

Bunch of Process to Extract Metal from their Respective Ore Ore : Minerals from which metal can be extracted economically :

Metallurgical process :

- **1. Mining**: Ore obtain in big lumps (less reactive)
- 2. Crushing/grinding/pulverization : big lumps convert into powder (more reactive)
- **3.** Concentration : To remove matrix/gangue from ore To increase the concentration of ore particle in ore sample.

Reduction : To obtains metal (95 to 98%) from metal oxide.

Self reduction

- Sulphide ore itself act as reducing agent. eg. PbS + 2PbO $\xrightarrow{\Delta}$ 2Pb + SO₂
- Thermal decomposition

eg. HgO
$$\xrightarrow{\Delta}$$
 Hg + $\frac{1}{2}$ O₂

Carbon reduction (Smelting) : Reducing agent C/CO

• eg. $Fe_2O_3 + 3CO \xrightarrow{250^\circ - 700^\circ C} 2Fe + 3CO_2$

 $ZnO + C \xrightarrow{\approx 1200^{\circ}C} > Zn + CO$

Flux - substance to convert non-fusible impurities to fusible one.

Imp. point – Above 710° C is reducing agent.

- Below 710°C CO is better reducing agent.

Aluminum reduction method : (Thermite process)

• Al act as reducing agent eg. $Cr_2O_3 + 2Al \xrightarrow{\Delta} Al_2O_3 + 2Cr$ Thermite mixture mass ratio : $Cr_2O_3 : Al = 3 : 1$

METAL DISPLACEMENT REDUCTION

- Metal placed below H. in E.C.S.
- Ag, Au, Cu

Example of extraction of

(i) Cynidation (Leaching Process)

 $Ag_{2}S + 2NaCN \xrightarrow{O_{2}} 2Na[Ag(CN)_{2}] + Na_{2}SO_{4}$ $Au + 2KCN + H_{2}O \longrightarrow K[Au(CN)_{2}]$

(ii) Recovery of Ag/Au (Metal displacement Reactions) $2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN_4)] + 2Ag \downarrow$ $2K[Au(CN)_2] + Zn \longrightarrow K_2[Zn(CN_4)] + 2Au \downarrow$

ELECTROLYTIC REDUCTION

- For IA, IIA, Al
- Electolysis of molten solution

Example :-

(i) Extraction of Al(Hall-Herault)

– Al can be extracted from Al₂O₃

- To decrease fusion temp. of Al_2O_3 , $Na_3 AlF_6 \& CaF_2$ is to added as auxilary electrolytes.

 $-Na_3 AlF_6 \& CaF_2$ increase the conductivity & reduce the fusion temp.

- (ii) At cathode impure Al is collected and at anode O_2 , CO, CO_2 is released.
- (iii) Extraction of Na (Down cell process)

- Na can be extracted from NaCl

- Down Process Neutral flux $(CaCl_2)$ to be added to decrease the fusion temp. of NaCl

Neutral flux - substance used to increase the conductivity of NaCl
 Auxilary Electrolyte – decrease the fusion temp. of ionic compounds of (IA, IIA, Al) which is more than the melting point of metal.
 To obtain metal (99.98%)

(I) Electrolytic refining

Anode–made up of impure metal

Cathode-pure metal

impurity deposited below anode as anode mud or goes to electrolytic solution pure metal deposited at cathod.

THERMODYNAMICS PRINCIPLE OF METALLURGY

- The graphical representation of Gibbs energy was first used by H.I.T. Ellingham. This provide a sound basis for considering the choice of reducing agent in the reduction of oxides. this is known as Ellingham diagram such diagram help us in predicting the feasibility of thermal reduction of an ore.
- The Criteria of feasibility is that at a given temperatue. Gibbs energy of reaction must be negative.
- At high temperature 'C' is the best reducing agent.
- At low temperature 'CO' is the best redusing agent.
- In blast fornace reduction takes plae at low temperature i.e. why CO is the reducing agent (For Fe).

A summary of the occurence and Extraction of some Metals is presented in the following table:

Metal	Occurrence	Common method of extraction	Reffining	Remarks
Aluminium $E^{\circ} = -1.66$	1. Bauxite, Al ₂ O ₃ .xH ₂ O 2. Cryolite, Na ₃ AlF ₆	Electrolysis of Al_2O_3 dissolved in molten $Na_3AlF_6 + CaF_2$	Electrolytic refining by Hoop's cell	For the extraction, a good source of electricity is required

Metal	Occurrence	Common method of extraction	Reffining	Remarks
Iron E° = -0.44	 Haematite, Fe₂O₃ Magnetite, Fe₃O₄ Limonite, Fe₂O₃.3H₂O Siderite, FeCO₃ 	Reduction of the oxide with CO and coke in Blast furnace	Bessemerization (impurites has more affinity for O_2 as compare to Fe)	Temperature approaching 2170K is required
Copper E° = -0.34	 Copper pyrites, CuFeS2 Copper glance, Cu2S Malachite, CuCO3.Cu(OH)2 Cuprite, Cu2O Azurite, 2CuCO3. Cu(OH)2 	Roasting of sulphide partially and reduction	(i) Polling (ii) Electrolytic method	It is self reduction in a specially designed converted. The reduction takes place easily. Sulphuric acid leaching is also used in hydrometallurgy from low grade ores.
Zinc E° = -0.76	 Zinc blende or Sphalerite, ZnS Calamine, ZnCO₃ Zincite, ZnO 	Roasting of sulphide ore or calcination of ZnCO ₃ followed by reduction with coke	The metal may be purifed by fractional distillation	For ZnO, carbon is better reducing agent then CO and Zn is obtain is vapours form ZnO+C is $Zn+CO$
Mg E° = -2.36	1. Carnallite, KCl.Mg Cl ₂ .6H ₂ O 2. Magnesite, MgCO ₃	Electrolysis of fused MgCl ₂ with KCl		MgCl ₂ .6H ₂ O is heated in the excess current of dry HCl gas to produce anhydrous MgCl ₂
Sn E° = -0.14	1. Cassiterite, SnO ₂ (Tin stone)	Reduction of the SnO ₂ with carbon. SnO ₂ + $2C \rightarrow Sn + 2CO$	Polling and Liquidation	Ore contain impurity of wolframite, $FeWO_4 +$ $MnWO_4$ (magnetic sepration)

Metal	Occurrence	Common method of extraction	Reffining	Remarks
Pb E° = -0.13	1. Galena, Pbs	Roasting, then self reduction or Reduction of PbO (Roasted ore) with carbon PbS+2PbO \rightarrow 3Pb+SO ₂ PbO+C \rightarrow Pb+CO	Liquadation & electrolytic method.	
Ag E° = 0.80	1. Argentite- Ag ₂ S, native Silver	$\begin{array}{l} Hydro\ metallurgy\\ Ag_2S+4NaCN\\ 2NaAg(CN)_2\\ +\ N_2S\\ 2NaAg(CN)_2\\ +\ Zn \rightarrow\\ Na_2Zn(CN)_4\\ +\ 2Ag \end{array}$	Cupelation & electrolytic method	In hydro mettallurgy Ag obtain in the form of dark amorphous ppt.
Au E° = 1.40	Native ore	 Amalgamation. Cynide process 	Cupelation & electrolysis method.	In hydro mettallurgy Au obtain in the form of dark amorphous ppt.

