= m \\ & \Delta T_f \ = K_f \ m \\ &= 1.86 \times 1.22 = 2.27 \\ & T_f = -2.27^\circ C \end{split}$$

18. (60 g/mol)

If to solution are isotonic then

$$\pi_{1} = \pi_{2}$$

$$c_{1} = c_{2}$$

$$\frac{5}{342} = \frac{0.877}{M}$$

$$M = \frac{0.877}{5} \times 342$$

$$= 60 \text{ g/mol}$$

19. (2.5) $\Delta T_{f} = iK_{f} m$ 29.08 = I × 1.86 × $\frac{38/98}{62}$ × 1000 $i = \frac{29.08 \times 62 \times 98}{1.86 \times 38 \times 1000}$ i = 2.5

20. (3)

$$1.28 = 5.12 \times m$$
 (i)
 $1.4 = i \times 1.86 \times m$ (ii)
(ii) / (i)
 $\frac{1.4}{1.28} = \frac{i \times 1.80}{5.12}$
 $i = 3$

21. (99.16%) $\Delta T_f = iK_f m$ $1.62 = i \times 4.9 \times \frac{2/122}{25} \times 1000$

$$i = \frac{1.62 \times 122}{40 \times 2 \times 4.9} = 0.5042$$
$$i = 1 + \left(\frac{1}{2} - 1\right)\alpha$$
$$\alpha = 2 \times (1 - 0.5042)$$
$$= 99.16\%$$

22.
$$(7.4826 \times 10^5 \text{ Nm}^{-2})$$

 $i = 1 + (5 - 1) \times \frac{1}{2} = 3$
 $\pi = 3 \times \frac{0.1}{10^{-3}} \times 8.314 \times 300$
 $= 7.4826 \times 10^5 \text{ Nm}^{-2}$

$$\Delta T_{f} = i K_{f} m$$

$$0.45 = i \times 5.12 \times \frac{0.2/60}{20} \times 1000$$

$$i = 5.5273$$

$$i = 1 + \left(\frac{1}{2} - 1\right) \alpha$$

$$\alpha = 2 \times (1 - 0.5273)$$

$$= 94.53 \%$$

24. (4.68 atm) $\pi = I c RT$ $i = 1 + 1 \times 0.9 = 1.9$ $\pi = 1.9 \times \frac{0.85 \times 10}{85} = 0.0821 \times 300 = 4.68 atm$

25. (0.95)

$$\frac{7.2}{180} = i \times \frac{1.2}{58.5}$$

 $i = \frac{7.2 \times 58.5}{180 \times 1.2} = 1.95$
 $1 + \alpha = 1.95$
 $\alpha = 0.95$

EXERCISE # (S-II)

For boiling $P = P_{ext} = 0.5 \times 760 = 380$ torr 1. $\mathbf{P}_{\mathrm{T}} = \mathbf{P}^{0}_{\ \mathrm{A}} + \mathbf{P}^{0}_{\ \mathrm{B}} \mathbf{X}_{\mathrm{B}}$ $380 = 400 X_{T} + 150 (1 - X_{T})$ $250 X_T = 230$ $X_{T} = \frac{23}{25}$ Mole % of toluene = $\frac{23}{25} \times 100 = 92\%$ Mole % of σ – xylene = $\frac{2}{25} \times 100 = 8\%$ $P^0 = 760 \text{ mm}$ $P_{\rm S} = 750$ 2. $\frac{P^0 - P_s}{\mathbf{D}^0} = X_{solute}$ $\frac{10}{760} = X_{\text{solute}} \implies X_{\text{solute}} = \frac{1}{760}$ $\frac{P^0 - P_s}{P_s} = \frac{m \times M_{solvent}}{1000}$ $\frac{10}{750} = \frac{M \times 18}{1000} \qquad \Rightarrow m = 0.74$ $\Delta T_{\rm f}~=K_{\rm f}~m$ 3. $9.3 = 1.86 \times \frac{50/62}{W_{colvent}(kg)}$ W solvent (kg) = 0.161= 161.3ice separated = 200 - 161.3 = 38.7 gram 4. $P_1 h_1 = P_2 h_2$ $2.6 \times 1 = 13.6 \times h_2$ $h_2 = \frac{2.6}{13.6}$ $P = \frac{2.6}{13.6} \times \frac{1}{760}$ atm $\pi = CRT$ $\frac{2.6}{13.6} \times \frac{1}{760} = \frac{0.750/M}{0.125} \times 0.0821 \times 277$ $M = 5.42 \times 10^5$ g/mol \longrightarrow Cl₂[Fe(CN)₆] \downarrow + 4KCl 5. $K_4 [Fe(CN)_6] + 2CuCl_2$ 0.1 mol 0.2 mol 0 0 0.4 mol $= 2 \times 0.4 \times 0.0821 \times 304 = 20$ atm $\pi = i C R T$

6.
$$\Delta T_{f} = K_{f} m$$

 $m = \frac{30 \times 0.798/32}{70 \times 0.9984} \times 1000 = 10.7$
 $\Delta T_{f} = 1.86 \times 10.7 = 19.9$
 $T_{f} = 0 - 19.9 = -19.9^{\circ} C$
 $m = \frac{30 \times 0.798/32}{98} \times 1000 = 7.63$
7. $\Delta T_{b} = K_{b} m$
 $1.24 = 0.512 \times \frac{288/30x}{90} \times 1000$
 $x = 44$
 $EF \Rightarrow C_{44} H_{88} O_{44}$
8. $\Delta T_{f} = iK_{f} m$
 $0.558 = i \times 1.86 \times 0.1$
 $i = \frac{5.58}{1.86} = 3$
 $[Co(NH_{3})_{5}Cl] Cl_{2} \quad x = 5$
9. $\Delta T_{f} = iK_{f} m$
 $0.69 = i \times 5.12 \times \frac{20/94}{1}$
 $i = 0.633$
 $i = 1 - \frac{\alpha}{2} = 0.633$
 $\alpha = 0.7332$
10. V_{m} , Benzene $= \frac{78}{0.877} \times 2750 = 244.58L$
 V_{m} , toluene $= \frac{92}{0.867} \times 7720 = 819.2 L$
By, $P_{v} = nRT$ $P^{0}_{B} = 74.748 \text{ torr}$
 $P^{0}_{T} = 22.31 \text{ torr}$
 $46 = 74.748 X_{B} + 22.31 (1 - X_{B})$
 $X_{B} = 0.45$
 $y_{B} = \frac{P^{0}_{B}X_{B}}{P_{T}} = \frac{74.748 \times 0.45}{46} = 0.731$

EXERCISE # (O-I)

1. Vapour pressure
$$\propto \frac{1}{\text{Boiling point}}$$
 (at same T)

2.
$$y_A = \frac{P_A^0 X_A}{P_T}$$

 $P_T = P_A^0 X_A + P_B^0 X_B$
 $= 100 \times 0.4 + 200 \times 0.6 = 160$
 $y_A = \frac{40}{160} = 0.25$

3.
$$P_{T} = P_{A}^{0} X_{A} + P_{B}^{0} X_{B}$$
$$= P_{A}^{0} + (P_{B}^{0} - P_{A}^{0}) X_{B}$$
$$= P_{A}^{0} = 120 \qquad P_{B}^{0} - P_{A}^{0} = 75$$
$$P_{B}^{0} = 195$$

4.
$$P_T = P_A^0 X_A + P_B^0 X_B$$

= $100 \times \frac{2}{5} + 300 \times \frac{3}{5}$
= 220 torr

5.
$$P_{solvent} = P^0_{solvent} X_{solvent}$$

 $P_{solvent} \propto X_{solvent}$

6.
$$P_T = P_A^0 X_A + P_B^0 X_B$$

= $92 \times \frac{1}{5} + 31 \times \frac{4}{5}$
= 43.2 mm of Hg

- 8. $P_{T} = P_{A}^{0} X_{A} + P_{B}^{0} X_{B}$ $84 = 70 \times 0.8 + P_{B}^{0} \times 0.2$ $P_{B}^{0} = 140 \text{ torr}$
- 9. If a solution boils at 88°C at 1 atm, then v.p. = $P_{ext} = 1$ atm = 760 torr $P_T = P_A^0 X_A + P_B^0 X_B$ 760 = 900 × X_B + 360 (1 - X_B) $X_B = \frac{20}{27} = 0.740$

10.
$$\frac{P^{0} - P_{S}}{P^{0}} = \frac{n}{n+N} \quad \text{or} \quad \frac{P^{0} - P_{S}}{P^{0}} = \frac{n}{N}$$
11.
$$\frac{10}{P^{0}} = 0.2 \quad (i)$$

$$\frac{20}{P^{0}} = X_{\text{solute}} \quad (ii)$$

$$X_{\text{solute}} = 0.4, \quad X_{\text{solvent}} = 0.6$$
12.
$$\frac{P^{0} - P_{S}}{P^{0}} = X_{\text{solute}}$$

$$P^{0} - P_{S} = P^{0} X_{solute}$$

$$Ps = P^{0} (1 - X_{solute})$$

$$= P^{0} X_{solvent}$$

$$P_{S} \propto X_{solvent}$$

13.
$$\frac{P^0 - P_S}{P^0} = \frac{n}{n+N} \implies \frac{P^0 - P_S}{P^0} = \frac{1}{1+2} = \frac{1}{3}$$

14.
$$\frac{P^0 - P_S}{P_S} = \frac{n}{N} \implies \frac{10 - 9}{9} = \frac{1/M_B}{0.1}$$

$$M_B = 90$$
 amu

15.
$$\frac{P^0 - P_S}{P^0} = X_{solute} \implies \frac{0.8 - 0.6}{0.8} = X_{solute}$$
$$X_{solute} = 0.25$$

16.
$$\frac{P^0 - P_S}{P_S} = \frac{n}{N} \implies \frac{143 - P_S}{P_S} = \frac{0.5/65}{158/154}$$

 $P_S = \frac{143}{1.00745} = 141.93 \text{ mm}$

19.
$$\Delta T_b = K_b \times m$$

 $m = \frac{1 \times 1000}{1200 - 180} = \frac{1000}{1020} = 0.98$
 $\Delta T_b = 0.98 K_b$

20. When non volatitile solute is added B. $P\uparrow$, F. P. ↓ $\Delta T_{\rm f}~=K_{\rm f}~m$ 21. $= 1.86 imes rac{17/46}{1}$ $\Delta T_{\rm f} = 0.69$ $T_f = 0 - 0.69 = - 0.69^{\circ}C$ 22. $\Delta T_b = K_b \times m$ $0.15 = 0.512 \times m$ (i) $\Delta T_{\rm f} = K_{\rm f} \times m$ $\Delta T_{\rm f} = 1.86 \times \frac{m}{2}$ (ii) $\frac{0.15}{\Delta T_{\rm f}} = \frac{0.512}{1.86} \times 2$ $\Delta T_{\rm f} = 0.272$ $T_f = 0 - 0.272 = - \ 0.272^\circ C$ 23. $\Delta T_{\rm f} = K_{\rm f} m$ $2.15 = K_f \times \frac{5/342}{95/1000}$ $\Delta T_{\rm f} = K_{\rm f} \times \frac{5/180}{95/1000}$ $\frac{2.15}{\Delta T_f} = \frac{180}{342}$ $\Delta T_{\rm f} = 4.085$ $T_f = 273.15 - 4.085 = 269.07 \text{ K}$ due osmosis, solvent particles flow from lower con. Sode to higher conc. side. 24. $X_{solvent} \downarrow$, $X_{solute} \uparrow$ 25. Number of solute particles \uparrow , V. P. \downarrow B. P. ↑ F. P. ↓ π ↑ **26**. $\pi_1 = \pi_2$ $C_1 = C_2$ $\frac{5}{342} = \frac{1}{M_A}$ $\Rightarrow M_A = \frac{342}{5} = 68.4$

27.	$\pi = CRT$
	$2.5 = C \times 0.0821 \times 297$
	C = 0.1025 M
28.	$\pi = CRT$
	$\frac{500}{76} = \frac{40}{M} \times 0.0821 \times 300$
	$\frac{1}{76} = \frac{1}{M} \times 0.0821 \times 300$
	M = 149.75
29.	$\pi_1=\pi_2$
	$C_1 = C_2$
	$\frac{6.84}{342} = \frac{1.52}{M}$
	342 M
	$\mathbf{M} = 76$
30.	1 M NaCl $i = 2$
	$1 \text{ M CaCl}_2 i = 3$
	1 M AlCl_3 $i = 4$
	$1 \text{ M } \text{C}_{12}\text{H}_{22}\text{O}_{11} \text{ i} = 1$
	Number of solute particle \uparrow , V.P. \downarrow
31.	AlCl ₃ $i = 4$ CaCl ₂ $i = 3$
	$\Delta T_{b} \propto i$ $\Delta T_{b} \uparrow$, B.P. \uparrow
	$T_1 > T_2$
32.	$i = 1 + (n - 1) \alpha$
	$= 1 + 4 \times 0.6 = 3.4$
	$\Delta T_b=3.4\times0.52\times1=1.768$
	$T_b = 373 + 1.768 = 374.76 \; K$
33.	$\Delta T_{\rm f} = i K_{\rm f} m$
	$0.2 = i \times 1.8 \times 0.1$
	$i = \frac{2}{1.8} = 1.11$
	1.0
	$i = 1 + \alpha = 1.11$
	$\alpha = 0.11$
	$\mathrm{HX} \iff \mathrm{H}^{\scriptscriptstyle +} + \mathrm{X}^{\scriptscriptstyle -}$
	$C(1-\alpha)$ $C\alpha$ $C\alpha$
	$K = \frac{C\alpha^2}{1 - \alpha} = \frac{0.1 \times (0.11)^2}{1 - 0.11}$
	$= 1.35 \times 10^{-3}$

34.
$$i = 1 + (n - 1) \alpha = \frac{1}{3}$$

35. NaCl CuSO₄ K₂SO₄
 $i \quad 2 \quad 2 \quad 3$
 $\frac{P^0 - P_S}{P^0} = \frac{i n}{i n + N}$
37. $i = \frac{170}{92.64} = 1.835$
 $i = 1 + \alpha = 1.835$
 $\alpha = 0.835$
 $\% \alpha = 83.5$

$$\begin{array}{ll} \textbf{38.} & i=2 \\ & \Delta T_{\rm f} = i \ K_{\rm f} \ m \\ & = 2 \times 1.86 \times 1 = 3.72 \\ & T_{\rm f} = 0 - 3.72 = - \ 3.72^{\circ} C \end{array}$$

39.
$$\Delta T_b = K_b M = 0.51 \times 0.1 = 0.051$$

 $T_b = 100 + 0.051 = 100.051^{\circ}C$

40.
$$i = 1 + \alpha = 1.9$$

 $\Delta T_f = 1.9 \times 1.86 \times \frac{0.1}{91.9} \times 1000 = 3.84$
 $T_f = -3.84^{\circ} C$

41. Pgas = K_H X_{gas}
= KH ×
$$\frac{m \times M_{solvent}}{1000}$$

P_{gas} = $6.8 \times 10^8 \times \frac{2 \times 10^{-3}}{34 \times 10^{-3}} \times \frac{18 \times 10^{-3}}{1000}$
= 720 Pa

	EXERCISE # (O-II)					
1.	 (A) Composition of azeotrope does not alter on distillation. y_A = x_A (B) B.P. of azeotrope remains constant because composition of solution does not change. (C) For maximum boiling azeotrope vapour pressure of mixture will be lower than v.p. of any component. (D) On changing P_{ext}. Boling point of solution of also changes hance composition is changed. 					
2.	For $-ve$ deviation. $\Delta H_{mix} < 0$ $\Delta V_{mix} < 0$ $\Delta S_{mix} > 0$ $\Delta G_{mix} < 0$					
3.	 (A) If a solution show + ve deviation then P > P_{theo.}, boiling point of solution is less than BP of CH₃COCH₃ at particular ratio (B) When azeotropes is formed by a solution showing +ve deviation. It will be min. boiling azeotrope. BP of solution will be less than BP of any component. 					
4.	For solution S_1 $n_1 = 2 \times 0.1 \times RT = 0.2 RT$ For solution S_2 $n_2 = 3 \times 0.02 \times RT = 0.06 RT$ $\pi_1 > \pi_2$ S_1 is hypertonic and S_2 is hypotonic osmosis take place from higher conc. to lower conc. solution side.					
6.	If $P_A^0 > P_B^0$ Then $Y_A = \frac{P_A^0 X_A}{P_T}$ $P_A^0 = \frac{Y_A P_T}{X_A}$ $P_A^0 = \frac{Y_B P_T}{X_B}$ $\frac{Y_A P_T}{X_A} > \frac{Y_B P_T}{X_B}$ $\frac{Y_A}{Y_B} > \frac{X_A}{X_B}$					
7.	$P_{\text{total}} = P_{A}^{0} X_{A} + P_{B}^{0} X_{B}$ = $P_{A}^{0} (1 - X_{B}) + P_{B}^{0} X_{B}$ $P_{\text{total}} = P_{A}^{0} + (P_{B}^{0} - P_{A}^{0}) X_{B}$					

 $P_{\text{total}} = P_{A}^{0} + (P_{B}^{0} - P_{A}^{0}) X_{B}$ $P_{\text{total}} = P_{A}^{0} + (P_{B}^{0} - P_{A}^{0}) X_{B}$ $P_{A} = \frac{V_{A}}{P_{A}^{0}} + \frac{V_{B}}{P_{B}^{0}}$

$$= \frac{V_{A}}{P_{0}^{0}} + \frac{1-Y_{A}}{P_{0}^{0}}$$

$$= \frac{V_{A}}{P_{0}^{0}} + \frac{1-Y_{A}}{P_{0}^{0}}$$

$$\frac{1}{P_{total}} = \left(\frac{1}{P_{0}^{0}} - \frac{1}{P_{0}^{0}}\right)Y_{A} + \frac{1}{P_{0}^{0}}$$
Plot of $\frac{1}{P_{total}}$ V_S Y_A is linear
Plot of $\frac{1}{P_{total}}$ V_S Y_B is also linear
9. $V_{m} = \frac{80}{0.8} = 0.1$ L
PV = nRT
P × 0.1 L × 0.08 × 200 × 2000
P = 0.08 atm
10. (A) $\Delta Tb = 4.6 \times 0.1 \times RT$
(B) $\Delta Tb = 2.8 \times 0.1 \times RT$
(C) $\Delta Tb = \left(\frac{2.8 \times 0.1 + 2.8 \times 0.1}{2}\right) \times RT = 2.8 \times 0.1 \times RT$
If $\Delta T_{h} \uparrow$, B.P. \uparrow , So
For 0.1 M $Al_{2}(SO_{4})_{3}$ B. P is hignest
11. $P_{T} = P_{A}^{0} X_{A} + P_{B}^{0} X_{B} = 1000 \times \frac{1}{4} + 80 \times \frac{3}{4} = 85 \text{ m m}$
 $Y_{A} = \frac{25}{85}$ $Y_{B} = \frac{60}{85}$
 $X'_{A} = Y_{A} = \frac{25}{85}$
 $X'_{B} = Y_{B} = \frac{60}{85}$
For distillate
 $P_{T} = P_{A}^{0} X'_{A} + P_{B}^{0} X'_{B} = 100 \times \frac{25}{85} + 80 \times \frac{60}{85} = 85.88 \text{ mm Hg}$
12. $\frac{P_{0}^{0} - P_{S}}{P_{S}} = \frac{i \times m \times M_{solvent}}{1000}$
 $\frac{0.05}{17.2} = \frac{4 \times m \times 18}{1000}$
 $M = 4.04 \times 10^{-2}$

m m

- **13.** $P_T = \frac{1}{5} + 440 + \frac{4}{5} \times 120$ = 184 m m of Hg $Y_P = \frac{88}{184} = 0.478$
- 14. (A) $i = 1 + 2 \times 0.5 = 2$ (B) $i = 1 + 3 \times 0.75 = 3.25$ (C) $i = 1 + 1 \times 0.8 = 1.8$ (D) $i = 1 + 1 \times 0.9 = 2.9$
- 15. When a non volatile solution is added is to a liquid, it lowers it's freezing point.

16.	(A)	$\Delta T_{f} = i K_{f} m$	
		i m = 0.3	
	for	$Ca(NO_3)_2 \implies$	i = 3
		$A \rightarrow P$	
	(B)	$\Delta T_b = 0.28 \ K_b$	
		i m = 0.28	
	for	NaBr \Rightarrow i = 2	$i m = 2 \times 0.14 = 0.28$
	For	urea $\Rightarrow i = 1$	
		$B \rightarrow Q, R, S$	
	(C)	$\pi = i C \times RT$	i 6 = 0.19
		For HA \Rightarrow	i = 1 + 0.9 = 1.9
		$C\alpha^2$	$0.1\alpha^2$
		$K_a = \frac{C\alpha^2}{1-\alpha}$	$0.81 = \frac{0.1\alpha^2}{1-\alpha}$
		$C \rightarrow T$	$\alpha = 0.9$
			n
	(\mathbf{D})	$\frac{\mathbf{P}^0 - \mathbf{P}_{\mathrm{s}}}{\mathbf{P}^0} = \frac{\mathbf{n}}{\mathbf{n} + \mathbf{N}}$	_ <u>N</u> _
	(D)	$-\mathbf{P}^0$ $ \frac{1}{\mathbf{n}+\mathbf{N}}$	$-\frac{n}{n+1}$
			$\frac{-1}{N}$
		n	$\Delta \mathrm{T_{f}}$
		$\frac{1}{18N} \times 1000$	K _c
		$=\frac{\frac{n}{18N} \times 1000}{\frac{n}{18N} \times 1000 + \frac{1000}{18}}$	$=\frac{1}{\Lambda T_c}$ 1000
		$\frac{180}{180} \times 1000 + \frac{180}{18}$	$\frac{1}{K} + \frac{18}{18}$
			i i o
		$D \rightarrow P, Q, R, S, T$ $P = -2.610 \pm 4.54$	56
		$P_{total} = 2.619 + 4.53$ = 7.175 KPa	50
		$Y_{MeOH} = \frac{2.619}{7.175} = 0.3$	865
		//1/0	
		$Y_{\text{EtoH}} = \frac{4.556}{7.175} = 0.6$	35
		7.175	

EXERCISE # (J-MAIN)

1. Elevation in boiling point is a colligative property which depends upon the number of solute particles. Greater the number of solute particles in a solution, higher the extent of elevation in boiling point.

$$Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2-}$$

- 2. Benzene-methanol shows a positive deviation from Raoult's law
- $\Delta T_{f} = iK_{f}m$; K_f depends on nature of solvent. 3.
- 4. 2α $1 - \alpha$

Vant Hoff factor (i) = $\frac{1-\alpha+2\alpha+\alpha}{1} = 1+2\alpha$.

5.
$$P_B = P_B^o XB P_B^o = 75 \text{ torr}$$

 $X_B = \frac{78/78}{(78/78) + (46/92)} = \frac{1}{1+0.5} = \frac{1}{1.5} P_B = 75 \times \frac{1}{1.5} = 50 \text{ torr}$

α

6. Total millimoles of solute = $480 \times 1.5 + 520 \times 1.2 = 720 + 624 = 1344$. Total volume = 480 + 520 = 1000. Molarity of the final mixture = $\frac{1344}{1000}$ = 1.344 M.

7. Equimolar solutions in the same solvent have same boiling and same freezing points because colligative properties depends on concentration of solution and does depend on nature of solute.

8.
$$\frac{P^0 - P_s}{P^0} = \frac{n}{n+N};$$
 $\frac{760 - P_s}{760} = \frac{0.1}{9.9 + 0.1}$
 $\therefore P_s = 752.4 \text{ torr}$

9. According to Raoult's law

or

 $\mathbf{P} = \mathbf{P}_{A} + \mathbf{P}_{B} = \mathbf{P}^{o}_{A}\mathbf{x} + \mathbf{P}^{o}_{B}\mathbf{x}_{B}$ $290 = P^{o}_{A} \times (0.6) + 200 \times (1 - 0.6)$ or $290 = 0.6 \times P^o{}_A + 0.4 \times 200$ $P^{o}_{A} = 350$ mm. or

10. Isotonic solutions have same osmotic pressure. $\pi_1 = C_1 \ RT$, $\pi_2 = C_2 \ RT$

For isotonic solution, $\pi_1 = \pi_2$

$$\therefore \qquad C_1 = C_2.$$

or
$$\frac{1.5/60}{V} = \frac{5.25/M}{V} \quad [\text{where } M = \text{molecular weight of the substance}]$$

or
$$\frac{1.5}{60} = \frac{5.25}{M} \text{ or } M = 210.$$

12.
$$P_A = P_A^0 x_A = 17.5 \times \frac{178.2/18}{\frac{178.2}{18} + \frac{18}{180}} = 17.325$$

13.
$$P_{\text{total}} = P^{o}{}_{A} X_{A} + P^{o}{}_{B} X_{B} = P^{o}{}_{A} \times \frac{1}{4} + P^{o}{}_{B} \times \frac{3}{4} = 550 \implies P^{o}{}_{A} + 3P^{o}{}_{B} = 550 \times 4 \dots (i)$$

Similary, $560 = P^{o}{}_{A} \times \frac{1}{5} + P^{o}{}_{B} \times \frac{4}{5} \implies P^{o}{}_{A} + 4P^{o}{}_{B} = 560 \times 5 \dots (ii)$
eq. (ii) - eq.(i)
 $P^{o}{}_{B} = 560 \times 5 - 550 \times 4 = 600$
so, $P^{o}{}_{A} = 400.$

- **14.** The solution is non-ideal, showing +ve deviation from Raoult's Law.

16.
$$P_T = X_{Heptane} P^o_{Heptane} + X_{Octane} P^o_{Octane}$$

= $\frac{0.25}{0.557} \times 105 + \frac{0.307}{0.557} \times 45$
 $47.127 + 24.80 = 71.92 \approx 72 \text{ kPa}$

17.
$$A_{x}B_{y} \longrightarrow xA^{y+} + yB^{x-}$$

$$1 - \alpha \qquad x \alpha \qquad y \alpha$$

$$i = 1 - \alpha + x \alpha + y \alpha = 1 + \alpha (x + y - 1)$$
So,
$$\alpha = \frac{i - 1}{(x + y - 1)}$$

18.
$$\Delta T_f = i \times K_f \times m$$
; $6 = 1 \times 1.86 \times \frac{w}{62 \times 4}$
w = 800 g

19.
$$\pi_1 = \pi_2$$

 $i_1C_1 = i_2C_2$
 $1 \times \frac{5 \times 1000}{342 \times 100} = 1 \times \frac{1 \times 1000}{M \times 100}$
 $M = 68.4 \text{ g/mol}$

20.
$$\mathbf{m} = \frac{0.01}{60 \times 0.3} = 5.55 \times 10^{-4} \,\mathrm{m}$$

21.
$$\Delta T_f = i \times K_f \times m$$
; $1.91 = i \times 1.86 \times 1$
 $i = \frac{1.91}{1.86} = 1.027$ $\because i = 1 + \alpha = 1.027$
 $\therefore \alpha = 0.027$, % dissociation = 2.7 %

22. Since
$$\mathbf{P}_{s} = X_{A} P_{A}^{0} + X_{B} P_{B}^{0}$$

 $\Rightarrow 250 = \frac{1}{3} \times P_{A}^{0} + \frac{2}{3} \times P_{B}^{0} \dots (1) \Rightarrow 300 = 0.5 \times P_{A}^{0} + 0.5 \times P_{B}^{0} \dots (2)$
On solving eq. (1) and (2) we get $P_{A}^{0} = 450 \text{ mm Hg} P_{B}^{0} = 150 \text{ mm Hg}$

23.
$$\Delta T_f = i \times K_f \times m$$
; $0.23 = i \times 1.86 \times \frac{0.85 \times 1000}{136.3 \times 125}$
 $i = 2.47$ \therefore $i = 1 + 2\alpha = 2.47$
 $\therefore \alpha = 0.735$, % dissociation = 73.5 %

24. $\Delta T_f = i \times K_f \times m$; $2.8 = 1 \times 1.86 \times \frac{w}{62 \times 1}$ w = 93.3 g

25.
$$\frac{P^0 - P_s}{P^0} = \frac{n}{n+N};$$
 $0.1 = \frac{\frac{12}{M}}{\frac{12}{M} + \frac{108}{18}}$

$$M \approx 20$$

26.
$$nM \longrightarrow (M)_n$$

 $1 - \alpha \qquad \frac{\alpha}{n} \qquad \Rightarrow i = 1 - \alpha + \frac{\alpha}{n} = 0.9$
Given ; $\frac{\frac{\alpha}{n}}{0.9} = 0.2 \qquad \therefore \alpha = 0.18 n$
 $\Rightarrow i = 1 - 0.18 n + \frac{0.18 n}{n} = 0.9 \qquad : \qquad n = 1.55$

27.
$$P_{s} = X_{b} P_{B}^{0} + X_{t} P_{t}^{0} = 0.5 \times 119 + 0.5 \times 37 = 78$$
$$P_{t} = X_{t} P_{t}^{0} = Y_{t} P_{s}$$
$$\Rightarrow \quad 18.5 = Y_{t} \times 78 \Rightarrow \quad Y_{t} = 0.237$$

28.
$$\Delta T_f = 273 - 268 = 5 \text{ K}$$

 $\Delta T_f = i \times K_f \times m; \implies 5 = 1 \times 1.86 \times \frac{W}{32 \times 10}$
 $W = 860.2 \text{ g}$

29. Effective concentration of particles = iC $C_2H_5OH(aq) = 1 \times 0.5 = 0.5 \text{ M}$ $Mg_3(PO_4)_2(aq) = 5 \times 0.1 = 0.5 \text{ M}$ $KBr(aq) = 2 \times 0.25 = 0.5 \text{ M}$ $KBr(aq) = 4 \times 0.125 = 0.5 \text{ M}$

- **30.** $\Delta H_{\text{mixing}} = 0$ (zero) A - A, B - B and A - B interactions are identical
- 31. $\pi_1 = iCRT$; $\Rightarrow 10.8 = i \times 0.1 \times 0.082 \times 298$ $\Rightarrow i = 4.42$ (experimental) $\Rightarrow i = 5$ (expected) $Fe(NH_4)_2(SO_4)_2 \longrightarrow Fe^{2+} + NH_4^+ + 2SO_4^{2-}$

32.
$$M_1V_1 + M_2V_2 = M_3V_3$$

 $0.5 \times 750 + 2 \times 250 = M_3 \times 1000$
 $M_3 = 0.875 \text{ M}$

33.
$$\frac{P^0 - P_s}{P_s} = \frac{n}{N} \implies \frac{185 - 183}{183} = \frac{\frac{1.2}{M}}{\frac{100}{58}}$$

 $M=64\ g\ mol^{-1}$

34.
$$P_s = X_b P_B^0 + X_t P_t^0 = \frac{1.5}{5} \times 74.7 + \frac{3.5}{5} \times 22.3 = 22.41 + 15.687 = 38.097$$

 $P_b = X_b P_b^0 = Y_b P_s$
 $\Rightarrow 22.41 = Y_b \times 38$
 $\Rightarrow Y_b = 0.589$

35. Acetic acid is associated in benzene due to intermolecular H – bonding.

36.
$$\frac{P^0 - P_s}{P^0} = \frac{n}{n+N};$$
 $\frac{760 - P_s}{760} = \frac{0.1}{9.9 + 0.1}$
 $\therefore P_s = 752.4 \text{ torr}$

37. Solubility α Partial pressure of gas

$$\frac{0.01}{S} = \frac{500}{750} ; \qquad S = 0.015 \text{ g } \text{L}^{-1}$$

38.

$$MX_2 \longrightarrow M + 2 X$$

$$1 - \alpha \qquad \alpha \qquad 2 \alpha$$

$$i = 1 + 2 \alpha = 2$$

$$\alpha = 0.5$$

39. $\Delta T_{f} = i \times K_{f} \times m$ $0.45 = i \times 5.12 \times \frac{0.2 \times 1000}{60 \times 20}$ $i = 0.527 = 1 - \frac{\alpha}{2}; \quad \alpha = 0.945$

40. [Co(H₂O)₃Cl₃]. 3H₂O produces least number of particles in solution so, dression in freezing will also be least and freezing point will be maximum.

41. $P_{gas} = K_H X_{gas}$ $K_H \uparrow$ Solubility \downarrow $T \uparrow, K_H \uparrow$

42.
$$X_A = 0.4$$
 $P_A = X_A P_A^0 = Y_A P_s$ $P_A^0 = 7 \times 10^3 Pa$ $0.4 \times 7 \times 10^3 = Y_A \times 10^4$ $P_B^0 = 12 \times 10^3 Pa$ $Y_A = 0.28$ $P_s = X_A P_A^0 + X_B P_B^0$ $Y_B = 0.72$ $= 0.4 \times 7 \times 10^3 + 0.6 \times 12 \times 10^3 = 2.8 \times 10^3 + 7.2 \times 10^3 = 10^4$

43.
$$\therefore$$
 $\Delta Tb = K_b \times m$

$$K_b = \frac{2}{1} = 2$$

∴ ΔT_f = K_f × m

$$K_f = \frac{2}{2} = 1$$

∴ K_b = 2K_f
ΔT_c for diluted milk

44. $\Delta T_{\rm f}$ for diluted milk = 0.2

 $\Delta T_{\rm f}$ for pure milk = 0.5

$$\frac{\left(\Delta T_{f}\right)_{\text{diluted}}}{\left(\Delta T_{f}\right)_{\text{pure}}} = \frac{\left(iK_{f}m\right)_{\text{diluted}}}{\left(iK_{f}m\right)_{\text{pure}}}$$
$$\frac{0.2}{0.5} = \frac{m_{1}}{m_{2}}; \ \frac{m_{1}}{m_{2}} = \frac{2}{5}$$

Assume that Solution is dilute so molality = molarity

$$\frac{M_1}{M_2} = \frac{2m}{5m}$$

So 3 cups of water are added to 2 cups of pure milk.

$$i = 1 + \alpha \left(\frac{1}{n} - 1\right) = 1 + 0.8 \left(\frac{1}{2} - 1\right) = 0.6$$

$$\Delta T_{f} = i \times K_{f} \times m$$

$$2 = 0.6 \times 5 \times \frac{W/122}{30} \times 1000$$

$$W = 2.44$$

46. K_{2}[HgI_{4}] \rightarrow 2K^{+} + [HgI_{4}]^{\Theta 2}

$$i = 1 + (n - 1) \alpha = 1 + (3 - 1) \times 0.4 = 1 + 2 \times 0.4$$

$$i.e.: i = 1.8$$

47. $(\Delta T_{f})_{X} = (\Delta T_{f})_{Y}$

$$K_{f}M_{X} = K_{f}M_{Y}$$

$$\frac{4}{A} = \frac{12}{M_{Y}}$$

$$M_{Y} = 3 A$$

48. Let amount of water (ing) separated as ice is x

$$\Delta T_{\rm f} = i \times K_{\rm f} \times m$$

$$\Rightarrow \quad 10 = 1 \times 1.86 \times \frac{62 \times 1000}{62 \times (250 - x)} \qquad \Rightarrow \qquad x = 64$$

49. Since on mixing two liquids A and B change in volume after mixing is zero, therefore binary solution is an ideal solution.

:
$$P_T = P_A^0 X_A + P_B^0 X_B = (400 \times 0.5) + (600 \times 0.5) = 500 \text{ Torr}$$

$$\therefore \qquad \text{Mole fraction of A is vapour phase} = \frac{P_A^0 X_A}{P_T} = \frac{400 \times 0.5}{500} = 0.4$$

50. $P_{gas} = K_H \times mole fraction of gas.$

i.e.
$$P_{gas} = K_{H} \cdot X_{gas} \implies P_{gas} = K_{H} \left(1 - X_{H_2O} \right)$$

For Z, K_H is maximum

51. $P_{\rm M}^{\rm O} = 450 \text{ mm of Hg}$ $P_{\rm N}^{\rm O} = 700 \text{ mm of Hg}$

That is 'N' is more volatile liquid as compare to 'M' so,

$$\frac{x_{N}}{x_{M}} > \frac{y_{N}}{y_{M}}$$
or
$$\frac{x_{M}}{x_{N}} > \frac{y_{M}}{y_{N}}$$

$$\pi_{1} = \pi_{2} \times 4$$

$$i_{1}C_{1}RT = i_{2}C_{2}RT \times 4$$

$$2 \times C_{1} = 3 \times 0.01 \times 4$$

$$C_{1} = 6 \times 10^{-2}M$$

$$53. \qquad \Delta T_f = i k_f m$$

52.

 $= 3 \times 4 \times 0.03 = 0.36 \text{ K}$

54.
$$\frac{\Delta P}{P^{0}} = \frac{n}{n+N}$$
$$\frac{\Delta P}{35} = \frac{0.01}{0.01+20}$$
$$\Delta P = \frac{0.01}{20.01} \times 35 = 0.017 \text{ mm}$$
55.
$$\Delta T_{b} = K_{b} \times \text{m}$$

$$\frac{(\Delta T_b)_A}{(\Delta T_b)_B} = \frac{(K_b)_A \times m}{(K_b)_B \times m} = \frac{1}{5}$$

56.
$$\pi = CRT$$

$$=\frac{\left(\frac{0.6}{60}+\frac{1.5}{180}\right)}{0.1}\times 0.08206\times 300$$

$$\Rightarrow \pi = 4.92$$
 atm.

EXERCISE # (J-ADVANCED)

1. $(\pi_{obs})_{Na_2SO_4} = \pi_{glucose}$

or
$$\frac{10}{4} = \frac{1+2\alpha}{1}$$
 or $10 = 4 + 8\alpha$
 $\alpha = \frac{10-4}{8} = 0.75$ % of $\alpha = 75\%$

2. (i) In first case,

$$\Delta T_b = K_b \times m = K_b \times \frac{Wt. of solute}{Mol. wt. of solute} \times \frac{1000}{wt. of solvent}$$

or
$$0.17 = 1.7 \times \frac{1.22}{M \times 100 \times 10^{-3}}$$

or **M = 122 g/mole**

Thus the benzoic acid exists as a monomer in acetone

(ii) In second case,

$$\Delta T_{b} = K_{b} \times \frac{\text{Wt.of solute}}{\text{Mol.wt.of solute}} \times \frac{1000}{\text{wt. of solvent}}$$
$$0.13 = 2.6 \times \frac{1.22}{\text{M} \times 100 \times 10^{-3}} \qquad \text{or} \qquad \text{M}^{\text{``}} = 224$$

or

Double molecular weight of benzoic acid (244) in acetone solution indicates that benzoic acid exists as a dimer in acetone.

3.
$$\Delta T_b = i K_b m$$
 i (vant Haff factor) of CuCl₂ = 3

$$\Delta T_{b} = 3 \times 0.52 \times \frac{13.44}{134.4 \times 1} = 0.156 = 0.16.$$

4.
$$\Delta T_f = i \times K_f \times \text{molality}$$

$$7=i\times 14\times \frac{72.5}{94\times 1}; \hspace{1cm} i=0.648$$

$$i = 0.648 = 1 - \frac{\alpha}{2}$$
; $\alpha = 0.704$

5.
$$\Delta T_f = i \times K_f \times \text{molality} \implies 2 = i \times 1.72 \times \frac{20}{172} \times \frac{1000}{50}$$

 $\implies 2 = 4i$
 $\implies i = 1/2 = 0.5$

6.
$$\Delta T_f = K_f \cdot m = 2 \times \frac{0.1}{0.9 \times 46} \times 1000 = \frac{2000}{414} = \frac{1000}{207} = 4.83$$

 $\Delta T'_f = T_f - 4.83$
 $\Delta T'_f = 155.7 - 4.83$
 $\Delta T'_f = 150.9 \text{ K}$
7. Total vapour pressure
 $P = P^o_A X_A$ (considering solute to be non-volatile as given in the question)
 $P = 40 \times 0.9 = 36 \text{ mm Hg}$
8. $\Delta T_b = K_b \cdot m = 0.52 \times \frac{0.1}{0.9 \times 18} \times 1000 = \frac{520}{9 \times 18} = 3.20$
 $T_b = 373 + 3.20$ $T_b = 376.2 \text{ K}$

 $9. \qquad P_{N2} = K_H \times x_{N_2}$

$$x_{N_2} = \frac{1}{10^5} \times 0.8 \times 5 = 4 \times 10^{-5} \text{ per mole}$$

In 10 mole solubility is 4×10^{-4} .

10.
$$\Delta T_f = i \times K_f \times m = 4 \times 1.86 \times \frac{0.1}{329 \times 0.1} = 2.3 \times 10^{-2}$$

 $\Rightarrow T_f = 0 - 2.3 \times 10^{-2} = -2.3 \times 10^{-2} \text{ °C.}$

11.

$$\label{eq:deltaTb} \begin{split} \Delta T_b &= 2^o C \ ; \qquad m_a = 2.5 \ g \\ m_{solvent} &= 100 \ g \end{split}$$

$$K_b = 0.76 \text{ K. kg. mol}^{-1}$$

 $P_{\text{solution}} = ?$

$$\begin{split} \Delta T_{b} &= K_{b} \times m \\ 2 &= 0.76 \times m \\ \hline P^{0} - P \\ P &= m \times MM \times 10^{-3} \\ \hline 760 - P &= \frac{36}{760} P \\ \hline \vdots \\ P &= 760 \bigg(\frac{796}{760} \bigg) \\ \hline r &= 725.6 \text{ torr} \approx 724 \text{ torr} \end{split}$$

12. $\Delta G = -ve$, $\Delta S_{system} = +ve$ Always for solution formation.

$\Delta S_{surr.} = 0$	No heat exchange between solution and surrounding.
$\Delta H = 0$	For ideal solution.

13. 3.2 M = 3.2 moles of solute present in 1L of solution.

Volume of solute = volume of solution = 1L = 1000 mL

Mass of solute = Volume \times density = 1000 mL \times 0.4 g/ mL = 400 g = 0.4 kg

Molality =
$$\frac{3.2}{0.4} = 8$$
 m

14. $\Delta T_f = K_f \times i \times m$

 $0.0558 = 1.86 \times i \times 0.01$

Given complex behaves as a strong electrolyte

 $\alpha = 100 \%$

n = 3 (number of particles given by complex)

 \therefore complex is [Co(NH₃)₅Cl]Cl₂

number of Cl^- ions in the co-ordination sphere of the complex = 1

- **15.** (carbon tetrachloride + methanol) and (carbon disulphide + acetone) do not having any attraction forces.
- 16. From the graph it is clear that there is +ve deviation from Raoult law with respect to L, therefore option A is correct. When $X_L \longrightarrow 1$, then Z will have value equal to P_L^0 (Vapour pressure of pure L) so, option C is also correct.

17.
$$\Delta T_f = K_f \times m = 2 \times \frac{34.5 \times 2}{46} = 2 \times 1.5 = 3$$

So, freezing point of ethanol + water solution = 273 - 3 = 270 K

18.
$$X_A = X_B = \frac{1}{2}$$
; $P_T = \frac{1}{2} \times P_A^0 + \frac{1}{2} \times P_B^0$ (Given $P_A^0 = 20$ Torr)
90 = 45 × 2 = $P_A^0 + P_B^0$(1) ; $P_B^0 = 70$
22.5 = $X_A P_A^0 + (1 - X_A) P_B^0$(1)
22.5 = $X_A \times 20 + (1 - X_A) 70 = 70 - 50 X_A$
 $X_A = \frac{47.5}{50} = \frac{19}{20}$; $X_B = \frac{1}{20}$; $\frac{X_A}{X_B} = 19$
19. $2 = 2 \times K_{b(x)} \times m$; $1 = 2 \times K_{b(y)} \times m$; $\frac{K_{b(x)}}{K_{b(y)}} = 2$

$$\Delta T_{b(x)} = \left(1 - \frac{\alpha_1}{2}\right) K_{b(x)} m \qquad ; \qquad \Delta T_{b(y)} = \left(1 - \frac{\alpha_2}{2}\right) K_{b(y)} m$$

$$2S \longrightarrow S_2$$

$$1 - \alpha \qquad \alpha/2 \qquad ; \qquad i = 1 - \alpha + \alpha/2 = 1 - \alpha/2$$

$$3 = \frac{\Delta T_{b(x)}}{\Delta T_{b(y)}} = \frac{\left(1 - \frac{\alpha_1}{2}\right) K_{b(x)}}{\left(1 - \frac{0.7}{2}\right) K_{b(y)}} \qquad ; \qquad \left(1 - \frac{\alpha_1}{2}\right) = \frac{3 \times 0.65}{2}$$

$$\alpha = 0.05$$

20.
$$\frac{P^{\circ} - Ps}{Ps} = \frac{n}{N} = \frac{0.5}{M_{solute} \times 0.5} = \frac{650 - 640}{640}$$
$$M_{solute} = 64$$
$$\Delta T_{f} = iK_{f}m = 1 \times 5.12 \times \frac{0.5 \times 1000}{64 \times 39} = 1.025$$